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Abstract- The generator control region in wind turbines is generally hard to represent mathematically. This paper evaluates the 
accuracy of wind turbine fits for such a region, namely the polynomial, the approximate cubic, and the exponential fits. The 
study demonstrates how higher-order polynomials are not necessarily more accurate than lower-order ones. Three different wind 
turbines are modeled, and calculations of the capacity factor and the average produced power are carried out to examine the 
modeling limitations of the approximate cubic and the exponential fits. Results show that the exponential fit has low accuracy 
for low wind speeds, especially when the wind turbine curve is ‘S-shaped’ in the generator control region. The approximate 
cubic fit is also shown to always over-estimate the annual energy yield of wind turbines. 
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Nomenclature

 

AEP Annual Energy Production 

AF Availability Factor 

ANN Artificial Neural Networks 

CF Capacity Factor 

GCR Generator Control Region 

GP-ANN Gaussian Processes Artificial Neural 
Networks 

MC Monte Carlo 

MSE Mean Square Error 

PDF Probability Density Function 

  

RMSE Root Mean Square Error 

SCADA Supervisory Control and Data Aquisition 

WT Wind Turbine 

WTPSC Wind Turbine Power Speed Characteristics 

 

1. Introduction 

The global installed capacity of WTs has grown from 
100GW in 2008 to 542GW in 2018. Furthermore, it is 
projected that such a figure would reach 1787GW in 2030 [1]. 
Challenges, however, are still present regarding increasing 
WTs efficiency (especially at low wind speeds), integration of 
large wind farms into bulk power grids (e.g., stability), risk 
assessment, and modeling of wind turbines and wind regimes. 
Efforts are made in the literature to overcome many of these 
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issues (as in [2]), and this paper focuses on the accuracy of 
different wind turbine power-speed characteristics fits and 
their impact on their predictions of energy yield. 

Ref. [3] devises a method to appropriately select WTs 
sites for given Weibull distribution parameters along with cut-
in, cut-out, and rated speeds of WTs. The authors derive CF 
and the AF (i.e., the probability that a WT will remain 
connected to the grid during an entire year) in terms of 
Weibull distribution parameters as well as some specifications 
of the WTs (e.g., cut-in speed). They then compare the 
suitability of sites depending on the magnitude of CF, where 
the site-WT combination of a higher capacity factor is 
classified as a better alternative. When, however, the CFs of 
multiple site-WT combinations match each other, the priority 
goes to the combinations that provide higher AFs. 

Ref. [4] statistically analyzes the wind energy potential in 
Hong Kong using Weibull distribution. The operating 
probability of WTs is found in terms of its ratings and Weibull 
distribution parameters for the sites of interest (similar to [2]). 
The seasonal variation of the most probable wind speeds and 
Weibull distribution parameters are used as a basis of analysis 
and decision making. The authors conclude that the cut-in 
speed has a significant effect on the WT operation probability. 

Authors of [5] assess the suitability of five different 
candidate sites for wind power projects in Jordan. The study 
uses the power density in certain areas as a major criterion in 
the selection of the site. They report that seasonal variations 
as a key factor that strongly influences decision making.  

Combining sensitivity study and MC method to 
understand the effects of uncertainty in WT projects is devised 
in Ref. [6]. The authors classify wind speed, electricity tariffs, 
installation costs, and the power curve of WT as key factors 
that influence a wind farm performance. They, however, 
exclude air density as it does not vary a lot throughout the 
year. 

Ref. [7] studies modeling the power of retrofitted WTs 
using ANN. Authors argue that WTs are subjected to non-
stationary conditions, meaning that comparing energy 
production before and after upgrades is not a suitable way to 
compare the improvement due to the upgrade. Thus, they use 
ANN with a data-driven approach. This is done by sampling 
10-minute data for wind power. The authors devise that to 
improve power for a given upgrade, we must apply the 
following 1) optimize the pitch angle control of the blade; 2) 
apply “blade retrofitting”, and 3) extend the power curve for 
very high wind speed. 

