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Abstract- Worldwide electricity production has switched from fossil fuel combustion to renewable energy sources and solar 
power generation has increased significantly in recent years, particularly in the form of photovoltaic (PV) power. Solar 
radiation is mainly influenced by the process of sunlight interaction with clouds. Being able to quantify the variability of solar 
irradiance due to clouds is crucial for better integration of the energy generated in the power grid by reducing the uncertainties 
in solar irradiance forecasts. Our objective is the characterization of a given solar site by quantifying the variability of solar 
irradiance caused by clouds. To do so, we provide a classification scheme of clouds conditions classes based on the daily clear 
sky index Kc, and the hourly intraday variability δ(Kc) defined by the standard deviation of the variations of the clear sky 
index. As a result of irradiance classification, we obtained nine classes identified as the clear sky (A), mixed (B), and overcast 
(C) conditions and subdivided into three categories: low (I), medium (II), and high variability (III). We used the solar 
irradiance data set measured at the high precision meteorological station installed in Benguerir, Morocco, for the period from 
01/01/2018 to 31/12/2018. We found that clear sky conditions with low variability (class AI) are the most frequent with a 
percentage of (38%). Followed by clear sky conditions with medium variability (AII) and mixed sky conditions with medium 
variability (BII) with a percentage of 18.27% and 19.23% respectively. Other classes are also present with low intensity 
ranging from 2.5% to 0.95%. 

Keywords Solar irradiance, Clear sky, Variability, Photovoltaic. 

 

1. Introduction 

Renewable energy sources, such as solar, wind, 
hydraulic and geothermal energies, currently reflect the 
future of energy progress, and the market for renewable 
electricity has experienced a significant acceleration in recent 
years [1, 2]. The combined share of variable solar and wind 
power in the energy sector is expected to reach 58% in 2050 
[3]. Photovoltaic is one of the most promising renewable 
energy technologies and the number of PV installations is 
growing faster than all other renewable energies [4, 5].  

However, PV power is an intermittent source of energy, 
and its production is highly dependent on incident solar 
irradiance GHI (Global Horizontal Irradiance) [6, 7]. The 
large-scale penetration of PV installations into the grid is 
severely limited by the uncontrollable variability of solar 
irradiance at ground level, which can lead to grid stability 

problems [8–10]. So, one of the main obstacles to increase 
the share of PV energy is its intermittency. Since PV 
generation is highly correlated with incident solar irradiance 
at ground level, the variability characteristics of solar 
irradiance will be directly applied to the variability of PV 
generations [11, 12]. 

A classification scheme of solar irradiance according to 
cloud conditions can be useful for different applications of 
solar energy such as evaluating solar irradiance forecast 
models under different cloud conditions; which allows 
reducing the uncertainty in solar irradiance forecasts and 
enable accurate predictions, allow efficient use of the 
fluctuating energy production of PV systems, to compare the 
characteristics of different solar sites and determine the most 
dominant meteorology, and finally to choose the most 
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appropriate solar technology for a given site based on the 
classification results. 

Various methods are reported in the literature to quantify 
the solar irradiance variability, and according to Blaga et al. 
[13] until now, there is no appropriate method that can be 
employed for this purpose. 

Paulescu and Badescu [14] evaluated the variability of 
solar irradiance time series by classifying days according to 
the sunshine stability index, which indicates how many times 
the sun is covered (or uncovered) by clouds in a time 
interval. 

Perez et al. [15] present an empirical model for 
quantifying solar irradiance variability for 20 seconds, 1 min, 
5 min, and 15 min time scales, based on the clear sky index. 
As quantifiers of the intra-hourly variability, the standard 
deviation of the global clear sky irradiance index and the 
mean variation of the clear sky index between two 
consecutive time intervals have been used. In our study, this 
daily clear sky index will be used, but to quantify the 
intraday variability with a one-hour variability time scale. 

Stein et al. [16] proposed a new variability index VI, 
defined as the ratio of the length L of the measured 
irradiation as a function of time divided by the length Lcs of 
the clear sky irradiation as a function of time.  

