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Abstract- Segmenting satellite images provides an easy and cost-effective solution to detect solar arrays installed on building 
tops and on ground over a region. Solar panel detection is the first step towards image based estimation of energy generation 
from the distributed solar arrays connected to a conventional electric grid. Segmentation models for small devices require light 
weight procedures in terms of computational effort.  State-of-the-art deep learning segmentation models have the disadvantage 
that these require long training times, large number of floating-point operations (FLOPS) and tens of millions of parameters 
which make these models less suitable for devices with limited computational power. This paper proposes a deep learning 
segmentation architecture that is suitable for small devices. The proposed architecture combines features of Mobilenet 
classification architecture and Unet architecture in such a way such that it is efficient in terms of computational effort and 
produces segmentation results with good accuracy. The results of the proposed model are compared with the results obtained 
by various state-of-the-art segmentation models. The results demonstrate that the proposed model is computationally efficient 
as it requires less number of model parameters, less training time, consumes less number of FLOPS and produces good 
segmentation results with competitive accuracy. 

Keywords Deep learning, semantic segmentation, convolutional neural networks, depthwise separable convolution, satellite 
imagery, solar panel arrays. 

 

1. Introduction 

Deep learning (DL) has been very effective in 
computer vision tasks such as image classification, object 
detection and semantic segmentation. Semantic segmentation 
finds its application in various domains like analysis of 
medical images, natural images, and satellite images. 
Supervised semantic segmentation obtains different segments 
in an image based on the predefined classes into which an 
image is to be segmented. It classifies each pixel into one of 
the classes dividing the image into segments where pixels of 
one segment belong to the same class. DL algorithms have 
shown promise both in supervised and unsupervised image 
segmentation over traditional machine learning (ML) 
algorithms. Although traditional ML algorithms have been 
used widely but these algorithms require extraction of 
features from an image first and which are then used in a 
classifier to classify each pixel int one of the predefined 
classes. DL algorithms are end-to-end algorithms where 
feature extraction and classification are done by a single 

algorithm. Convolutional neural networks (CNNs) is a DL 
approach that has been used in domains like medical image 
analysis, object detection, street view segmentation, and 
detection of objects from satellite images. Examples of CNN 
application in satellite image analysis include building 
detection, road extraction, vehicle detection, population 
estimation, poverty estimation, and identification of urban 
patterns. However, very little work has been done in 
detection of solar panels from satellite images.  

Detecting solar panels from satellite images is 
challenging due to their varied shapes, sizes and colors and 
installations on roof tops can be at different angles. Further, 
using a device with limited computational power can make 
the task more challenging. This paper proposes a new 
segmentation architecture for solar panel detection  that is 
suitable for devices with limited computational power. The 
paper is structured as follows: The state-of-the-art DL 
segmentation models are summarized in Section 3. The 
proposed model is described in Section 4. Section 5 presents 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
M. Arif Wani and T. Mujtaba, Vol.11, No.1, March, 2021 

 32 

experimental results and discussion. The conclusion and 
future work is finally given in Section 6. 

 
 

2. Related Work  
Traditional ML models like Support vector machines 

(SVM), random forests have been used by researchers for a 
number of applications. This includes use of SVM for 
multiclass classification applications [17] and for solar panel 
detection, and extraction of rules [16] for classification 
applications and detect solar panels.  

 
SVM has been used in [9] to count and detect the solar 

panels from the satellite images of Lemoore, California. It 
uses maximally stable external regions (MSER) to identify 
the elliptical regions and then applies features on these 
elliptical regions to determine the presence of solar panels in 
these elliptical regions. Although the method helps in 
counting the number of solar panels but the exact shapes 
cannot be determined with this approach. Hand crafted 
features and a random forest classifier have been used in [10] 
to detect solar panels from the Fresno city dataset [11]. It 
produces various false positives, therefore a post processing 
step is used to identify high confidence pixels. However, post 
processing may sometimes miss less bright pixels which may 
actually belong to solar panels. Further, the success of such 
an approach highly depends on quality of the designed 
features.  

 
Wıth the emergence of DL in the recent years, DL 

models have been very successful for various computer 
vision tasks, which includes image classification, object 
detection and segmentation tasks. Traditional ML approaches 
like subspace grid based aproach is described in [23,24], and 
cluster based described in [27] for classification task produce 
less accuracy results than DL approach.  The same is true 
even with the hybrid approach described in [28] for 
classification task. The authors in [12] have used a DL based 
VggNet classification model for Imagenet classification. A 
deep residual learning model consisting of residual blocks 
has been used by authors [13] for image classification and 
produced better results than the VggNet. The residual 
structure helps to alleviate the vanishing gradient problem 
and thus helps deep layered models to get trained easily. The 
authors in [14] use a densely connected model called as 
DenseNet for image classification where all layers within a 
block are densely connected to the following layers. The 
dense connections eases the flow of feature propagation 
through the layers. Image classification results from 
DenseNet surpassed those of ResNet model. The results 
show that CNN produces better classification than the ML 
based models like random forest classifier, SVM, subspace 
grid, cluster, hybrid approaches. 