Ref. [8] describes an automatic GP-ANN to approximate 
the wind power curve depending on a minimal group of input 
variables, which is wind speed and wind direction. They then 
compare the estimated AEP with the actually produced one. 
Furthermore, the authors compare their work with different 
parametric and non-parametric power curves. 

Ref. [9] proposes a probabilistic model of WTPSC, which 
are established using fuzzy clustering, ANN, as well as MC. 
The authors use SCADA data from Chinese wind farms to 
compare their methods with deterministic ones. Further, they 

recommend that probabilistic WTPSC be used for forecasting 
and health management of WTs. 

To our knowledge, papers in the literature have the 
following drawbacks when evaluating the accuracy of 
WTPSC or devising new techniques 1) Despite using 
empirical data (such as [7]; [8]), they do not include different 
types of possible wind regimes (i.e., the studies are only for 
very specific regions), and 2) They do not address the 
accuracy of WTPSC, resulting in from positive errors (i.e., 
modeled WTPSC is above empirical data provided by the 
manufacturer) or negative errors (i.e., modeled WTPSC is 
below the empirical data provided by the manufacturer). In 
fact, even the most recent review papers WTPSC modeling 
([10]–[12]) did not mention that any paper covers anything 
about the implications of such errors. 

The contributions of this paper include the following 

1. it is very well-known that wind speed probability 
distribution may vary depending on annual, seasonal, and 
monthly variations. Using realistic Weibull distribution data 
for wind regimes at different sites in the world as well as 
manufacturer-provided measurements for WTs, we show that 
some models may accurately predict the total energy yield 
over a year. However, predictions accuracy for a shorter 
duration that sometimes generally have low or high wind 
speeds (e.g., one month) may drop (Sections 3 and 4) 

2. it corrects some misconceptions about the accuracy of 
WTPSC models. For instance, it is believed in the literature 
that the higher the order of polynomial fits, the better the 
fitting accuracy (SubSection 1.4) 

3. it provides rigorous coverage of WTPSC regions 
(SubSection 1.2). Further, it explains the reason that WTPSC 
is not necessarily cubic despite the fact that power in the wind 
is proportional to the cube of wind speed (SubSection 1.4) 

The paper is organized as follows: the rest of this section 
depicts different aspects of interest on WT characteristics and 
their mathematical representations. Section 2 defines Weibull 
distribution, the capacity factor, and the mean wind speed. 
Section 3 presents and discusses the numerical results of the 
WT mathematical fits. Section 4 concludes the paper. 

1.1. Wind Energy Conversion 

The available power in the wind can be expressed as [13] 

 
(1) 

The electrical power extracted by a Wind Turbine (WT) 
and injected into the grid is given in terms of wind speed (vw) 
as follows [13]-[15] 

 
(2) 

 
(3) 

Where 𝜌 is the air mass density (for a temperature of 
15	°𝐶 and 1	𝑎𝑡𝑚, a dry air has 𝜌	 = 	1.2250	𝑘𝑔/𝑚2 [16]), 𝑅 
is the rotor radius, and 𝑃5 is the total power in the wind in 
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watts. 𝑣5 is the wind speed in 𝑚/𝑠. 𝐶8,:  is called the 
“effective” power coefficient (because it includes mechanical 
and electrical losses). 

𝐶8,:	 is a nonlinear function of the Tip Speed Ratio (𝜆) and 
the pitch angle of the blades (𝛽). Readers interested in 
knowing about this relationship are advised to refer to [17]–
[19]. It quantifies the fraction of the wind power that gets 
converted into electrical power. 𝐶8,:	 depends on the blade 
design and friction losses in the drivetrain as well as electrical 
losses in the generator and any power electronic interfaces 
between it and the transformers. Note that even though 𝐶8,:	 is 
sometimes called the aerodynamic coefficient, calling it this 
way might be misleading. This is because manufacturers 
provide electrical output characteristics as a function of wind 
speed. Thus, data provided by the manufacturer for power 
coefficient includes not only the losses in the blades as they 
convert wind power into mechanical power at the main shaft, 
but also mechanical and electrical losses in bearings, 
gearboxes, the generators, power electronic interfaces, etc. 
The effective power coefficient has a theoretical limit of 
16/27 (Betz limit), but practically it is around 0.47 to for 
large WTs [20] and 0.35 for small WTs [21]. 