Kang and Tam [17] proposed a new method for 
characterizing and classifying daily sky conditions using the 
daily clear sky index and a new metric named daily 
probability of persistence (POPD). The authors found that 
the proposed method provides interesting results and the 
different classes obtained are significant for all study sites. 

Lave et al. [10] have introduced a new metric called the 
variability score from the ramp rate distribution to quantify 
the variability of solar irradiance at a small temporal scale. 

Lauret et al. [18] analyzed the intraday variability of 
irradiance in order to characterize a given location by 
examining the relationship between two parameters, the daily 
clear sky index and the intraday variability for 20 sites with 
various types of climate. They found that the model depends 
on the site location, hence they proposed two alternative 
models for sites where cloud formation is influenced by local 
orography and sites where cloud formation is only traceable 
to meteorological events. 

Schroedter-Homscheidt et al. [8] defined eight classes to 
characterize the variability of direct normal irradiance (DNI) 
resolved over 1 minute in one hour, they found that up to 
77% of all class members are correctly identified.  

In their paper [19], Blaga and Paulescu presented a 
characterization of the stochastic nature of solar irradiance 
series from different angles, by analyzing six different 
quantifiers of solar irradiance variability. To compare these 
different quantifiers they introduced a new multiparametric 
ranking procedure to classify days according to the solar 
irradiation variability model. 

Lohmann reviewed in his paper [20] the recent progress 
in the characterization of solar irradiance variability on small 

spatial and temporal scales. According to the author, 
although there are many papers treating the solar irradiance 
variability issue, there are still a few appropriate high-
resolution measurement data to robustly validate the existing 
models. 

Fernandes et al. [21] proposed a methodology to obtain 
probabilistic models based on probabilistic density functions 
(PDF) and Clear Sky Index (CSI) to represent the variability 
of solar irradiation for a given location. To validate the 
obtained models the authors used two criteria: the Mean 
Square Error (MSE) and the Chi-Square test. 

The aim of this study is to perform an analysis of 
intraday solar irradiance variability based on previous 
studies. In order to do this, as a first step, we will 
characterize the study site based on two criteria: (1) the daily 
clear sky index Kc, which is used to define the weather 
conditions of a given day, and (2) the hourly intraday 
variability measured by the standard deviation of changes in 
the clear sky index δ(Kc) [15]. Based on these two indices we 
have established a classification scheme of cloud conditions 
classes. We obtained nine classes identified as the overcast, 
mixed, and clear sky conditions and subdivided into three 
categories: low, medium, and high variability.  

In addition to these two indices, we have determined the 
corresponding variability for each day, by using the 
variability index proposed in [16] and defined by the ratio of 
the GHI length to the GHI length under clear conditions. 
Finally, we have calculated the sunshine number (SSN) 
corresponding to each day in order to obtain a better 
characterization of the study site. 

This document is organized as follows: In section 2, we 
start with a description of the study site and the pyranometric 
measurements used, followed by a description of the clear-
sky solar irradiance and the model used throughout the study. 
Section 3 focuses on the description of the different solar 
irradiance quantifiers used to characterize solar variability. In 
section 4, we evaluate the intraday variability of solar 
radiation using the different quantifiers described in section 
3. In section 5, we discuss the results and provide summaries. 

2. STUDY SITE and DATA 

2.1. Ground Measurement 

To perform this study, we used the one-minute GHI 
(Global Horizontal Irradiance), DHI (Diffuse Horizontal 
Irradiance), and DNI (Direct Normal Irradiance) collected 
from the high-precision meteorological station installed in 
Benguerir (latitude: 32.12°E, longitude: -7.94°N, altitude: 
450 m). GHI and DHI are measured respectively with a Kipp 
& Zonen CMP11 pyranometer and a Kipp & Zonen CMP11 
shading ball pyranometer, while DNI is measured with a 
Keep & Zonen first class pyrheliometer.  Table 1 summarizes 
the instruments used to measure each irradiance components. 
The study period is from January 2018 to December 2018, 
with a temporal resolution of one minute. 

A preliminary step is necessary before using data, it 
consists of: 
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Ø A quality check of solar data: with any ground 
measurement, there are errors in the time series of solar data 
because of sensor problems or because of acquisition issues, 
so to ensure the good quality of the data a Quality Control 
algorithm has been applied. 

