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Abstract- In recent times, the adoption rate of Electric Vehicles (EVs) in the transportation sector has been increased 
significantly across the world towards sustainability. On the other side, the increasing EV load penetration in an electric power 
sector can cause for the generation-demand imbalance, real power loss increment, poor voltage profile, and consequently 
voltage stability margin decrement. To mitigate the impact of increasing EV load penetration on radial distribution systems 
(RDS), it is essential to integrate EV Charging Stations (CSs) at appropriate locations. In this paper, the teaching-learning 
based optimization (TLBO) algorithm is applied to determine the optimal locations of EV-CSs considering the objectives 
minimization of real power loss and average voltage deviation index and maximization of voltage stability index. The 
simulation studies are performed on standard IEEE 33-bus and 69-bus test systems. The results have highlighted the need for 
optimal allocation of EV-CSs for maintaining the system performance as better as possible even under increased loading 
conditions due to EV-CSs. Also, TLBO has shown its ability over other heuristic algorithms namely particle swarm 
optimization (PSO), ant lion optimizer (ALO),flower pollination algorithm (FPA) and cuckoo search algorithm (CSA) by 
providing the optimal value consistently in solving the complex non-linear multi-objective optimization problem. 

Keywords Electric vehicles, charging stations, optimal allocation, multi-objective optimization, TLBO algorithm, radial 
distribution system. 

 

1. Introduction 

In view of increasing carbon footprints due to 
conventional energy (CE) generation sources and petroleum-
based transportation, sustainable measures such as 
integration of renewable energy sources (RES) in the energy 
sector and adoption of electric vehicles (EVs) for 
transportation have been focused significantly across the 
world. According to global EV outlook 2019, International 
Energy Agency (IEA), the E-mobility is expanding at a rapid 
pace. In 2018, the global electric car fleet was exceeded 5.1 
million and the growth was almost double as compared with 

2017 statistics. Under this scenario, it is essential to provide 
the required infrastructure such as charging stations (CSs), 
parking lots (PLs), battery swapping stations (BSSs), energy 
storage systems (ESSs) and energy balance using RES etc in 
the existing electric distribution networks (EDN) and also 
performance evaluation for better reliable and secured 
operation. The performance improvement of EDN is handled 
effectively via optimally allocating renewable based 
distribution generation (DG) in the past 2 decades.  In [1], 
voltage stability factors (VSFs) and Flower Pollination 
Algorithm (FPA) are proposed to optimally allocate solar 
photovoltaic distribution generation (DG) considering loss 
minimization and voltage stability maximization. In [2], the 
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implementation and effect of renewable energy on the power 
grid using Grid LAB-D program.A study of four different 
cases for different proportions of renewable energy sources is 
analyzed on slightly modified IEEE 13 Node Test Feeder. In 
[3], Proposed a method for improving the quality of power 
when EV is using as a power storage device for suppressing 
PV fluctuations. In [4], the implementation of a PSO-based 
MPPT algorithm to a photovoltaic power generation system 
functioning under dynamic conditions is proposed to 
optimize and build an intelligent controller relative to a 
traditional one. In [5],  Firefly Algorithm (FA), and Adaptive 
Acceleration Particle Swarm Optimization (AAPSO) 
techniques based Proportional-Integral (PI) controller 
proposed to study the stability analysis of Photo Voltaic 
Systems connected to grid. In [6], the amount of renewable 
energy can be used in public transport vehicles and the size 
of the photovoltaic system must be installed to charge the 
Exchangeable battery systems is investigated efficiently. 