TSR has a strong influence on the efficiency of a WT, 
which is defined as the ratio of the tangential speed at the blade 
tip to the wind speed [22]; [23] 

 
(4) 

Where 𝜔 is the angular speed of the blades. If the blades 
rotated slowly, they would spill too much of the wind power 
hence convert a small portion of it into a mechanical form. If 
blades rotated very quickly, they would cause turbulence in 
the wind, which significantly reduces the lift force on the 
blades and, consequently, the power extracted from the wind. 
Hence, to capture the maximum power at different wind 
speeds, the rotating speed of the WT must be adjusted 
according to the 𝑣5 [22]. The optimal TSR (𝜆B8C) is a function 
of blades number and shape. Thus, each WT would have its 
own (fixed) 𝜆B8C. Optimal TSR is typically within the range 
of 6 to 9. 

1.2. Wind Turbine Characteristics 

A WTPSC curve is described by four operation regions 
(Fig. 1), which we divide by remarkable speeds of the wind 
that influence how the WT operates 

Ø Cut-in speed (𝑣DE~3	𝑡𝑜	4𝑚/𝑠). Below cut-in speed, the 
torque developed by the rotor is not sufficient to 
overcome the inertia and friction (e.g., bearing friction) in 
the drive-train to produce a net positive torque to be 
delivered to the generator [24]. Thus, the rotor is blocked 
by a mechanical brake, and the turbine is turned off. In 
fact, some studies even reported that inertia and friction 
were not overcome even when the wind speed is slightly 
above 𝑣DE [25]. The region between 𝑣DEand the rated wind 
speed is called the GCR, a region in which the control 
system maximizes the captured power by maintaining 𝜆 

at 𝜆B8C. The angle of attack in GCR is set to its rated value, 
and there is no pitch or stall control actions 

Ø Rated speed (𝑣H ∼ 10	𝑡𝑜	15𝑚/𝑠). Beyond this speed 
(and up to the cut-out speed), the power output is limited 
through an aerodynamic power control in the blade, 
which keeps the electric power output constant at rated 
value [22]. In such a region, which is called Pitch/Stall 
Control Region, a part of the wind power is spilled hence 
both of the effective power coefficient and efficiency 
decrease 

Ø Cut-out speed (𝑣DB ∼ 20	𝑡𝑜	25𝑚/𝑠). This speed is a 
safety constraint during WT operation. The WT shuts 
down at high wind speeds to prevent damage to itself. In 
practice, however, the WT is not turned off immediately, 
but only after a few minutes (e.g., 10 minutes) during 
which the average wind speed exceeds the specified cut-
out speed. Even after such a period passes, the turbine 
output is ramped down gradually to zero. Such a measure 
is essential to maintain the stability of the electric grid 

In addition to the speeds mentioned above, we also have the 
survival speed (∼ 	50	𝑡𝑜	60𝑚/𝑠) which is not shown in 
WTPSC curves, but usually provided by manufacturers. It is 
the maximum wind speed that the WT sustains and would be 
damaged if it was exposed to wind speeds above it. 

Fig. 1 depicts the characteristic curve of a typical stall/pitch 
controlled WT. The same figure also shows the wind 
characteristics and the maximum theoretically usable power. 
It is important to note that the 𝑃:,JK  in WTPSC is the electrical 
output of the wind turbine rather than the mechanical power at 
the shaft of the hub. 

 
Fig. 1. WTPSC and its Different Operating Regions 

1.3. Mathematical Representations of WTPSC Curves 

Depending on the wind speed, a WT would 

Ø turn off when 𝑣5 < 𝑣DE or 𝑣5 > 𝑣DBmeaning that in such 
regions 𝑃:,JK = 0 

Ø be controlled to extract the maximum power in the GCR 
(i.e., when 𝑣DE 	≤ 	 𝑣5 	≤ 	𝑣H) by making 𝜆 equal to 𝜆B8C. 
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𝐶8,:  here varies due to different efficiencies of the blades, 
the gearbox, the generator, and the inverter at different 
wind speeds. The power output here is denoted as PGCR 
(𝑣5) and has different ways to model it as discussed in 
this section 