Ø A pre-processing of the data: all night hours are 
removed, because of problems occurring at sunset and 
sunrise (masking effects, etc.), and the bad response of the 
pyranometers) [15] and in addition that the night values do 
not contain any information. So a filter is applied to keep 
only the values with SZA (Solar Zenith Angle) < 80°. The 
SZA per minute has been calculated from the solar geometry 
SG2 equations [16]. 

Table 1. Sensors used to measure GHI, DHI and DNI. 

Solar 
irradiance 
component 

Measurement sensor 

GHI  Thermopile pyranometer  Kipp&Zonen 
CMP21 

DHI  
Thermopile pyranometer Kipp&Zonen 
CMP21 with a shadow-ball (Solys2 sun 
tracker) 

DNI  
Pyrheliometer Kipp&Zonen CHP1 

(Solys2 sun tracker) 

2.2. Solar Irradiance under Clear Sky Conditions 

Clear sky irradiance is the solar irradiance under a 
cloudless sky. This irradiance can be useful to calculate solar 
indices, to normalize the solar radiation time series, and to 
obtain the output of solar power plants under stationary 
conditions [22]. Fig. 1 illustrates the three components of 
solar irradiance, which are the GHI and GHIclear, the Diffuse 
Horizontal Irradiance (DHI), and the Beam Horizontal 
Irradiance (BHI) for both clear and overcast sky conditions. 
Among the different clear sky models reported in the 
literature, we have chosen the McClear [23] which is a fast 
model of surface solar irradiance under cloudless conditions 
(clear sky), based on the radiative transfer model libRadtran 
that exploits the clear sky atmospheric optical properties 
(notably partial and total Aerosol Optical Depths—AOD—at 
different wavelengths, total contents of water vapor and 
ozone) provided by the EU-funded Copernicus Atmospheric 
Monitoring Service (CAMS) [24]. The choice of the model 
was based on the results of a previous validation of McClear 
for the same weather station as this study, where satisfactory 
results were obtained.  An RMSE (Root Mean Square Error) 
of 2.2% and a CC (Correlation Coefficient) of 0.99 for GHI 
[25]. 

To quantify the variability caused by clouds, it is 
required to separate the clouds effect from the deterministic 
seasonal and diurnal variability of the solar irradiation time 
series. For this purpose, the clear sky index Kc is calculated 
(Eq. 1), which is the ratio of the measured solar irradiation 
GHI to the modeled clear sky irradiation GHIclear. 

                     (1) 

 

 

 
Fig. 1. An example of a diurnal cycle of measured global 

horizontal irradiation (GHI), diffuse horizontal irradiance 
(DHI), beam horizontal irradiance (BHI), and clear sky 

irradiance GHIclear derived from the McClear model. For 
clear sky (a) and overcast sky (b). 

3. Quantifiers for the Solar Irradiance 

The solar irradiance variability is mainly caused firstly 
by the movement of the sun and then by the clouds. The first 
type of variability is predictable using the solar geometry 
equations, while the variability due to the movement of 
clouds is not. This variability can cause irregular fluctuations 
in the power output of a photovoltaic system. 

Three quantities were used to characterize the solar site, 
which are the daily clear sky index Kc, the daily variability 
given by the standard deviation of the variation of the clear 
sky index for the considered day, the irradiance line length, 
and the sunshine. 
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3.1. Daily Clear Sky Index 

The daily clear sky index Kc is used to characterize the 
daily solar conditions it is defined by Eq. (2):  

                                        (2) 

,             (3) 

where N is the number of daylight hours. 

3.2. Hourly Intraday Variability  

Different methods exist to quantify solar irradiation 
variability time series. In our study we used the method 
proposed by [26] who defines the variability index δ(Kc) as 
the standard deviation of the temporal differences of Kc in a 
time interval Δt. 

                                      (4) 

                                     (5) 

For this study the Eq. (3) is applied to all hourly Kc 
measurements over the day to calculate the hourly intraday 
variability. 