In [7], a comprehensive review on optimal siting of EV 
charging infrastructure is presented and classified as (i) 
transportation-network based model, (ii) distribution-network 
based model, and (iii) transportation-distribution-networks 
based models. An example of a transportation-network 
model optimal location of EV-CSs can be found in [8], 
which formulated as Route-Node-Coverage (RNC) problem 
considering the driving range of EV. The simulations 
performed on Sioux-Falls network and southern Sweden 
highway. Similarly in [9], the location of EV-CSs are 
planned in cites of Vasteras, Sweden based on traffic flow 
rate and land-use classification data using Geographic 
Information System (GIS) and the optimization problem is 
solved using Mixed Integer Linear Programming (MILP) for 
maximizing the profits with new CSs. In [10], considering 
highway features (the flow of vehicles with related 
indicators), the infrastructures (the number of sockets and the 
charging station power), and driver behavior (range anxiety), 
the required EV infrastructure and locations are determined 
for the Italian transportation network. In [11], the location of 
CSs and their sizes are determined using service risk using 
improved whale optimization algorithm (IWOA). Further, a 
comprehensive review of the transportation-network based 
model can also be found in [12]. Notably, the transportation-
network based model is not suite for the realization of EV-
CSs impact on the performance of distribution networks and 
energy balance in grid operation and control. These factors 
can realize in distribution-network based model, but not suit 
for realizing the EV owners’ driving-range anxiety. 

In the transportation-distribution-network model, both 
the factors can be addressed. In [13], using a superimposed 
road-distribution network of Guwahati City, India, optimal 
allocation of EV-CSs problem is solved using hybrid chicken 
swarm optimization (CSO) and teaching-learning-based 
optimization (TLBO). The objective function is formulated 
considering economic factors and grid operational factors. In 
[14], the number of CSs, duration of their planning period, 
total cost (investment, operating and maintenance) CSs and 
network operating constraints like bus voltages and branch 
current limits are considered to determine the optimal 
allocation of EV-CSs and the objective function is solved 

using PSO algorithm. In [15], considering transportation/ 
routing cost of EVs and distribution system performance, 
optimal allocation of freight EV-CSs problem is addressed. 
In [16], the problem of optimal location of fast CSs is solved 
considering candidate locations with economy of operation at 
the upper layer and impact of CSs on drivers, EV power loss, 
traffic condition, grid operation at the lower layer. In [17], a 
multi-objective grey wolf optimizer (MOGWO) algorithm is 
proposed to solve the problem of EV fast CSs locations in 
123-bus distribution system considering grid and 
transportation network constraints. In [18], the optimal 
location of EV parking lots (PLs) is presented considering 
traffic-flow, EV charging behavior, and distribution network 
constraints. 