Ø get its power output limited to its generator rating using 
stall/pitch control when 𝑣H 	≤ 	𝑣5 	≤ 	𝑣DB 

The aforementioned is given mathematically as 

 

(5) 

𝑃O,JK  is the rated output power of the WT. 𝑃PQO(𝑣5) is 
handled with different mathematical representations that are 
intended to fit the mathematical expression with the 
manufacturer-provided data (i.e., empirical power-speed pairs 
in the GCR). In this paper, we examine three of them and 
enumerate them below [26] [27] 

Ø 𝑛CU Degree Polynomial Fit where 

 (6) 

where 𝑐W, 𝑐X, … , 𝑐Z  are constants that are determined by 
curve fitting. The degree of the polynomial depends on the 
GCR curve. Ref. [28] suggests that a ninth-degree polynomial 
performs best. However, we see later in this paper how ninth-
degree polynomial can sometimes perform worse than lower-
order ones. 

Ø Exponential Fit where 

 
(7) 

where 𝐾8 and 𝛽 are constants determined by curve fitting. 

Ø Approximate Cubic Fit where 

 
(8) 

where 𝐶8,\]^ is the maximum value of the “effective” 
power coefficient where the term “effective” refers to 
including both mechanical and electrical losses [27]. It is 
worth noting that 𝐶8, max is not Betz coefficient nor is it equal 
to 𝐶8,:  at 𝑣H. 𝐶8,\]^ might be either obtained directly from the 
manufacturer datasheet or calculated by finding the maximum 
value of 𝐶8,:  using Eq. (3) for all power-speed pairs that the 
manufacturer provides for the GCR. 

Finally, it is worth mentioning that such performance 
characteristics are only valid under normal operating 
conditions. When the WT operates under abnormal 
conditions, the characteristics could be different from the ones 
given in Eq. (6) [29]. 

1.4. The Degree of the Polynomial Fit and Its Accuracy 

The fact that power in the wind exhibits cubic variation 
with wind speed means that the WTPSC in the GCR might be 
represented using a polynomial. However, the actual power 
extracted from the wind (i.e., 𝑃:,JK  ) in the GCR does not 
necessarily resemble the cubic characteristics of the wind due 
to efficiency restrictions. In particular, the mechanical losses 
(e.g., gearbox or bearing and windage losses) and electrical 
losses (e.g., inverter losses) vary with wind speed. 
Consequently, different designs would result in different 
shapes of WTPSC in the GCR, which renders modeling such 
region troublesome and makes its mathematical representation 
a topic worth investigating. According to the reasons just 
mentioned, we cannot always use a cubic relationship and may 
need to use higher-order polynomials to get a better fit with 
the manufacturer-provided data. Counter-intuitively, a higher-
order polynomial may not always be better. An example of 
such a case is shown in Fig. 2, with 9CU, 8CU, and 7CU degrees 
polynomials used to fit the GCR in a 275𝑘𝑊 WT. 

Inaccuracies tend to occur at the lowest speeds. Near 𝑣DE, 
the 9CU order polynomial is not a good model as it predicts a 
decrease in power as the wind speed increases. Decreasing the 
order to 8 does not help and causes further inaccuracy (in fact, 
𝑃:,JK). However, the 7CU order polynomial has better accuracy 
as it matches the power-speed pairs as given by the 
manufacturer but does not exhibit an inverse proportionality 
between power and speed near the 𝑣DE. Thus, the main 
difference between the characteristics of higher order and 
lower order polynomials is that higher order polynomials may 
exhibit anomalies in their power predictions, while lowering 
the order of polynomials usually fixes this by producing 
monotonic relationship between wind speed and electrical 
power output predictions. 

 

2. Calculating the Energy Yield and Capacity Factors of 
Wind Turbines 

This section discusses three main topics of interest 1) 
Weibull probability distribution and typical values of its 
parameters; 2) calculation of the mean produced power using 
WTPSC and Weibull distribution, and 3) the capacity factor 
and some of its typical values. We use the mathematical 
calculations covered here in Section 3. 