3.3. Variability Index 

To estimate the daily variability corresponding to a given 
day we will use the variability index proposed in [16]. The 
variability index VI (Eq. 5) for a period of time is defined as 
the ratio between the length L of the sequence of line 
segments connecting the points of the GHI time series in 
W/m2 and the length Lcs of the sequence of line segments 
connecting the points of the GHIclear time series over a given 
period of time. 

,                      (6) 

where Δt is the time step between two consecutive GHI (or 
GHIclear) values. 

An example of the line length calculated for both clear 
and cloudy days for one minute irradiance data is shown in 
Fig. 2.  It can be seen that any measured GHI variability will 
increase the length of GHI relative to the clear sky model 
line. 

 

 

Fig. 2. Line length of GHI (W/m2) on a clear day (top) 
and a cloudy day in (bottom). Blue line: GHI, Cyan line: 
GHIclear, magenta line: measured line length L, Brown line: 
clear sky line length Lcs 

In our case, the variability index is calculated by using 
the Eq. (4). For a given day, we will consider the difference 
between the hourly value of GHI and GHIclear throughout the 
day considered, and the ∆t is 1 hour. 

3.4. Sunshine Number 

The sunshine number SSN (t) is defined as a binary 
random variable depending on time [14]. 

   (7) 

The SSN value series are derived from irradiance values 
using the sunshine criterion [27]: "The sun shines" at time t if 
it is direct solar irradiation exceeds 120 Wm2. 

                      (8) 

Fig. 3 illustrates an example of SSN representation. We 
have represented both clear and unclear day types. For Jan 
01, 2018, which is a clear day from sunrise to sunset with VI 
=1, we can see that SSN is equal to 1 all day with a 
percentage of sunny moments equal to 100%. For Feb 05, 
2018, which is a variable day VI=21, we can notice that for 
the first half of the day until noon the sky is clear and the 
SSN=1 while for the afternoon the radiance is very variable 
and we can observe a variation of SSN between 0 and 1 
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during this day the totality of the sunny moments is 46% and 
of the overcast moments 54%. 

 
Fig. 3. The variation of solar irradiance GHI, sunshine 
number (black line), and GHIclear as reference (cyan line). 

4. Results 

4.1. Seasonal Variability in Solar Irradiance 

The seasonal variability of solar irradiance is caused by 
clouds, as well as by the daily and seasonal solar cycle. The 
daily solar cycle is in charge of the parabolic form of the 
solar irradiance: the irradiance increases after sunrise until 
solar noon and decreases until sunset. The seasonal solar 
cycle is also responsible for the change in radiation values 
from one season to the next. Seasonal variability is clearly 

observed in the variation of the monthly mean solar 
irradiance (Fig. 4). 

The seasonal variability of solar irradiance is caused by 
clouds, as well as by the daily and seasonal solar cycle. The 
daily solar cycle is in charge of the parabolic form of the 
solar irradiance: the irradiance increases after sunrise until 
solar noon and decreases until sunset. And the seasonal solar 
cycle is responsible for the change in radiation values from 
one season to the next. Seasonal variability is clearly 
observed in the variation of the monthly mean solar 
irradiance (Fig. 4). 

Fig. 4 shows that the highest monthly averages for the 
GHI and GHIclear are found in May, June, July, and August, 
with values ranging from 275 W/m2 to 333 W/m2 for the GHI 
and from 343 W/m2 to 359 W/m2 for the GHI clear.  The 
lowest irradiance values are observed during November and 
December with GHI values of 142 W/m2 and GHIclear of 177 

W/m2 and 157 W/m2 in November and December 
respectively. The observed differences between the monthly 
average of GHIclear and GHI are due to the diffusion and 
absorption by clouds with always including the seasonal and 
daily solar cycle. 

The variability is also observed for the DHI end BHI. It 
can be seen that for each month, the monthly average of BHI 
is higher than the monthly average of DHI, which indicates 
that for all months, clear sky conditions dominate cloudy 
conditions. For the months with prevailing clear conditions, 
the contribution of BHI is higher than that of DHI. 

