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Abstract- The optimization of energy consumption applied to the hybrid electric vehicle (HEV) with a parallel architecture 

seems to be one of the important challenges to decrease fuel consumption and CO2 emission in the world. For this reason, this 

study aimed to develop a comparative study between different offline optimization algorithms to ensure an optimal power split  

between the electric motor (EM) and the internal combustion engine (ICE) mainly in the hybrid propulsion mode. In this 

approach, the energy management strategy is divided into two sections. The first is a supervision study that plays an essential 

role in operating mode switching of the traction system. The second consists of the objective function definition involved the 

fuel consumption cost, electric charge cost, and components cost as well as the optimization algorithms presentation. The 

problem formulation was implemented using MATLAB/Simulink software and evaluated under the Normalized European Drive 

Cycle (NEDC). Results related to fuel consumption, CO2 emission, computational time, best cost, and SOC sustaining operation 

were compared. Thus, the results obtained from MATLAB simulation proved the effectiveness of used algorithms with 6.53% 

to 46.43% fuel economy saving. 

Keywords Hybrid electric vehicle, Power management strategy, Offline optimization, NEDC drive cycle, Objective function. 

 

1. Introduction 

The intensive global fuel consumption in the transport 

sector has led to a high CO2 emission [1], which resulted in 

horrible global warming that seriously threatens the world [2]. 

Consequently, humanity faces the challenge of how to ensure 

the best global energy balance [3, 4] and to consider the 

climatic and ecological consequences of their consumption. 

So far, the development of the electric transport industry 

has been proposed as one of the greatest achievements due to 

its relying on primary green energy sources [5, 6], especially 

the solar sources, which have become the most effective 

alternative of the non-renewable energy sources to produce the 

final energy [7, 8]. 

According to the EV outlook, the EV stock exceeded 55 

million vehicles in 2025 and it will reach about 135 million 

vehicles in 2030. Besides, the global EV demands will arrive 

at 12 million in 2025 and nearly 23 million in 2030 [9].  

The HEV has attracted the attention of the researchers and 

industries worldwide as a perfect solution to minimize CO2 

emissions and manage the energy flow between electricity and 

fuel consumption [10]. This huge attention is attributed to the 

several advantages such as the low CO2 emission when used 

in the electric mode, added to its economic benefit as far as 

the fuel consumption is affected. This has led to the important 

growth of the HEV sales in such countries as Canada, Sweden 

and Japan [11]. 
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The HEV is characterized by three different architectures; 

these are series, parallel and combined [12]. In the parallel 

architecture, the electric and thermal motors are mechanically 

linked, so that the power to the wheels can be supplied 

simultaneously or alternately by the two motors with minimal 

energy losses compared to the series one. The challenges 

associated with the two energy sources of the HEV involve the 

importance of the energy management methods and the 

essential role of the optimization algorithms is the fuel 

consumption and CO2 emission reduction [13]. According to 

the literature, the optimization algorithms are split into two 

types: rule-based and optimizations based methods. Each 

method is divided into sub-types [14, 15]. The rule-based 

method is split into determined and fuzzy logic methods. 

However, the optimization-based method is divided into real-

time methods such as a robust control approach and predictive 

control and global optimization techniques such as genetic 

algorithms (GA), dynamic programming (DP)… [16,17]. In 

the global optimization methods, the used drive cycle has to 

be known to find the optimal solution based on future 

expectations and results, contrary to the real-tie optimization 

method. 

In the literature, different optimization algorithms have 

been studied. In [18], a comparison study between convex and 

dynamic programming (DP) algorithms to minimize the fuel 

consumption relying on different initial battery SOCs have 

been studied. However, other researchers compare the convex 

optimization algorithm and DP algorithm applied to a parallel 

PHEV based on the model size optimization [19]. In [20], an 

implementation of GA to optimize the total torque distribution 

between the motors of the vehicle then, a comparison of the 

results to the common control strategy. In [21], authors have 

deals with a comparison between two algorithms, convex and 

PSO, to optimize the model component sizes for the lowest 

cost and fuel consumption, under various performances of the 

PHEV. Authors in [22] have studied the PSO and the DIviding 

RECTangles (DIRECT) optimization algorithms under 

different drive cycles. Furthermore, [23, 24] can be considered 

as a wealth as it focuses on the review of the very recently 

published research papers about different optimizations 

algorithms definition, classifications, advantages, and some 

examples of applications. Researches in [25] have worked  on 

the real time optimization algorithms with the equivalent 

consumption minimization strategy (ECMS) to reduce not 

only the total cost of parallel PHEV  but also the total fuel 

consumption compared to the  other three control strategies 

(Rule-based , Global optimal , Simpler real-time ) under a 

large database of driving cycles. In [26], the authors are 

interested only in the optimization of PHEVs component 

sizing the using parallel chaos optimization algorithm (PCOA) 

for different all electric ranges (AER) and with two different 

battery types. ECMS is a novel control theory for energy 

management optimization applied to the HEV and compared 

with classical DP was studied in [27] to minimize the vehicle 

fuel consumption and NOx emission. 