 
DL CNNs have also been used for segmentation tasks 

which includes detecting solar panels from the satellite 
images. Authors in [1] used Convolution Neural Network 
(CNN) for segmentation f finger print iages. Authors in [18] 
used a CNN classifier for detecting solar panels from the 
satellite images. Each pixel is classified to determine whether 
it belongs to the solar panel or not. The authors compare 
results with random forest approach and it has been shown 
that CNN model produces better results than random forest 
approach. The work in [19] uses a pretrained Vggnet 
classifier. It used the basic architecture of Vggnet classifier 
with 6 convolutional layers and 2 fully connected ones. Its 
classification model classifies each pixel to determine 
whether it belongs to the solar panel or not. A post 
processing method is applied to connect contagious detected 
pixels to form regions. Though such a model can be used to 
detect the regions containing solar panels but being a 
classification model exact shape of solar panel arrays cannot 
be acquired. A fully convolutional network model has been 
used by authors in [26] for large scale solar panel array 
mapping on the aerial RGB images of Boston and San 
Francisco. The authors report a precision of 0.855 and recall 
of 0.873 for the dataset of San Francisco and a precision 
score of 0.812 and recall of 0.840 for the dataset of Boston. 
However no segmentation metric like dice coefficient or 
Intersection over union has been reported.  

 
In addition to basic CNN models, a number of state-of-

the-art deep learning (DL) segmentation models like FCN, 
Unet, Segnet, DeepLab v3, Dilated Net, dilated Resnet and 
PSPNet have been proposed in the literature. FCN [2] is one 
of the first DL segmentation models that is designed by 
converting the classification network like Vggnet, Googlenet 
and Alexnet into segmentation models. The Unet 
segmentaion model was proposed in [3] which uses a fully 
encoder decoder structure for semantic segmentation. A 
similar encoder decoder architecture called Segnet was 
proposed in [4] but it differs from Unet in the way 
upsampling process is done. Segnet uses index based 
upsampling process to upsample the feature maps in its 
decoder. A multi context aggregation based segmentation 
model was proposed in [6] which uses a context module for 
aggregating the context of the objects in an image. 

 
Some work has been reported in the literature on the use 

of the state-of-the-art deep learning segmentation models for 
detection of solar panels. DL segmentation network Segnet 
has been used in [20] on the satellite images of Fresno and it 
was shown that the Segnet model performs better than 
classification models like Vggnet model. But no specific 
accuracy or segmentation performance measures have been 
reported and the models have been trained on image patches 
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of size 41x41. However, small image patches may contain 
less diverse background details which may restrict the model 
to perform well on images with diverse and dense 
backgrounds. Unet  has been used in [21] to detect solar 
panels from the aerial images of Switzerland. Fast RCNN 
based on Resnet-50 has been used in [25] to detect solar 
panels by placing bounding boxes around panels. However, 
such an approach cannot be used to determine the exact 
shape  and boundary of solar panels which may not result in 
accurate energy estimation. A solar mapper was introduced 
in [29] to determine the size, location and capacity of solar 
panels using satellite images. It reported segmentation 
accuracy with aggregate f1 score of 0.76 over the cities of 
Fresno, Modesto and Stockon. It also reported an aggregate 
f1 score of 0.85 over the satellite images of Connecticut. 
With the advancement in Deep Learning, there is a scope to 
improve the solar panel segmentation accuracy further by 
developing new DL segmentation architectures.  

 
3. State-of-the-art Deep Learning Segmentation Models 

The most prominent and improved segmentation models 
proposed by researchers include Unet, Segnet, Dilatednet,  
Pspnet, Deeplab v3+, Dilated residual network which have 
been used for different segmentation tasks. In this paper 
these models are explored for the problem of solar panel 
detection and are compared with the proposed models. These 
most prominent segmentation models are summarized below. 

a. Unet: 

Unet was proposed for medical image segmentation and it 
uses an encoder and a decoder structure. Encoder consists of 
encoder blocks which usually consist of series of 
convolutional and a pooling layer like in any classification 
architecture, however no fully connected layer is present. It 
extracts features and downsamples the input image 
resolution. Encoder is followed by a decoder which is 
responsible for restoring the image resolution and perform 
the pixel wise classification. It consist of various decoders 
where each decoder usually consist of upsampling layers for 
feature map upsampling followed by a concatenation layer 
which concatenates the upsampled features with those of 
corresponding encoder features transferred via skip 
connections. The concatenation layer is followed by a pair of 
convolutional layers. The skip connections which are from 
every encoder block to the corresponding decoder block 
having same feature map resolution help in localization and 
densify the segmentation. The last decoder block is followed 
by 1x1 convolution and a sigmoid function for pixel wise 
classification.  