2.1. Weibull Distribution 

Wind speeds in a specific location vary from time to time. 
Even small variations in wind speeds may result in large 
amounts of output power changes because the power available 
in the wind is proportional to the cube of wind speed. The 
Weibull distribution is commonly used to describe the PDF of 
wind regime over a long period (typically a year) and is given 
as [30] 

 
(9) 

where 𝑓	(𝑣5) is the probability density of the wind speed, 
𝑘 (unitless) is the shape parameter, and 𝑐 (m/s) is the scale 
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Fig. 2. International journal of renewable energy research 

parameter. 𝑘 is dimensionless parameter and characterizes the 
shape of the frequency distribution (hence, it is called the 
“shape” parameter) [31]. 𝑐 quantifies the abundance of wind 

on the site or how “windy” it is. If this parameter is large, then 
the average wind speed is high [13]. In most parts of the world, 
𝑘 is around 1.2 to 2.75 [32]. A high 𝑘 (i.e., 2.5 to 3 [33]) results 
in a peaked distribution of wind speeds, which means that the 
site has a stable wind regime. A small k (1.2 to 1.5 [33]) 
results in a relatively flat distribution, which means we have a 
greater variation of wind speed around its annual mean. Both 
𝑘 and 𝑐 need to be high in a favorable site. Thus, 𝑘 and 𝑐 
provide engineers with an insight into the suitability of a 
candidate location for a WT farm project. 

It is worth noting that wind is usually measured at lower 
heights, while the actual wind turbines are installed at higher 
hub heights than what is measured. However, when 
converting from wind speed to the other, the wind speed 
regime at higher hub height is still described using a Weibull 
distribution [34]. Furthermore, most recent papers on WTPSC 
modeling did not conclude that conversion of wind speeds 
affects the accuracy of WTPSC modeling [10]. However, an 
extrapolation might be needed during actual feasibility studies 
[35], when we finally want to choose the optimal size of wind 
turbines. Since this paper focuses on WTPSC curves while 
wind speed is still described by Weibull distribution 
regardless of the hub height, then we directly use typical 
Weibull distribution parameters (without extrapolation). 

2.2. Mean Produced Power and Energy Yield 

The mean produced power of a WT (𝑃c:,JK  ) in a given 
site is found by integrating the product of the WTPSC curve 
and the PDF of wind regime of the considered site overall 
possible wind speeds or [30] 

 
(10) 

Note that the mean produced power corresponding to a 
certain speed range (from 𝑣5,X to 𝑣5,d) can also be calculated 
by adjusting the boundaries of Eq. (10) as follows 

 
(11) 

The total energy production of a WT over a year is called 
the annual energy yield of that WT (𝐸CBC). We can calculate it 
by multiplying 𝑃c:,JK  by the number of hours in a year (=
	365	 × 	24	 = 	8760) [36] 

 
(12) 

2.3. The Capacity Factor 

The Capacity Factor (𝐶g) is the total amount of energy 
delivered over a period (typically a year) divided by the 
energy that could have been delivered if the WT operated at 
its full capacity over that period (𝐸O,CBC). For a year, 𝐶g is 
calculated as follows 

 
(13) 

A typical range of 𝐶g for on-shore wind farms is 0.25 to 
0.40	[37]. For off-shore wind farms, the range is 0.35 to 0.50 
[38]. However, a review conducted by NREL for different 
large- scale projects reports that 𝐶g for wind farms can vary 
within a range of 0.25 to 0.50 for on-shore projects and 0.30 
to 0.50 for off-shore projects, with the latter having a capacity-
weighted average of 0.38 [38]. 
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3. Numerical Results and Discussion 

3.1. Wind Turbines and Weibull Distribution Data 

The models of the considered wind turbines are “GEV MP 
R”, G58-850, and E-92. The specifications of the WTs are 
given in Table 1 and their fit parameters are shown in Table 
3. It is noteworthy that since polynomials are of a high order, 
we need to keep too many significant digits than we usually 
do in engineering practice (otherwise, the accuracy of the 
polynomial fit deteriorates). 