Within this framework, the primary interest of this 

comparative study is to ensure the feasibility, efficiency and 

rapidity of five offline optimization algorithms for a nonlinear 

problem with different constraints using the same number of 

iterations, populations and tolerance to satisfy the objective 

function. The proposed optimization algorithms are expected 

to minimize the objective function described by economic 

criteria searching the optimal motors torques needed by each 

motor and minimizing fuel consumption, CO2 emission and 

the SOC sustaining operation and mainly the total cost of the 

vehicle under the NEDC cycle taking into account energy 

consumption, vehicle life time, distance among others. Firstly, 

we focused on the parallel architecture where a supervision 

strategy is needed to control the electric and thermal energy 

flow of the vehicle with five different modes. Each mode takes 

into account the vehicle speed and the battery SOC. Next, the 

energy management problem was solved offline by different 

optimization algorithms. Thus, values are extracted into 

tables, which were implemented later online in the 

MATLAB/Simulink software. 

However, the comparative results described in this work 

can direct the interested users towards the best choice of the 

appropriate optimization algorithm according to his prefixed 

objectives. 

The remainder of this paper is structured as follows: 

powertrain system model was developed in section 2, it 

consists of different components, a storage system, EM and 

ICE incorporates different converters to exchange information 

about energy and its flow through the different physical 

processes. Using the various output data, the main 

contribution of this study was to improve the fuel consumption 

minimization and CO2 emission. In section 3, the inversion-

based control was associated to the parallel HEV model. In 

section 4, the proposed energy flow diagram was introduced 

to organize the relation between all components defined in 

different modes. In section 5, a problem formulation of the 

system was detailed with different constraints and components 

costs. In section 6, the proposed optimization algorithms were 

implemented to provide an optimal solution for electricity and 

fuel consumption in the hybrid model. The simulation results 

have demonstrated that the proposed energy management 

system is efficient and convenient as it can conceive an 

optimal target configuration considering the simple 

negotiation strategies in section 7. The major conclusions of 

this article were drawn in section 8. 

2. System Description and Modeling  

This study aimed  to point out the great efficiency of the 

optimization algorithms which could provide a significant 

reduction of the total purchase cost, fuel consumption, CO2 

emission and improvement of  battery SOC sustaining charge 

operation of the HEVs during their road journeys under an 

appropriate supervision strategy. As illustrated in Fig.1 the 

overall system of the studied vehicle included a permanent 

magnet synchronous machine (PMSM), which is linked to the 

battery by means of a conversion system composed of a 

DC/AC converter. 

This converter is, in turn, linked to an intermediate DC 

bus, and an inverter. Besides, the parallel HEV includes an 

ICE, which is linked to the continuous variable transmission 

(CVT) and the reduction gear. The vehicle run in different 

operating modes takes account of vehicle speed and battery 

SOC. The different parameters of the parallel HEV are shown 

in Table 1. 
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Fig.1. The studied parallel HEV system configuration. 

 

Table 1. Different parameters of the parallel HEV system. 

Components 

 

Parameters Symbols Values 

Vehicle 

 

vehicle mass m 950 kg 

Frontal surface 

aerodynamic   

drag coefficient 

SCd 0608 m2 

Rolling 

resistance 

coefficient 

Cr 0.00904 

Gravity 

acceleration 

g 9.81 m/s2 

Road slope 

angle 


 

0 rad 

The density of 

the air 

ρ 1.125 

kg/m3 

Wheel radios r 0.28 m 

PMSM 

 

PMSM  power 

 

P 4.5 kWh 

Pole pair 

 

p 17 

Stator resistance 

 

Rs 0.6 Ω 

Stator 

inductance 

 

Ls 3 mh 

Rotor flux 

linkage 
m

 

0.106 

ICE 

 

Maximal ICE 

torque 

 

Ticemax 32.5 Nm 

Speed range ice
 

0-2250 

rpm 

Battery 

 

Voltage 

 
batU

 

250 V 

Capacity Q 128 Ah 

Transmission: 

CVT and 

reduction gear 

Initial gear ratio 1i
 

2 

Final gear ratio 2i
 

3 

 

The parallel HEV system was designed to satisfy the 

user’s demand in different driving conditions (wind, rain, low 

visibility and slopes…).Therefore, this system of 4.5 kW 

electric motor and 250 V lithium ion battery can propel the 

vehicle in the maximum electric range with 0.4286 degree of 

hybridization.   

The vehicle power demand demP is modeled by the 

longitudinal vehicle dynamic based on the second Newton law 

developed in equation (1).  

m a F
 

               (1) 

Where: F


 is the propulsion and a


  is the acceleration. 

Different forces are acting on the vehicle body; we notice totF


 

is the tractive force abandoned the wheels supplied by the 

motor and resF


is the resistance force [28]. Each can be 

expressed in the follows equations: 

 

tot resF F F                (2) 

 
tot

tot

T
F

r




               (3) 

With:  

res r g aF F F F                (4) 

Where:                          

 The rolling resistance force rF  is defined by : 

r rF mgC               (5)  

 The aerodynamique force aF is defined by: 

2

mod

1

2
a d elF SC V              (6) 
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Where: Vmodel is the parallel HEV model speed. 

 

 The gravity force gF  is defined by : 

sin( )gF mg                (7) 

             

2.1.  Chassis  modeling 

 

Vehicle chassis is the main support of the vehicle 

structure where all other components are attached. It has the 

role of different force treatment. The chassis model is 

presented by the following equation: 

mod el

tot res

dV
F F m

dt
                   (8) 

 

2.2. Wheels  modeling 

 

The mechanical wheels speed 
mec  can be calculated 

using the following equation: 

mod el

mec

V

r
               (9) 

 

2.3. PMSM  motor modeling  

 

There are many types of electric motors that can be used 

in a hybrid electric vehicle such as induction motor (IM), DC 

motor, switching reluctance motor (SRM) and PMSM motor. 