In this work, as similar to the distribution-network based 
model, the optimal allocation of EV-CSs in radial 
distribution network is presented. Here some of such works 
are reviewed and presented. In [19], a hybrid approach using 
particle swarm optimization (PSO) and sequential quadratic 
programming (SQP) is proposed to identify EV aggregator-
CSs in the radial distribution system. The objective function 
is formulated to minimize the operating cost of system load, 
EV load, and losses. Considering transformer aging and 
distribution losses [20] and also battery charging monetary 
cost [21], the impact of EV charging on the distribution 
network is analyzed. In [22], the impact of EV load 
penetration in Latin American is presented. And the study 
determines the 23 fast CSs location optimally for serving the 
10% penetration of EV load without compromising the grid 
operational codes such as voltage profile, harmonic 
distortion. In [23], a real-time low-voltage residential 
distribution network of Bhubaneswar electrical division, 
CESU, Odisha, India consisting of 107 buses is considered 
for allocating the EV-CSs. According to transformer ratings, 
the feasibility of number EVs are determined. Using the Salp 
swarm algorithm (SSA), the charging cost is minimized by 
satisfying grid technical limits under conventional (dump) 
and smart charging modes are presented and the results 
highlighted the fact that the voltage profile variation due to 
EV loads is higher in the secondary distribution feeders than 
compared with primary distribution feeder. Further the reader 
can be found a comprehensive review of CS placement 
problem using nature-inspired algorithms (NIA) in [24]. The 
work also presented the performance of different stand-alone 
algorithms such as DE, PSO, CSO, TLBO and GA and 
compared with hybrid algorithms namely CSO-TLBO, GA-
PSO. The simulation results highlighted the supremacy of 
hybrid algorithms in solving the CSs allocation problem. 
Similarly, the impact of EV load on distribution networks 
under conventional charging mode and smart charging mode 
is presented in [25]. Different charging scenarios and case 
studies recommended the smart charging mode to minimize 
the operational cost at peak-demand and to maintain grid 
reliability and security factors. At this point, it can be said 
that the increased EV load on the distribution system should 
be adequately planned to enhance technical and economic 
benefits and consequently to improve the adoption rate of EV 
technologies in developing countries like India. 
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The public EV-CSs should design for multiple facilities 
such as AC slow chargers (ACCs), DC rapid charges (DCCs) 
and AC and DC integrated chargers (ADCs) [7]. They should 
also design with multiple charging ports (CPs) for multiple 
types of EVs to achieve the economic goals and to increase 
the EV adoption rate. According to the EV model, the power 
rating can change. For an instant, Tesla Model X power 
rating is 13 kW, BMW i3 needs 44 kW, Chevrolet VOLT 
needs 2.2 kW and CHANG AN YIDONG needs 3.75 kW 
[19]. Moreover, different types of AC and DC EV models 
and their power demand specifications can be found in [10]. 
Hence, the total power demand of EV-CSs is mainly 
dependent on the number of CPs and their type. On the other 
side, the dispersed EV demand for a CS can estimate using 
either a spatial-temporal probabilistic model or a rough 
probabilistic model for better reliable operation of the 
network [26].In this work, depending upon type of the EV 
model and number of CPs, the power demand of EV-CSs is 
determined. 

In light of the above works, the optimal allocation of 
EV-CSs in the distribution network using TLBO algorithm 
[27] was proposed for attaining technical benefits. The 
efficiency of TLBO is compared with particle swarm 
optimization (PSO) [28], ant lion optimizer (ALO) [29] and 
flower pollination algorithm (FPA) [30], cuckoo search 
algorithm (CSA) [31]. The simulations are performed on 
standard IEEE 33-bus and 69-bus test systems. 

2. Problem Formulation 

To mitigate the impact of increased EV load on 
distribution system performance, the size and location of CSs 
should be optimized. Backward/Forward (BW/FW LF) 
technique [32] is used for solving the load flow problem of 
the radial distribution system (RDS). The multi objectives of 
this study are: to minimize real power losses, improve 
voltage profile and enhance voltage stability.  

The real power losses are determined by summation of 
all branches losses in the system and are given in (1). 

                         (1) 

The average voltage deviation index (AVDI) is 
defined in terms of all bus voltage magnitudes are deviation 
w.r.t. ideal voltage magnitude 1.0 p.u. and is given in (2). 

                                      (2) 

As defined in [33], the voltage stability index (VSI) 
of a receiving end bus of a branch can be determined using 
voltage magnitude of sending end bus, real and reactive 
power loads at receiving end bus and its resistance and 
reactance as in (3). 

                                                                                             (3) 

For stable operation, VSIj should be greater than 0. 
Among all the buses, the minimum value of VSI can be 
treated as the overall stability of the system. 

Hence, the overall objective function is formulated to 
minimize power losses, voltage deviation index and to 
maximize voltage stability index. Mathematically, expressed 
as given in (4). 

                        (4) 

The proposed multi-objective function given in (4) is 
minimized by having the node voltage (Vi), and branch flow 
(|Si|) operational constraints, and CS design constraints such 
as number of CPs and number of CSs, which are given in (5) 
– (8). 

                               (5) 

                              (6) 

                                       (7) 

                             (8) 

The load flow algorithm is extended to determine the 
function values specified in OOF and the TLBO algorithm 
shall take care of the lower and upper limits specified in (5) – 
(8), while minimizing the OOF.  