Fig. 4 shows that the highest monthly averages for the 
GHI and GHIclear are found in May, June, July, and August, 
with values ranging from 275 W/m2 to 333 W/m2 for the 
GHI and from 343 W/m2 to 359 W/m2 for the GHIclear The 
lowest irradiance values are observed during November and 
December with GHI values of 142 W/m2 and GHIclear of 177 
W/m2 and 157 W/m2 for November and December 
respectively. The observed differences between the monthly 
average of the GHIclear and the GHI are due to the diffusion 
and absorption by clouds with always including the seasonal 
and daily solar cycle. 

 
Fig. 4. The monthly mean of the GHIclear, GHI, BHI and DHI for the Benguerir site during 2018.
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Since we are concerned to quantify the variability caused 
by clouds, the clear sky index is largely used in the literature 
to separate out the effects of clouds on the seasonal 
variability of solar irradiation. Then, to eliminate the 
seasonal and daily solar cycle, we will consider the 
variability of the clear sky index, which represents only the 
variability caused by the cloud. 

4.2. Solar Irradiance Classification  

The classification method used in this study extends to 
other studies [16], [28]. The classification is based on two 
statistics: the daily mean clear sky index Kc, and the intraday 
variability of clear sky index δ(Kc). The classification 
scheme delimits a two-dimensional space to group classes of 
solar irradiation by presenting the time series of the daily 
clear sky index as a function of the intraday variability, these 
classes of variability are also indicators of the state of the 
clouds. The classification space is unscrewed into nine 
classes in which the mean clear sky index is divided into 
three classes: overcast sky, mixed sky, and clear sky.  The 
variability is divided into three categories: low, medium, and 
high variability. 

Boundaries for each class were proposed by [28]. In our 
study, we have proposed other limits corresponding to the 
data used and adapting to the climate of the study region 
which is a semi-arid climate (BSh) according to Köppen 
Geiger climate classification [29]. 

To quantify the variability of solar irradiation caused by 
clouds, we grouped the clouds conditions and quantified the 
variability of solar irradiation according to our proposed 
boundaries. Fig. 5 shows the classification scheme with nine 
classes of cloud conditions for the data from 2018/01/01 to 
2018/12/31. The x-axis shows the daily mean of the hourly 
clear-sky index and is divided into three classes: clear sky 
(A), mixed sky (B), and overcast sky (C). The y-axis shows 
the daily nominal variability and is divided into three classes: 
low variability (I), medium variability (II), and high 
variability (III). The nuances of gray indicate the probability 
density of daily variability. The pink, the green, and the blue 
correspond to the daily clear sky index for clear, mixed and 
overcast conditions respectively.  

Fig. 5 displays the dispersion of the data corresponding 
to each class. Fig. 6 shows the percentage of data for each 
class on a daily basis. As illustrated in the figures, clear sky 
conditions with low variability are the most frequent with a 
percentage of 35.9%.  Clear sky conditions with medium 
variability and mixed sky conditions with medium variability 
present 18.27% and 19.23% of the days respectively. Other 
classes are also present with low intensity ranging from 2.5% 
to 0.95%.  

Fig. 7 shows an example of one-minute average 
irradiation for days corresponding to each class for the study 
site. The clear sky irradiation is shown in cyan for reference. 

 

 

 
Fig. 5. The clouds classification in the two-dimensional space Kc-δ (Kc), bottom: the nine classes AI, AII, and AIII. BI, 

BII, BIII, and CI, CII, CIII.
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Fig. 6. The classification results in (%) for each class.
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Fig. 7. Examples of a daily profile of the global irradiance corresponding to each class. The clear sky irradiance is indicated in 

cyan

4.3. Diffuse and Direct Components of Solar Irradiance per 
Cloud Condition 

Changing clouds conditions also affects the other 
components of solar irradiance. To provide a general 
quantification, we have plotted the corresponding DHI and 
BHI averages for each class (Fig. 7). The BHI presents the 
solar irradiance coming directly from the solar disc, which 
means that clouds only have a blocking effect on the BHI. It 
can be observed that the highest value of the BHI is obtained 
for the CI class (192 W/m2), and the lowest is obtained for 
the CII class with a value of 30 W/m2. For the whole set of 
days, the BHI value decreases from clear to cloudy sky 
conditions. 