The choice of the motor depends on many factors such as cost, 

efficiency, mass, volume and maintenance. However, the 

PMSM is the used motor for the vehicle basing on its 

efficiency, low maintenance and low cost. In addition, the 

PMSM is the most adapted machine in the literature studies. 

Its direct and quadrature currents sdi  and sqi  model 

respectively in the Park reference frame are given by the 

following equation (10): 

 

1

0

1

s mec s

sd sd sds d s

sq sq sq mec ms mec s

ss s

R p L

i i vL L Ld

i i v pR p Ldt

LL L

    
   

                                  
   

  

     

                 (10) 

  

The electromagnetic torque emT  applied by the EM to 

the parallel HEV is given by the fundamental equation as 

follows [29]: 

 

em m sqT p i              (11)  

 

Figure 2 describes the curve of the maximum torque-

speed of the PMSM at various operating points. However, the 

analytical results of the motor power losses with the 

simulation at different speeds and torque points are illustrated 

in Fig.3. 

 
Fig.2. Curve of the PMSM torque-speed. 

 
Fig.3. PMSM power losses. 

 

2.4.  DC bus modeling  

 

The DC voltage equation can be written as: 

 

1
dc dcU i dt

C
              (12) 

Where: dci  and C are the current and the capacity of the DC 

bus. 

The current of the DC bus can be written as: 

 

dc bat mi i i              (13) 

Where: bati is the battery current and mi is the current through 

the converter. 

 

2.5.  Lithium ion Battery modeling   

 

The parallel HEV as described in Fig.1 includes a storage 

system, which consists of a DC/DC converter connected to an 

inductor filter between the battery and the DC bus and a 

bidirectional inverter [7].  

Thus, the transport sector requires batteries with high 

performance, perfect autonomy and long service life to reduce 

costs and preserve the longevity of the vehicle [30]. In this 

paper, the lithium ion was selected as the best recent choice to 

the vehicle industries based on its different characteristics [31, 

32]. The studied battery cell characteristics is presented in 

Table 2. 

The simplest model of a lithium ion cell equivalent circuit, 

which is the voltage source, linked in series with an internal 

resistance. The basis to define the lithium ion battery charging 

or discharging mode is the battery current sign [33].  
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In this study, we adopted the conventional 0i  as a 

charging mode and 0i   as a discharging mode. The battery 

pack used for the parallel HEV is 250 V formed by 76 cells in 

series and 56 cells in parallel. The charging and discharging 

mode were described by the following equations, respectively: 

 Model of lithium ion battery voltage, in the charge time 

is described by equation (14) [34]:  

*

0 exp( )
0.1

bat i

Q Q
U E R K i k it A Bit

it Q Q it
     

 
 (14)    

 In the discharging time, the equation of the lithium ion 

battery voltage is described by the following equation 

(15) [34] : 

*

0 . . . exp( . )bat

Q Q
U E Ri K i k it A B it

Q it Q it
     

 
     (15) 

 The SOC is the available state of the HEV that can be 

charging, discharging or remaining in idle state, defined 

by equation (16) [34] . Indeed, the energy state of the 

battery should not diverge from its lowest and highest 

limits 20% and 80% respectively. 

100(1 )
it

SOC
Q

                          (16)  

Where: 0E is the battery constant voltage (V ), R is the 

internal resistance ( ), K is the Constant polarization (  ),

Q is the battery capacity ( Ah ), i is the battery current ( A ), it   

is the actual battery charge ( Ah ), i   is the filtered current ( A

), A is the exponential zone amplitude (V ), B is the 

exponential zone inverse constant time 1( )Ah  . 

 

Table 2. Lithium ion cell (3.3 V, 2.3 Ah) characteristics. 

 

Nomenclature Values 

E0 3.366 V 

R 0.01 Ω 

K 0.0076 Ω 

A 0.26422 V 

B 26.5487 (Ah)-1 

 

2.6. Internal Combustion Engine modeling 

 

The ICE type used in this application is the AIXAM 

MEGA thermal motor [35]. The engine’s fuel consumption 

map is shown in Fig.4. The instantaneous fuel consumption 
.

( / )icem g s of the engine can be expressed as follows: 

.

103.44 10

ice ice e
ice

T b
m





               (17)                                                                                                                                                                                                                                                                                  

Where: 
.

icem is the mass of fuel consumed by the engine ( )g , 

ice  is the engine speed ( )rpm , iceT  is the  ICE motor torque 

( .N m ), eb is the specific fuel consumption ( / ( . ))g Kw h , and it 

can be found by a simple interpolation of the torque and speed 

in the engine map. 

The instantaneous CO2 emission of the ICE motor is 

determinate as follow: 

2

.
.

2.65
CO

ice

fuel

m
m


             (18) 

Where: fuel is the fuel density. 

 
Fig.4. ICE specific fuel consumption. 

 

In this study, the continuously variable transmission CVT 

model with reduction gear allows us to obtain the 

multiplication. It gives the freedom for the ICE motor to work 

at its most efficient level as demanded by the torque as 

detailed in Fig.5. The transmission models are generally 

simple models based on a reduction value [36] as presented in 

the following equations:  

1cvt iceT i T               (19) 

1ice cvti               (20) 

1 2ice cvtT i T              (21) 

2cvt meci                                                                          (22) 

Where: cvtT is the CVT torque, 1iceT is the output torque of the 

gear, and cvt is the rotation speed of the CVT. 