3. Teaching -Learning Based Optimization 

3.1 Overview 

The Teaching-Learning-Based Optimization (TLBO) 
algorithm is introduced by R. V. Rao et. al (2011) [34] using 
the influence of a teacher on learners. As compared with 
similar type of nature-inspired algorithms namely artificial 
bee colony (ABC), differential evaluation (DE), evolutionary 
programming (EP), and PSO, TLBO is characterized by less 
computational effort and high consistency in providing the 
global solution for continuous nonlinear optimization 
problems. Basically the TLBO simulates the traditional 
teaching-learning process in a classroom. In the assumptions, 
the learning may take place in two phases like (i) through 
teacher (known as teacher phase) and (ii) interaction with co-
learners/classmates (known as learner phase). In similar to 
the population based algorithms, in TLBO, the number of 
students or group of students considered as population, the 
number of subjects as design variables of the optimization 
problem, the best solution among all population is treated as 

min maxiV V V£ £ 1,2,...i nb=

,maxl lS S£ 1,2,...l nbl=

min maxnCP nCP nCP£ £

min maxnCS nCS nCS£ £
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teacher and results of the learners as the fitness function. In 
this section, the basic operations involved in teacher phase 
and learner phase are explained briefly. 

 

Ø Teacher phase 

In this phase, the students learn from the teacher and 
teacher keeps an effort to increase the mean of results of the 
students by conveying knowledge among them. Let Sn (n = 
1… l) is the number of learners (population) and Sm (m = 
1… s) is the number of subjects (design variables in the 
optimization problem). Consider the sequential teaching-
learning process (iteration) and at any sequence k, the mean 
result of a subject ‘s’ as M(s, k). In the entire learners, the 
best learner who secured best mean result in all the subjects 
is treated as teacher in that iteration and denoted as Xtotal-
kbest,k. In general, the teacher puts his maximum effort to 
increase the knowledge level of all the students, but the rate 
of learning depends on the quality of the teacher as well as 
learners in that class. This fact is expressed in (9) as the 
difference between the best learner and mean of the 
remaining class. 

                         (9) 

where Xs,kbest,k is the result of best learner (or teacher) in 
the subject ‘s’;  rk is uniformly distributed random number 
between [0, 1]; TF is the teaching quality factor, which is the 
root cause for improving or change the mean result of the 
entire class in that subject Ms,k; The value of TF can be 
either 1 or 2 and it decided randomly with equal probability 
as defined in (10). 

                      (10) 

Note here, TF is not an input parameter and can be generated 
in the process of TLBO algorithm using (10). Using 
difference mean defined in (9), the current solution is 
updated in teaching phase as given in (11).  

                                                  (11) 

All the updated X’l,s,k values are accepted and carry forward 
for the next cycle/iteration as input, if they produce better 
function value else, remain same. 

Ø Learning phase 

This phase simulates the cooperative learning process in 
which student can also gain new knowledge by interacting 
with other classmates, particularly from those who have 
better knowledge than him/her. This phenomenon is 
modelled here with brief explanatory.   

Let consider two students randomly Sp and Sq and their 
updated solutions at the end of teaching phase as 

. By interacting both, their knowledge 
levels are updated as (12) in the maximization problem. 

 

 if 
                                     (12a) 

 if
                                                  (12b) 

Note here (12) can be reversed for minimization 
problem and the accepted values can carry forward to the 
next cycle, if updated values produce the better solution, else 
remain the same.  

Ø Application of TLBO for solving the OOF 

In this section, the sequential steps involved in solving 
the problem of optimal allocation of EVCSs using TLBO 
algorithm are given.  

St 1) Define either maximization or minimization objective 
function subjected to equal and inequal constraints of the 
design variables. 

St 2) Initialize the population size equal to number of 
learners and design variables equal to the number of CSs, 
their sizes in kW and location range in the network (from bus 
– to bus) for each CS.   

St 3) Using BW/FW load flow, evaluate the initial 
population and determine overall function values (OOF) 
using (4).  