 
Fig. 3 shows WTPSC curve fits for E-92 WT. We observe 

that the 9CU high-order polynomial fit accurately matches the 
manufacturer data for the GCR, while the approximate cubic 
fit tends to be shifted upwards. The exponential fit has quasi- 
linear characteristics with some of its WTPSC curve (in the 
GCR) being above the manufacturer data and some other 
being below. As for the PDF, Table 2 shows the values of the 
Weibull scale and shape parameters for four different sites. 
The parameters range from relatively small to relatively large 
values because we do not want to lose the generality. 

3.2. Calculation Procedure 

The calculation procedure used to obtain the results is 
described as follows 

1. Apply regression analysis to obtain the coefficients in 
Table 3. This is done by collecting numerical data from 
databases in [39]–[41] for the GCR then using the Curve 
Fitting Toolbox in MATLAB.  
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Fig. 3. WTPSC Curves with Different Fits for the GCR power-speed Pairs Provided by the Manufacturer (E-92)

For polynomial and exponential models, the parameters 
of Eq. (6) are fit using linear regression. However, for 
exponential fit, the parameters of Eq. (7) are fit using 
nonlinear regression. Finally, for approximate cubic, the 
only parameter we must estimate is Cp, max which is the 
maximum possible value for 𝐶8,:  estimated using Eq. (3). 
Such step enables us to estimate 𝑃:,JK  as given by Eq. (5) 

2. Calculate 𝑣5,hij in Fig. 3 which is simply the point at 
which WTPSC curve fits intersect. Using Eq. (11), esti- 
mate different average wind power outputs 𝑃c:,JK	(0,∞),  
𝑃c:,JK	(0, 𝑣5,EZC), and 𝑃c:,JK	(𝑣5,EZC,∞) 

3. Apply Eq. (13) to calculate the capacity factor. Using 
polynomial fit as a reference, calculate the MSE and the 
percent errors. Repeat the steps above for all locations 

3.3. Results and Discussion 

Tables 4 and 5 show numerical results for 𝐶g (in percent) 
of the combination of four different sites and the three WTs. 
From both tables, we note that the approximate cubic fit tends 
to overestimate 𝐶g, which is attributed to the fact that it 
assumes a fixed value of power coefficient for all speeds 
which is equal to its maximum value for the given turbine (i.e., 
𝐶8,: 	= 	𝐶8,\]^  for all vw in the GCR). Such an assumption 
would ultimately shift the power-speed curve upwards, 
causing the model to predict more energy yield, hence a higher 
𝐶g. For the approximate cubic fit, the maximum error in 
capacity factor calculations happens for the Ras Moneef area 
in Jordan with a value of roughly 5.1% when considering the 
E-92 WT. For G58-850 WT, the maximum error is 3.57%, 
which also corresponds to Ras Moneef in Jordan. 

The exponential fit, however, tends to overestimate or 
underestimate 𝐶g, which can be explained by the fact that 

exponential fits may (in the GCR) have either larger or smaller 
power predictions than polynomial fit (see Fig. 3). Hence, we 
cannot make a general statement as to whether the error is 
positive or negative. For the exponential fit, the maximum 
absolute error in 𝐶g calculations happens for Ras Moneef, 
Jordan, with a value of roughly 8.45% when considering the 
E-92 turbine. For G58-850 turbine, the maximum error is 
3.9%, which also corresponds to Ras Moneef in Jordan.  
However, even though 𝐶g is somewhat similar in these 
models, this would not mean that they are generally good. In 
this paper, we calculate 𝑃c:,JK	(0,∞), for E−92 WT using 
exponential model. Table 6 shows the results. We observe that 
the approximate cubic fit has some significant positive errors. 

We can make a more thorough evaluation comparing the 
results of the exponential fit with those of the approximate 
cubic one. The exponential fit predicts higher power at lesser 
wind speeds and lower power at greater wind speeds, while 
the approximate cubic fit predicts higher power at all speeds. 
This is illustrated in Fig. 3. Hence, we may need to know how 
accurate is the exponential model in very windy and very calm 
days. Note from the curves in Fig. 3 that the exponential 
model intersects with the polynomial one at 𝑣5,EZC = 	8.23. 
After this speed, the former exhibits lesser power predictions, 
and before that speed, it exhibits greater power predictions. 