Fig.5. CVT and reduction gear model. 

2.7.  Driver Model  

 

The driver model is used to imitate the different driver’s 

manipulation of the acceleration and brake pedals. The driving 

cycle sends the demanded speed refV to the driver. According 

to comparison of this reference and the actual feedback speed

mod elV , the total reference force tot refF   is calculated using PI 

regulator and sent to the vehicle control unit [37] as shown in 

Fig.6. 
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Fig.6. Driver model. 

 

The proportional and integral gains respectively pK and 

iK   associated to the used proportional integral controller PI 

according to the tuning method are defined by the following 

equations: 

2pK m             (23) 

2

iK m             (24) 

Where:   is the pulsation of the system ( /rad s ) and   is 

the system damping coefficient. 

 

3. Inversion Based  Control 

 

The parallel HEV control system was detailed in this 

section. For this study, we adopted the inversion control rules: 

to construct the control scheme, each relationship type in the 

parallel HEV model was reversed [38], since the proposed 

control must define this appropriate input ( )refE t  from the 

desired output ( )refS t , as described in Fig.7. 

 

 This study interested on the torque flow distribution 

between the different energy sources. Therefore, it is assumed 

that the braking torque is equal to zero. 

3.1. Control of the Chassis  

 

According to chassis model defined in equation (8), the 

control equation is presented as follows: 

mod

1
el ref tot ref resV F F

m
                  (25)  

 

3.2. Wheels control 

 

Inversing the model equation (3) we deduce the total 

reference torque tot refT  represented in equation (26) and 

inversing the model equation (9) we deduce the reference 

mechanical speed of the parallel HEV wheels in equation (27): 

 

tot ref tot refT F r              (26)

mod el ref

mec ref

V

r



                  (27)  

 

3.3. Mechanical coupling control 

 

The mechanical coupling is the sum of the electric and 

thermal torques. Thus, the reference PMSM em refT   is fixed by 

the following equation: 

1em ref tot ref ice refT T T               (28)
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3.4. ICE control 

 

Different methods were developed in the literature studies 

to control the ICE. The first method consists in regulating the 

ICE at a given operating point by fixed reference torque  

ice refT   and the reference speed ice ref  of the engine in order 

to ensure the operation of ICE in its zone of optimum 

efficiency. The second method is to use a couple’s distribution 

factor to control the MSAP and the ICE at the same time. In 

this study, the ICE was controlled with the first strategy.   

 

3.5. PMSM current control 

 

The PMSM model presented in the d-q rotating Park 

frame (10) is controlled through the current controller. It 

includes a decoupling action and a proportional integral (PI) 

controller, which enables avoiding the residual steady state 

error between the reference and the output currents [13]. From 

the detailed MSAP model, we developed the stator currents 

control to determine the reference voltages in the d-q rotating 

Park models sd refV   and sq refV   as shown in Fig.8.  

 

Fig.8. PMSM current control strategy. 

 

3.6. Control of DC/AC converter 
 

Voltages delivered by the converter depend on the control 

voltages of the converter sd refV  and sq refV  , given by the 

following equations: 

2

dc

sd sd ref

U
V V                      (29)

2

dc

sq sq ref

U
V V                     (30)      

3.7. DC bus control 

To control the DC bus voltage as presented in Fig.9, the 

current flowing through the DC capacitor must be controlled. 

In fact, this voltage must be kept equal to dc refU   ensuring a 

balance between production and consumption. This control of 

the DC bus reference current dc refi   is ensured with a PI 

corrector as presented in equation (31): 

( )dc ref dc ref dci PI U U              (31) 

 

3.8. DC/DC converter Control 

 

The control diagram structure of chopper is presented in 

Fig.9. As for the modulated voltage mbat refU  of the converter 

control, it is expressed as follows: 

 

mbat ref bat ref dcU m U                (32) 

Where: bat refm  is the control signal of the DC/DC converter. 

 

3.9. Control of the storage system 

 

The objective of this command is to adjust the current bati

to its reference value bat refi  with purpose controlling the 

charge and discharge of the battery, using a PI regulator as 

described in the following equation: 

 

( )bat bat ref batU PI i i             (33) 

Figure 9 shows the control strategy of the storage system 

associated to the DC bus control. 

 
Fig.9. Storage system and DC bus control scheme. 
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4. Proposed Supervision Strategy  

 

This study was executed to ensure the parallel HEV 

system autonomy on the road journey and to meet the 

established energy constraints. Then, the developed strategies 

associated to the power management supervisor requires the 

information’s about the battery SOC and the vehicle speed to 

control the electric and thermal torques. Therefore, five 

operation modes can be distinguished: pure electric mode, 

hybrid mode, pure thermal mode, regenerative braking mode, 

and no power-transmitted mode, as shown in Fig.10. 

Indeed, the energy transaction between the two energy 

sources was supervised according to the adequate mode 

designed from our proposed control strategy. During the 

vehicle proper functioning, the lithium ion battery is initially 

used as a storage/backup system until it is used out to shift to 

the ICE, ensuring a balance between the generated and 

consumed powers absorbed or injected into the battery. Thus, 

the power balance is expressed  as follows: 

( ) ( )bat demP t P t             (34) 

This would help to fulfill the following conditions: 

 Charging the battery from the deceleration phase and the 

regenerative braking.  

 Minimizing the ICE operation in order to decrease the 

fuel consumption and CO2 emission.  