St 4) Set iteration count k=1 and identify the best 
population/learner which has given best OOF and treat that 
learner as a teacher. Also, determine the mean of all the 
population. 

St 5) Update the existing solutions using equations (9) – (11) 
and carry forward all accepted solutions if they result for a 
better solution than the current teacher. 

St 6) Using (12) modify the solutions obtained in step (5) and 
carry forward all accepted solutions if they result for a better 
solution than the current teacher. 

St 7) Save the current best teacher and repeat steps (4) to (6) 
until iteration count reaches to its maximum. 

St 8) At the end, print the best solution/teacher as the optimal 
solution and plot the saved best teacher record of all 
iterations as convergence characteristics and stop.   

 

   

( ){ }1 0,1 2 1FT round randé ù= + -ë û
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4. Results and Discussions 

The proposed optimization algorithm has been evaluated 
using the MATLAB program, which is implemented in a PC 
having Intel Core i5-4210U processor, up to 1.7 GHz and 8 
GB of RAM memory. The simulations are performed on 
IEEE standard 33-bus and 69-bus RDS test systems. The 
data for the test systems are taken from [35]. 

In addition to the EV models (Chevrolet VOLT, 
CHANG AN YIDONG, Tesla Model X and BMW i3) given 
in Table 1, AC/DC Level-2 type charging ports (CPs) are 
also considered in CS design. According to SAE J1772 

standard, this type of CPs can suit for both Battery Electric 
Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles 
(PHEVs), which has a maximum power rating of 7 kW 
[36].The design features of CPs such as types of EVs which 
can charge at a time in a particular CS and their power 
ratings in kW, the minimum and maximum number of CPs 
for different types of EVs and correspondingly the minimum 
and maximum power rating of CS. The details are given in 
Table 1. For an instant, if all the CSs are designed for only 
minimum CPs as given in Table 1, the power rating of 1 CS 
is 975 kW. Similarly, for maximum number CPs, the demand 
may increase to 1675.5 kW. 

Table 1. Design features of EV-CSs for the simulation 

EV Type EV power rating 
(kW) 

No. of CPs Rating of CS (kW) 
Min Max Min Max 

Chevrolet VOLT 2.2 25 35 55 77 
CHANG AN YIDONG 3.75 20 30 75 112.5 
Tesla Model X 13 15 25 195 325 
BMW i3 44 10 20 440 880 
SAE J1772 Standard 7 30 40 210 280 
Total power rating of CS (kW) 975 1674.5 

 

4.1 33-Bus Test System 

The 33-bus system is operating at 12.66 kV, and it has 
real and reactive power loads of 3715 kW and 2300 kVAr 
respectively. By performing load flow, it has been observed 
that the real and reactive power losses as 210.9897 kW and 
143.027 kVAr respectively and the minimum voltage 0.9038 
p.u. at bus-18. Also, the minimum VSI of the network is 
observed as 0.6661 at bus-18 [34]. This simulation is treated 
as Case-A in the further sections.  

In this test system, it is assumed to integrate totally 3 
CSs considered 1 in each sub-feeder optimally. By imposing 
a total power demand of 2925 kW (975 kW×3) for 3 CSs 
with the minimum number of CPs at all CSs as given in 
Table 1, the new loading condition of the test system is 
determined. According to this, the real power load is 
increased from 3715 kW to 6640 kW, (which is 1.7873 times 
more than Case-A) and the corresponding test system 
performance is given in Table 2. Due to increased EV-CS 
load, the real losses (Ploss, F1) are increased to 576.1705 kW 
from 210.9897 kW (which is 72.606 % raise to the Case-A), 
the average voltage deviation index (AVDI, F2) is increased 
to 0.0108from 0.0041, the stability index (VSImin, F3) is 
decreased to 0.4984 from 0.6661 and the minimum voltage at 
bus-18 is decreased to 0.8408 p.u. from 0.9038 p.u. This 
simulation is treated as Case-B in the further sections. 