For DHI it is observed that the value decreases from high 
variability to low variability with the lowest value of DHI is 
achieved for class A1 (55 W/m2) and the high value for the 
BI (103.5 W/m2). Clouds also scatter solar irradiance. For 
this reason, the DHI is higher for classes B and C. 

 
Fig. 8.  The means of the DHI and BHI per class of the 

classification scheme. 
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4.4. Variability Index Performance 

Several studies have used the variability index VI (Eq. 
(5)) for the classification of days. Fig. 9 shows the variability 
index obtained for the same days classified according to the 
variability of clear sky index and the clear sky index. It can 
be observed that on a clear day, VI is equal to 1, since the 
sum of the absolute values of the variations in irradiance 
would be equal to the same sum of the variations in clear sky 
irradiance. The high values of the variability index are 
obtained for days with highly variable irradiance. With the 
use of VI  only for classification, we have noticed that low 
values of VI can be obtained in addition to clear days, for 
very cloudy or rainy days. Then a cloudy day and a clear day 
can have the same variability index. As observed in the 
figure, for the 8th day, the sky is mixed since it has a low 
variability index, and based only on this index for the 
classification this day could be considered as a clear day 
when it is not the case. This proves one of the limitations of 
the variability index: it cannot distinguish well between 
cloudy and clear. So, the use of the variability index only for 
the irradiation classification is insufficient, and in order to 
have good results, it is necessary to combine it with an 
additional quantity, which is the daily clearness index, to 
achieve an exact classification according to variability and 
cloud cover. 

5. Summary and Conclusion  

In this study, we quantify the temporal variability of 
solar irradiance caused by clouds. The classification was 
obtained by using two quantifiers: the daily mean of the clear 
sky index and the intraday variability. Nine classes are 
obtained according to different clouds conditions and 
variability types. The quantification of solar irradiance 
variability for our study site concludes that clear sky 
conditions with low variability are the most frequent 
conditions with a percentage of (38%). Clear and mixed sky 

with medium variability are also occurring, which can cause 
issues for power grid operators when integrating the energy 
produced from these two classes in terms of short-term 
fluctuations, for example. The classification system 
presented in this study can be useful for future studies to 
reduce the uncertainty in solar irradiation predictions, which 
is key to better integration of photovoltaic energy into power 
grids. In addition to the impact of the variability in the global 
irradiance, we also quantified the effect of this variability on 
the other components of radiation such as DHI and BHI. 
Finally, we established a comparison between the 
classification method based on the variability of clear sky 
index δ(Kc)  and clear sky index Kc , and the variability index 
VI defined as the ratio between the length of the solar 
radiation time series and the length of the clear sky time 
series.  

As a summary, the different quantifiers are summarized 
in Table 2 for January, 2018, the blue is used for clear sky, 
low variability and high sunshine, the pink for the mixed sky, 
medium variability, and medium sunshine, the orange for the 
unclear sky, high variability, and low sunshine. This type of 
matrix is useful to determine which metrology is more 
dominant than the others,  as for example the first four days 
are classified as clear with low variability and high sunshine, 
the 18th day is characterized by an overcast sky, low 
variability, and medium sunshine. 

Finally, it should be noticed that the different classes of 
our classification system represent the cloud conditions 
based on the time series of the clear sky index and not the 
physical properties of the clouds per class. In upcoming 
studies, we will be able to deepen our classification to obtain 
cloud-type by using hemispherical sky cameras. The 
classification method presented in this study can be used by 
future studies to reduce the uncertainty in solar irradiance 
predictions and allow accurate predictions, in order to allow 
efficient use of the fluctuating energy production of 
photovoltaic (PV) systems. 
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Fig. 9. Examples of days with increasing Variability Index VI values. The clear sky irradiance is indicated in cyan. 

. 
Table 2. Classification of days using the three quantifiers individually Kc, δ (Kc), and SSN for January, 2018 as an 

example. 
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 Clear sky,  
low variability, 
high sunshine 

 Mixed sky,  
medium variability,  
medium sunshine 

 Overcast,  
high variability 
low sunshine 

Day of month 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
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