 Controlling the battery energy charged and discharged 

with lowest and highest limits to prohibit the 

overcharging and deep discharging of the battery, 

respectively.  

The supervision algorithm is responsible for the operating 

mode switching and optimal power distribution to reduce the 

energy consumption of the HEV system. The supervision 

algorithm is practical, simple to implement and adequate. In 

fact, it provides a better split torque between the two motors 

based on the use of logic (If) to characterize each mode; then, 

it acts in a simple way in real time using the 

MATLAB/Simulink software. 

Besides, the proposed strategy would act depending on 

the different information collected from the parallel HEV 

model.  To this end, the supervision block receives this 

information as inputs: 

 The reference speed of the parallel HEV. 

 The acceleration phase of the vehicle. 

 The deceleration phase of the vehicle. 

 The battery SOC minimum bound limit of the parallel 

HEV.  

 The battery SOC maximum bound limit of the parallel 

HEV.  

Here the following modes of the used control strategy are 

explained: 

 Electric mode (mode 1): If the HEV is in the acceleration 

phase, the vehicle speed is below the lower limit and the 

battery SOC is above the lower limit, then the ICE is 

turned OFF and the EM is turned ON. In this case:

( )tot ref em refT T  . 

 Hybrid mode (Mode 2): If the vehicle is in the 

acceleration phase, the vehicle speed is above the lower 

limit and the battery SOC is above the lower limit, then 

the ICE is turned ON and the EM is turned ON. In this 

case: 1( )tot ref em ref ice refT T T    . 

 Thermal mode (mode 3): If the vehicle is in the 

acceleration phase and the battery SOC is below the  

minimum limit, then, the ICE is turned ON and the EM is 

turned OFF. In this case: 1( )tot ref ice refT T  . 

 Regenerative braking mode (mode 4): If the vehicle is in 

the deceleration phase and the battery SOC is below the 

maximum limit, then, the ICE is turned OFF and the EM 

is turned ON as a generator. In this case:

( )tot ref gen refT T  . 

 Mode 5: If the vehicle is in the deceleration mode and the 

SOC of the battery is above the maximum limit, then, the 

battery will not support the extra charge, and the energy 

will be dissipated as a heat form, which is not an adequate 

mode.  In this case, there is no power transmitted and 

0tot refT   . 

Fig.10. Structure of the proposed supervision and 

optimization algorithm. 

 

5. Optimization Problem Formulation  
 

After a deep study on the design, sizing and architectures, 

several researchers focused their research on the optimization 

of the different EV parameters. This was supported by the 

general research trend that emphasized optimization as the up-

to-date trend in research. In this context, several optimization 

criteria have appeared in the literature: HEV cost, fuel 

consumption, electricity charging and CO2 emission [39-42]. 
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The parallel HEV system was studied considering the 

HEV lifetime, especially lifetime of the lithium ion battery, 

which was estimated at 10 years. To determine the optimum 

torque of electric and thermal motors needed to propel the 

parallel system, an optimization problem was developed. An 

economical criterion was chosen for this problem to reduce the 

total investment system cost. In the economic analysis, the 

total cost function 
TC  is defined as the sum of the electric 

charge costs 
eC , the fuel consumption costs fC  and the 

components cost 
cC .  

5.1. Electric charge cost  

 

The electric charge cost 
eC includes the electricity buying 

cost 
el described by equation (35):  

1

( ) ( ) ( )
3600 1000

N
el

e em mec

t

C t T t t




 


          (35) 

Where,  N   is the drive cycle duration,    and t   is the 

simulation time. 

 

5.2. Fuel consumption cost  

 

The fuel consumption cost depends on the fuel cost f  

expressed by equation (36): 

1

( ) ( ) ( )
N

f

f ice mec

tLHV

C t T t t


 

            (36)

LHV : is the lowest heating value of the fuel. 

 

5.3. Components costs  

 

The instantaneous components cost cC is the sum of: 

PMSM motor cost emC , ICE motor cost iceC and lithium ion 

battery cost batC values, which depends on the vehicle lifetime 

lifet  the drive cycle distance d , the yearly traveled distance dt

and the vehicle life time vy  of the vehicle, as given in equation 

(37): 

   

1
1

2

v

c i bat em ice

life d

yd
C r C C C

t t

 
    

  
      (37)

      

Where: ir  is the yearly interest rate, which is equal to 5%.  

The instantaneous cost function includes the fuel consumption 

cost, the electric charge cost and the cost of the total 

components. It is expressed by the following expression: 

 

1

( ) ( ) ( ) ( )
N

T e f c

t

C t C t C t C t


         (38)                 

      

5.4. Economic problem constraints 

 

Since the energy management system of the parallel 

configuration of the HEV was achieved, the objective function 

defined previously is also subject of many constraints. These 

are divided into equality and inequality constraints as follows: 

 The equality constraints ensure the balance of the 

demanded and provided powers at each instant. It is 

calculated using the following equation: 

1dem em mec ice mec iceP T T               (39) 

Where: 
ice is the ICE efficiency.  

 The inequality constraint of the system is calculated using 

the following equation: 

em mec loss acc batT P P P                            (40) 

Where: lossP is the PMSM power loss and 
accP is the HEV 

accessory power (radio, PS…). 

The electric and thermal torques are bounded with minimal 

and maximal defined by: 

min maxem em emT T T              (41) 

1min 1 1maxice ice iceT T T                  (42) 

Where: 
minemT   and 

1miniceT   are the minimum torques which 

can be produced by the electric and thermal motors, 

respectively. maxemT  and 
1maxiceT  are the maximum torques 

which can be produced by the electric and thermal motors, 

respectively. 