Similarly for the maximum number of CPs in each CS, 
the load can increase on the network by 1674.5 kW and 
5023.5 kW for 3 CSs (which is 2.3522 times more). The 
corresponding system performance is given in Table 2. The 

losses are increased to 1024.3908 kW (which is 285.517 % 
raise to the Case-A and 78.1021% raise to the Case-B), 
voltage deviation index raised to 0.0187 and stability index 
decreased to 0.3854 and the minimum voltage at bus-18 
reaches to 0.7888 p.u. This simulation is treated as Case-C in 
the further sections. 

Hence, the objective of optimal allocation of EV-CSs is 
to improve the test system performance for the above 
mentioned increased EV loading condition. The parameters 
of TLBO are as follows: the number of unknown variables in 
the search space is 3 (for 3 EV locations), the number of 
population is 50, and number of maximum iteration are50.  

The impact of optimal EV-CSs with minimum number 
of CPs at best locations (bus-2, 19 and 25) is given in Table 
2. The real losses are decreased to 295.6474 kW from 
576.1705 kW, the average voltage deviation index is 
decreased to 0.0047 from 0.0108, the voltage stability index 
is improved to 0.6499 from 0.4984 and the minimum voltage 
at bus-18 is increased to 0.8982 p.u from 0.8408 p.u. By 
observing the results, the losses are decreased by 48.6875% 
as compared to Case-B. The results of this case are 
considered as Case-D.  

Similarly, the results of EV-CSs with the maximum 
number of CPs at the best locations (bus-2, 19 and 25) are 
given in Table 2. The real losses are decreased to 390.6266 
kW from 1024.3908 kW, the average voltage deviation index 
is decreased to 0.0053 from 0.0187, the voltage stability 
index is improved to 0.6381 from 0.3854 and the minimum 
voltage at bus-18 is increased to 0.8941 p.u from 0.7888 p.u. 
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By observing the results, the losses are decreased by 
61.8674% as compared to Case-C. The results of this case 

are considered as Case-E. The voltage profile and VSI profile 
for different cases are given in Fig.1 and Fig.2 respectively.  

Table 2. Performance of 33-bus test system with EV-CSs at optimal locations 

Case  Algorithm  EV Locations F1, Ploss F2, AVDI F3, VSImin Vmin (p.u)  
A - - 210.9897 0.0041 0.6661   0.9038  
B - - 576.1705 0.0108 0.4984 0.8408 
D TLBO 2/ 19/ 25 295.6474 0.0047 0.6499 0.8982 
 ALO [29] 2/ 19/ 25 295.6474 0.0047 0.6499 0.8982 
 FPA [30] 2/ 19/ 25 295.6474 0.0047 0.6499 0.8982 
 CSA [31] 2/ 19/ 25 295.6474 0.0047 0.6499 0.8982 
 PSO [28] 2/ 19/ 25 295.6474 0.0047 0.6499 0.8982 
C - - 1024.3908 0.0187 0.3854 0.7888 
E TLBO 2/ 19/ 25 390.6266 0.0053 0.6381 0.8941 
 PSO [28] 2/ 19/ 25 390.6266 0.0053 0.6381 0.8941 
 ALO [29] 2/ 19/ 25 390.6266 0.0053 0.6381 0.8941 
 FPA [30] 2/ 19/ 25 390.6266 0.0053 0.6381 0.8941 
 CSA [31] 2/ 19/ 25 390.6266 0.0053 0.6381 0.8941 

 
The statistics for convergence characteristics of different 

algorithms are given in Table 3. Since the power ratings of 
CSs are not variable in the optimization process and hence all 
the considered algorithms are finally resulted for only one 
combination of best locations. By observing the mean values 

of OOF, the TLBO has outperformed than ALO, FPA, CSA 
and PSO in both the cases with best mean. The convergence 
characteristics of these algorithms for Case-D are only given 
in Fig.3. 