Table 7 shows the 𝑃c:,JK	(𝑣5,EZC,∞), (for most of that 
range, the exponential model predicts greater wind power) 
values for the considered sites. Clearly, there are considerable 
downward (negative) errors from the average wind power as 
calculated by the polynomial fit. Such observation confirms 
that exponential models would predict significantly less 
power output in windy days. Looking at Table 8 (which is 
given for 𝑃c:,JK	(0, 𝑣5,EZC)) would let us draw different 
conclusions; the exponential fit here predicts much greater 
mean produced power for the low wind speed range, which is 
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the opposite of what we have just observed for the case of 
windy days. This, however, applies to “S-shaped” WT curves. 
Some WTs have quasi-linear characteristics in the GCR, 
which makes the exponential fit right to represent their GCR 
mathematically. This is what we elaborate on now. 

By applying similar analysis on a WT with a quasi-linear 
curve in the GCR (model “GEV MP R”), we can tell that the 
exponential fit performs better than the approximate cubic fit 
in such case. We see this from 𝐶g calculations in Table 9, 
where the approximate cubic fit has a maximum error of 6.1% 
corresponding to Thumrait in Oman, while the exponential fit 

has a maximum error of 2.2%, which corresponds to 
Thumrait. The difference between the MSE resulting from 
exponential model and approximate cubic one confirms such 
claims. 

Next, we evaluate the results of calculating the mean 
produced power. The results of using the approximate fit to 
calculate 𝑃c:,JK	(0,∞) for the considered sites are shown in 
Table 10. They have similar errors to the ones in Table 6 
(which is for the same fit type). The maximum error, however, 
moderately increases (to 5.92%). 
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The results of using the exponential fit to calculate 𝑃c:,JK	 

(𝑣5,EZC,∞) (where 𝑣5,EZC = 	8.48) for the considered sites are 
shown in Table 11. We see significant improvements in the 
error with a maximum positive value of 2.7% com- pared to 
minimum negative value of 11.2% (Table 7). Such 
improvement is attributed to the quasi-linear characteristics of 
“GEV MP R” WT model in the GCR, which can be 
represented fairly well with the exponential fit (compared to 
the “S-shaped” characteristics of the E-92 in the GCR which 
cannot be represented well with the same fit). 

We also use the exponential fit to calculate 
𝑃c:,JK	(0, 𝑣5,EZC)	and their results are shown in Table 12. 
Significant improvements in the error can be seen. Here, we 
have maximum positive value of 8.47% compared to 53.3% 
(Table 8), which we, again, attribute the quasi-linear 
characteristics of “GEV MP R” WT model (the same reason 
mentioned above). 

4. Conclusions 

This paper examines the modeling of WTs and fitting its 
shape to the one provided by the manufacturer. We present 
evaluations in this paper for four different sites and three WTs 
of different ratings. We use the capacity factor, and the mean 
produced power for comparison purposes. 

The exponential model may be quite inaccurate, 
especially when the WT has an “S-shaped” curve in the GCR 
and when considering low speeds. Such observation leads us 
to an important conclusion: when the exponential model tends 
to deviate from the manufacturer-provided data in the GCR, 
we may not accept the deviation even if some tend to be above 
and some below these data. This is because we may 
sometimes have fairly accurate prediction of the overall yield 

(Table 4 and 5), but the accuracy when considering high and 
low speeds independently tends to greatly suffer (Table 7 and 
8) . In other words, positive and negative errors would offset 
each other when we consider the overall yield, but for very 
windy and very calm days, the predictions tend to suffer 
greatly. The approximate cubic model, however, seems to 
perform fairly well except for some inaccuracy when the WT 
has a quasi-linear curve in the GCR (Table 10). 

Finally, it is evident that high-order polynomial fit the 
data very well, but getting a very high order (such as 9CU or 
8CU) does not necessarily lead to an accurate representation of 
the GCR, but may rather result in an inaccurate representation 
at low wind speed near the cut-in speed of the WT. 
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