 

6. Proposed Optimization Algorithms 

 

The recent literature is interested in different optimization 

algorithms. However, many of the researchers are rather 

interested in a comparative study between the different 

proposed algorithms trying to achieve different purposes and 

vehicle architectures.  

In this part, the different suggest energy management 

strategies structure was introduced. Two sections were 

introduced in this framework: the first part is the optimal 

energy management method design and defined control law 

calculation using the supervision method in real-time. The 

second part is an offline optimization formulation applied to 

the developed energy management method for the parallel 

HEV, which was achieved by the torque division and 

coordination control approach. 

Depending on the initial conditions given to the control 

strategy, the parallel HEV follows a specific charging and 

discharging power profile so that it can contribute to the total 

drive cycle demand. Fig.11 shows the construction of the 

proposed parallel HEV energy management system. 

In this paper, a study of an economic problem 

optimization for a parallel HEV system was investigated. For 

that, a comparison study of different optimization algorithms 

were implemented, tested and compared. 

6.1. PSO 

 

The PSO is an evolutionary algorithm that was suggested 

by Eberhart and shi [43]. It is characterized by its robustness, 

efficiency and simplicity of implementation with a few 

adjustable parameters [44]. Besides, it is appropriate for 

multiple objective optimization problems. Hence, the global 

optimal is given by the swarm optimizer thanks to the very 

easy rules of moving in the search area. 
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Fig.11. General energy management system configuration. 
 

 

Here, the PSO algorithm can be described by the 

following formulation of the position ( )x t and the velocity 

(t)v in equations (43) and (44), respectively: 

1 1t t t
i i ix x v
               (43) 
1

1 2( ) ( )
t tt t

i i best besti i
r rg pv v x x                 (44) 

Where: bestg   is the global best of the swarm optimization,  

bestp is the best solution for each particle,  is the inertia 

factor, 
1,2r is the uniformly distributed random number 

between 0 and 1, and ,   are the acceleration constants. 

 

6.2. APSO 

 

The APSO is an accelerated version of the PSO 

algorithm. Hence, it is characterized by its efficiency and high 

quality solution. In addition, it was known with its simplicity 

compared to the PSO algorithm [4]. The APSO is initialized 

with a group of random particles and then pursuit the optimal 

solution by updating generations. The particles are evaluated 

depending on some objective function criteria after each step.  

Each particle is dealt as a point in an N-dimensional space, 

which adjusts its ‘flying’ by its own experiment as well as the 

flying experiment of other particles via the reminder of the 

best earlier positions, velocity, and accelerations of itself and 

its neighbors. Then the particles start to shift towards the best 

neighbor's position before the flock gets an optimum of the 

fitness function. The position and velocity equations are 

presented as follows: 

 
1 (1 )t t

i i bestg rx x               (45) 

1 (1 ) ( )t t t
i i ibestr gv v x                (46)

                      

6.3. Convex 

  Convex optimization is a fast and reliable algorithm 

used to solve optimization problems and can be used through 

a MATLAB tool called « CVX » [45]. The optimal design and 

energy management enable finding a unique global minimum. 

 

6.4. Genetic  

 

GA is one of the most interesting optimization techniques, 

due to its good search performance and low complexity. It 

allows using different techniques inspired from evolutionary 

biology as the selection, mutation and crossover to solve a 

problem. The most popularly employed technique in this 

algorithm is to create a random individual group from a given 

population. So, the developed individuals are evaluated with 

the help of the studied evaluation function. Then an aptitude 

for the given context is put through the score received by the 

individuals. The best two individuals are then elected to create 

one or more offspring based on random mutations that were 

performed on the offspring [46]. 

 

6.5. Fmincon  

 

It is a Nonlinear Programming optimization MATLAB 

tool available in the "Optimization toolboxʺ. This function is 

adopted for non-linear problems [47]. 

 

7. Simulation  Results 

 

The model and control of HEV were realized with 

MATLAB/Simulink software using the different parameters 

presented in Table 1. To validate the model, control, and the 

performance of optimization algorithms, the overall system 

was simulated during the 1180 s. Thus, a verification must be 

executed on the same hardware-configured simulation 

platform. The simulation computer configuration used in this 

study is an Intel® Celeron® with a CPU 3867U, 1.80 GHz, 

and 4 Go memory capacity. 

The normalized drive cycle used for this study is the 

NEDC drive cycle. This is the most used cycle in the research 

field, owing to the easy interpretation of its result. It is used in 

Europe and different other countries mainly to measure the 

consumption and polluting emissions of vehicles. The NEDC 

cycle is composed of two different parts: urban and extra-

urban. The system, cycle and problem setting and parameters 

are given in Tables 3, 4, 5 and 6. Thus, Pacc of the parallel HEV 

system is estimated around 500 W. 
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Table 3. Algorithms parameters. 

  

Parameter 

 

Population 

size 

 

Number of 

iterations 

 

Variable 

number 

 

Tolerance Acceleration 

constants α,β 

Inertia 

weight ζ 1,2 

Crossover Migration 

APSO 100 100 2 0.95 0.5 0.2/0.5 - - 

PSO 100 100 2 0.95 0.5 0.002/0.004 - - 

GA 100 100 2 - - - 0.9 0.2 

Convex 100 100 2  - - - - 

Fmincon 100 100 2 0 - - - - 

 

Table 4. NEDC cycle parameters. 