Table 3. Convergence characteristics of different algorithms in 33-bus system 

Case  OF value 
Algorithm 
TLBO FPA ALO CSA PSO 

D 
Minimum 297.191 297.191 297.191 297.191 297.191 
Maximum 311.834 354.210 330.382 311.834 375.157 
Average 297.776 298.331 297.855 298.655 298.750 

E 
Minimum 392.199 392.199 392.199 392.199 392.199 
Maximum 588.340 524.620 720.255 760.514 583.209 
Average 397.824 402.090 403.256 412.038 403.812 

 

4.2 69-Bus Test System 

The 69-bus test system is operating at 12.66 kV, and it 
has total real power load of 3801.4 kW and reactive power 
load of 2693.6 kVAr respectively. The load flow results for 
real power loss of 224.8807 kW and reactive power loss of 
102.1094 kVAr respectively. Also, the minimum voltage of 
0.9092 p.u. is observed at bus-65. This operating condition is 
treated as Case-A in further sections. 

As similar to 33-bus test system simulations, in this test 
system also, 3 EV-CSs are considered (1 in each sub-feeder) 
to integrate at optimal locations with different CPs. By 

imposing a total power demand of 2925 kW for 3 CSs with 
minimum CPs, the test loading condition is increased from 
3801.4 kW to 6726.4 kW (1.7695 times to Case-A). Due to 
increased EV load, the real losses are increased to 613.4994 
kW from 224.8807 kW (which is 72.81 % raise to the Case-
A), the average voltage deviation index is increased to 0.004 
from 0.0014, the stability index is decreased to 0.5114from 
0.6823 and the minimum voltage at bus-65 is decreased to 
0.8462 p.u. from 0.9092 p.u. This operating condition is 
treated as Case-B in further sections. 
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Fig. 1. Voltage profile for different cases in 33-bus system 

 

  
Fig. 2. Voltage stability index (VSI) for different cases in 33-bus system 

 
 

 
Fig. 3. Convergence characteristics of different algorithms for Case-D in 33-bus system 
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Similarly by imposing a total power demand of 5023.5 
kW for 3 CSs with maximum CPs, the test loading condition 
is increased from 3801.4 kW to 8824.9 kW (2.3215 times to 
Case-A). Due to increased EV load, the real losses are 
increased to 1108.6 kW from 224.8807 kW (which is 292.97 
% raise to the Case-A and 172.81% raise to Case-B), the 
average voltage deviation index is increased to 0.0072 from 
0.0014, the stability index is decreased to 0.3949 from 
0.6823 and the minimum voltage at bus-65 is decreased to 
0.7935 p.u. from 0.9092 p.u. This operating condition is 
treated as Case-C in further sections. 

Notably, by having EV-CSs at best locations (bus-2, 28 
and 47) in both the case B and C, the test system has retained 
almost similar performance as Case-A. The losses in Case-B 
with EV-CSs are decreased to 225.2186 kW from 613.4994, 
AVDI is decreased to 0.0014 from 0.004 and VSI is 
increases to 0.6822 from 0.51114. Also, the minimum 
voltage at bus-65 is raised to 0.9092 p.u from 0.8462 p.u. 
The voltage profile and VSI profile for different cases are 
given in Fig.4 and Fig.5 respectively.  Similarly in Case-C 
with EV-CSs, the losses are decreased to 225.5766 kW from 

1108.6266, AVDI is decreased to 0.0014 from 0.0072and 
VSI is increases to 0.6821 from 0.3949. Also, the minimum 
voltage at bus-65 is raised to 0.9092 p.u from 0.7935 p.u. 
The results of all cases are tabulated in Table 4. The 
convergence characteristics of different algorithms are given 
in Table 5 in terms minimum, maximum and average values 
of OOF. In similar to 33-bus test system, TLBOS has 
performed better than ALO, FPA, CSA and PSO in both the 
cases with best mean. The convergence characteristics of 
these algorithms for Case-E are only given in Fig.6.  