 

Parameters Values 

Distance (m) 11023 

Mean speed(m/s) 33.6 

Duration(s) 1180 

 

Table 5. Parallel HEV component cost. 

 

Components of HEV Costs (DT) 

EM 15387 

Battery 1387.68 

ICE 11599 

 

Table 6. Boundaries values. 

 

Variables (N.m) Values 

minemT
 0 

maxemT
 340 

1miniceT
 0 

1maxiceT
 120 

 

Figure 12 to Fig.22 presents the results of the parallel 

HEV system control.  

In facts, The NEDC cycle evolution is presented in Fig.12. 

Thus, we can remark that the model speed follows the drive 

cycle speed perfectly with small errors during transitions. 

 
Fig.12. Drive cycle speed. 

 

The electromagnetic torque of the PMSM and the ICE 

torque evolutions during the NEDC cycle are illustrated in 

Fig.13. 

 

 

 
Fig.13. PMSM and ICE torques. 

 

The mechanical speed of the hybrid system evolution 

during the NEDC cycle is illustrated in Fig.14. 

 
Fig.14. Mechanical speed. 

 

Figure 15 shows the dynamics of the system power 

demand during the cycle. The chosen convention in this work 

demonstrate that the negative powers correspond to the 

charging mode which the HEV battery store energy 

regenerative brake mode. However, the positive powers were 

selected to the discharging mode of the HEV lithium ion 

battery to propel the PMSM motor. 
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Fig.15. Power demand. 

 

The references direct and quadrature currents evolutions 

used in the current control of the PMSM motor are displayed 

in Fig. 16. 

 
Fig.16. Direct and quadrature current. 

 

The lithium ion battery current and SOC curves are 

presented in Fig.17 and Fig.18, respectively. These results 

affirm the selected convention in which negative currents are 

dedicated for the discharging cases and the positive ones for 

the charging cases. 

 
Fig.17. Lithium ion battery SOC. 

 
Fig.18. Lithium ion battery current. 

On the other hand, the used PMSM efficiency during this 

simulation performance is shown in Fig.19. We can remark 

that the total efficiency of the motor between 0 and 1180 

seconds does not exceed 35% of the total efficiency of its 

system. 

 
Fig.19. PMSM efficiency map. 

 

The energy balance between the different system 

components, especially the storage system, allows the 

adjustment of the DC bus voltage and its maintenance at its 

reference value, which is equal to 500 V as shown in 

Fig.20.This figure shows the effectiveness of the designed 

control.  

 
Fig.20. DC bus voltage. 

 

The total torque evolution of the hybrid system under the 

NEDC cycle is shown in Fig.21. 

 
Fig.21. Total torque. 

 

According to the algorithm for the supervision strategy 

explained in section 4, the five operating modes of the parallel 

HEV were recognized. Figure 22 displays the transitions 

between five different modes respectively. This figure shows 
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the effectiveness of the studied control management 

supervisor following the profiles of each operating mode. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig.22. Different operating modes: (a): electric mode, (b): 

hybrid mode, (c): thermal mode, (d): regenerative braking 

mode and (e): no power transmitted 

 

To evaluate the performance and validity of the different 

offline optimization algorithms structure, the results were 

analysed under the NEDC cycle. In this part our simulations 

focused on the hybrid mode of the vehicle where (both of) the 

electric motor and engine are used to propel the vehicle 

simultaneously in the interval [1014 s, 1160 s].  

The results for the optimized electric torque using PSO, 

Fmincon, APSO, GA and Convex energy management 

algorithms in the hybrid mode of the vehicle are displayed in 

Fig.23.  As for the results of the thermal torque, they are 

displayed in Fig.24. 

 
Fig.23. Optimized electric torques under different 

optimization algorithms in the hybrid mode. 

 
Fig.24. Optimized thermal torques under different 

optimization algorithms in the hybrid mode. 

 

The simulations were also carried out for the fuel 

consumption minimization and their results as well as those of 

the CO2 emission reduction are shown in Fig. 25 and Fig.26, 

respectively. 

 
Fig.25. Fuel consumption evolution in the hybrid mode. 

 
Fig.26. CO2 emission evolution in the hybrid mode. 
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For a better understanding of the optimization torques 

changeable values in the time interval  [1014 s, 1160 s], the 

battery SOC profiles of the different energy management 

strategies for the parallel HEV mentioned above are presented 

in Fig.27. We remark, in the interval of [1014 s, 1160 s] 

corresponding to the hybrid mode interval of the propulsion 

system, the SOC decrease for the different algorithms depends 

on the HEV electricity consumption and the increase of the 

electric torque.  

 
(a) 

 
(b) 

Fig.27. (a) SOC evolution in the hybrid mode with the 

different optimization algorithms, (b) zoomed view. 

 

The resulting control sequences are shown in Fig.28 and 

Fig.29, whereas the numerical results are given in Table 7.  

Fig.28. Percentage of reduction of fuel consumption and CO2 

reduction. 

 

Figure 28 shows a comparison of the reduction percentage 

of the fuel consumption and CO2 emissions of each algorithm. 

It is important to notice that the parallel HEV extensively 

satisfies the European light-duty vehicle emissions legislation 

referring to the NEDC. Taking into consideration the mean 

values of the different optimizations methods, the emissions 

caused by the HEV are also lower than 95 gCO2/km [48]. 

Fig.29. Charge sustaining operation enhancement. 

 

Figure 29 also shows a comparison of the charge 

sustaining operation enhancement percentage for the lithium 

ion battery of each algorithm.  

When comparing the simulation performances of the used 

offline approaches, it is clear that the proposed algorithms are 

run over 100 independent times and the collected statistical 

results are precise in Table 7. This table reveals the best 

instantaneous fuel consumption, CO2 emission, reduction and 

improvement percentages results, CPU computational time, 

best cost and best iteration, respectively for each optimization 

experiment. Hence, the reduction in fuel consumption for the 

non-optimal case was calculated relative to the optimal hybrid 

case.  

However, the results described in Table 7 can direct the 

user towards the best choice of the appropriate optimization 

algorithm according to his prefixed objective. 

It is clear that Fmincon and convex optimization 

algorithms show a higher minimization in both fuel 

consumption and CO2 emission when compared to the PSO, 

APSO and GA results that achieved only 35.34%, 31.49% and 

6.53%, respectively. 

For the lithium ion battery sustaining charge 

enhancement, the PSO and the Fmincon optimization 

algorithms have the highest results. Indeed, the above-

mentioned algorithms are by far better than the APSO, Convex 

and GA results that achieved 8.69%, 6.54% and 7.76%, 

respectively.  

The simulation time is also another substantial parameter 

for real-time applications. The computation time based on 

Fmincon is non-competitive as it was capable to perform the 

energy sharing in the lowest time interval of 3.1 s.  

Contrariwise, the APSO has the highest time interval 

performance with 58.40 s.  The GA follows with 40.48 s, and 

then comes the convex algorithm with 32.4 s and the PSO 

algorithm with an average simulation time of 25.29 s. 
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Table 7. Optimization algorithms results. 

 

Algorithms Instantaneous fuel 

consumption (g/s) 

CO2 emission  (g) Reduction 

(%) 

CPU 

(s) 

Best Cost  

(DT) 

Charge sustaining 

operation enhancement 

(%) 

APSO 5.29e-07 1.65e-06 31.49 58.40 2.1315e+05 8.69 

Convex 4.17e-07 

 

1.30e-06 43.79 32.4 2.1315e+05 6.54 

GA 7.15e-07 2.23e-06 6.53 40.84 2.1315e+05 7.76 

PSO 5.03 e-07 1.57e-06 35.34 25.29 2.1315e+05 19.41 

Fmincon 4.08 e-07 1.27e-06 46.43 3.51 2.1314e+05 19.07 

This system should also ensure that the studied algorithms 

converge to the cheapest optimal solution at a fast speed. 

Figure 30 exhibits the relationship between optimal fitness 

and iteration number after 100 iterations achieved by the GA, 

PSO, APSO, Convex and Fmincon optimizations algorithms. 

When the cost function is small and remains unchanged, the 

optimal value of the different algorithms is considered to be 

the global optimal solution. Figure 30e shows that, when the 

iteration reached 10 generations, the fitness tended to be stable 

with the Fmincon algorithm. However, as can be seen from 

Fig.30a the fitness function tended to be stable starting from 

the 50th iteration using the APSO, and the 30th iteration using 

the PSO algorithm, Fig.30b. Figure 30c highlights that the GA 

algorithm converges to a minimum value of the cost function 

after more than 80 iterations. A closer look to the Fig.30d 

proves that the Convex algorithm converges directly to the 

minimum value of the cost function. 

 
(a)                                (b) 

 
(c)                                        (d) 

 
(e) 

Fig.30. Best fitness functions: (a): APSO, (b): PSO, (c): GA, 

(d): Convex and (e): Fmincon. 

 

8. Conclusion 

 

This article developed a comparative study of different 

optimal control management strategies of a parallel HEV 

system under NEDC cycle. The different offline managements 

were carried out aiming to decrease the fuel consumption and 

CO2 emission mainly in the hybrid mode where the electric 

and thermal motors propelled the vehicle simultaneously at 

high speeds. In addition, computational time was considered 

as an essential performance criterion. In the first section of the 

suggested energy management study, a supervision strategy 

was developed to manage energy flows between the electric 

and thermal motors. Then, the supervisor takes its decision to 

select the adequate operating mode to ensure the continuous 

supply of energy to propel the parallel HEV and maintain the 

state of charge of the battery at an adequate level.  The second 

part consists of different offline algorithms that achieve an 

optimal split of the two motors while minimizing fuel 

consumption and CO2 emission and maintaining the battery 

health. An economic assessment has been conducted by 

employing the total ownership cost for 10 years respecting 

different physical components constraints. Therefore, the 

optimization algorithms have been executed using a cost 

function. The principal objective was to satisfy all the 

constraints with minimum total cost.   

Our simulation results have proven the efficiency of the 

PSO, APSO, GA, Fmincon, and Convex algorithms. 

However, each of the algorithms has different advantages and 

drawbacks concerning this model and simulation 

performances.  For instance, the Fmincon, convex, PSO, and 

APSO were able to achieve better results on consumption 

reduction and CO2 emission compared to the GA. However, 

the GA, PSO, Fmincon, and Convex achieved less 

computational time compared to the APSO. 
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Appendix 

 

The Power losses of the PMSM is described by the 

equation as follows [21]: 

       2
1 2 3,loss mec em mec em mecmec emT c c cP T T        (41) 

Where the coefficients: 
1 0C  , 

2C  and 
3C   are function of 

the electric motor speed. According to 
mec the coefficients 

are calculated basing on two different methods: least square 

method and linear interpolation method [49].  
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