The convergence characteristics of TLBO along with 
other heuristic algorithms are given in Fig.3 and Fig.6. Each 
algorithm is simulated for 10 times and correspondingly the 
minimum (best), maximum (worst) and average of the 
overall objective function (OOF) is given in Table 3 and 
Table 5. By observing the minimum values of TLBO in both 
the cases, it has shown superior characteristics of stability 
than other algorithms. 

 
 

 

Table 4. Performance of 69-bus test system with EV-CSs at optimal locations 

Case  Algorithm  EV Locations F1, Ploss F2, AVDI F3, VSImin Vmin (p.u)  
A - - 224.8807 0.0014 0.6823 0.9092 
B - - 613.4994 0.004 0.5114 0.8462 
D TLBO 2/ 28/ 47 225.2186 0.0014 0.6822 0.9092 
 ALO [29] 2/ 28/ 47 225.2186 0.0014 0.6822 0.9092 
 FPA [30] 2/ 28/ 47 225.2186 0.0014 0.6822 0.9092 
 CSA [31] 2/ 28/ 47 225.2186 0.0014 0.6822 0.9092 
 PSO [28] 2/ 28/ 47 225.2186 0.0014 0.6822 0.9092 
C - - 1108.6266 0.0072 0.3949 0.7935 
E TLBO 2/ 28/ 47 225.5766 0.0014 0.6821 0.9092 
 PSO [28] 2/ 28/ 47 225.5766 0.0014 0.6821 0.9092 
 ALO [29] 2/ 28/ 47 225.5766 0.0014 0.6821 0.9092 
 FPA [30] 2/ 28/ 47 225.5766 0.0014 0.6821 0.9092 
 CSA [31] 2/ 28/ 47 225.5766 0.0014 0.6821 0.9092 

 

Table 5. Convergence characteristics of different algorithms in 69-bus system 

Case  OF value 
Algorithm 
TLBO FPA ALO CSA PSO 

D 
Minimum 226.686 226.686 226.686 226.686 226.686 
Maximum 226.727 227.117 232.436 267.046 227.945 
Average 226.687 226.695 226.801 227.494 226.711 

E 
Minimum 227.044 227.044 227.044 227.044 227.044 
Maximum 235.630 263.223 319.490 252.343 245.235 
Average 227.216 227.768 228.893 227.550 227.408 
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Fig. 4. Voltage profile for different cases in 69-bus system 

 
Fig. 5. Voltage stability index (VSI) for different cases in 69-bus system 

 
Fig. 6. The convergence characteristics of different algorithms for Case-E in 69-bus system 
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5. Conclusions 

In this paper, a novel approach for allocating the EV-CSs 
with multiple features in EDS. In addition to the AC/DC 
Level-2 EV-CSs suitable for both BEVs and PHEVs, 
different EV models (Chevrolet VOLT, CHANG AN 
YIDONG, Tesla Model X and BMW i3) are taken into 
account while designing the CS with multiple CPs. The 
multi-objective function is formulated for achieving the 
minimum real power losses, improved voltage profile and 
enhanced voltage stability. The OF is optimized using 
TLBO, ALO, FPA, CSA and PSO algorithms. The 
simulation results presented on standard IEEE 33-bus and 
69-bus test systems have highlighted the technical benefits 
which can achievable through the optimal allocation of EV-
CSs even with increased EV loading conditions. Notably, the 
impact of EV-CSs at optimal location is not negligible in 33-
bus system with 40.12% increased losses when EV-CSs are 
designed for minimum CPs and 85.89% increased losses 
maximum CPs when compared with standard test operating 
conditions, where as in 69-bus system, it is almost negligible. 
On the other side, the proposed TLBO optimization 
algorithm has proven its ability in solving the multi-objective 
non-linear complex problem by providing the global 
objective value consistently than ALO, FPA, CSA and PSO. 
In addition to the optimal allocation of EV-CS based on 
distribution system performance, optimal/smart charging 
feature of EVs can also system performance significantly 
[37], and considered as future scope of this research.    
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