 

b. Segnet: 

 Segnet was proposed for scene understanding application, it 
also uses an encoder decoder structure but does not use skip 
connections.  For image upsampling it uses index based max 
pooling technique where indices of pixels with maximum 
values in max pooling are recorded and later the saved index 
and the value are used to upsample the image features in the 
decoder. So it does not use any transpose convolution for 
upsampling. Main reason for this is to decrease the parameter 
count used in transpose convolution and thereby reducing 
training time. 

c. Dilatednet: 

One of the first CNNs model that used the concept of dilated 
convolutions is Dilatednet. Dilated convolutions are the 
convolutions with widened filters that have zeros in between 
the various weight values. These convolutions have been 
used for dense segmentation, context aggregation and 
parameter reduction and enlarging the field of view. 
Dilatednet uses a front end module for feature extraction and 
dilation module for context aggregation. The front end is like 
a normal Vggnet with dilated convolution used in 4th and 5th 
block. It uses two types of context aggregation modules- a 
basic and large containing seven layers with different dilation 
rates. Basic module applies dilation of 1, 1, 2, 4, 8, 16, 1 and 
1. It then upsamples the feature maps by using bilinear 
upsampling and calculates the probability segmentation map. 

d. Pspnet: 

Pspnet was proposed for scene parsing and uses a pyramid 
pooling module (PPM) for context aggregation and detection 
of small objects in a scene. The PPM uses different pooling 
rates in parallel for generating feature maps of different sub 
regions and forms pooled representation of different 
positions. These pooling operations form feature maps of 
varying sizes which are then upsampled using bilinear 
upsampling and segmentation maps are produced.  

Deeplab v3+: 

Deeplab v3+ is an improvised version of its predecessor 
Deeplab v3 and uses an encoder decoder structure with a skip 
connection from encoder to decoder. It uses dilated context 
aggregation module known as atrous spatial pyramid 
pooling module with 1x1 convolution and dilation rates of 
1x1, 6, 12 and 18 to refine its segmentation results.  The 
encoder uses Resnet-50 and xception network with dilated 
convolutions. Deeplab v3+  uses a relatively better decoder 
than its predecessor by using a skip connection from one of 
its encoder to its corresponding decoder for better 
localization. The upsampling used is bilinear upsampling.  
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e. Dilated Resnet: 

Dilated Resnet utilizes Residual network for image 
classification and segmentation by incorporating dilated 
convolutions in its encoder and dilation module. It utilizes 
Resnet-18 and its variants as encoder and utilizes a different 
dilation module with smaller dilation rates ad alleviates the 
degridding pattern problem that occurs with high dilation 
rates. It upsamples the feature maps so obtained from dilation 
unit by using bilinear interpolation.  

4. Proposed Deep Learning Segmentation Architecture 

 A new DL segmentation architecture is proposed here 
which is based on Mobilenet architecture [15] and Unet 
architecture. It uses depthwise separable convolution unit in 
its encoder blocks instead of using the standard convolution 
operations. This allows the proposed architecture to get 
trained in less time, use less parameters and perform with 
less floating point operations (FLOPS) as compared to the 
state-of-the-art models described in the last section. A 
detailed comparison with experimental results of the 
proposed model and state-of-the-art models is provided in 
the next section. The model can be termed as light weight 
model from computational point of view and is suitable for 
devices with limited computational power. The architecture 
has full encoder decoder structure with skip connections at 
all levels for dense segmentation and fine boundary 
refinement. The components of the proposed architecture are 
discussed below: 

4.1 Encoder  

The encoder for our proposed architecture is based on 

Mobilenet architecture which uses depthwise separable 

(DWS) convolution instead of standard convolution. 

MobileNet is one of the real time classification architectures 

with very less parameters and requires less FLOPS. The use 

of Mobilenet architecture (with fully connected layers 

removed) as encoder reduces the number of parameters 

without any significant drop in the segmentation accuracy. 

The encoder of our proposed model consist of various 

encoder blocks where each block consists of depthwise 

separable (DWS) convolution units shown in Fig. 1. The 

DWS convolution unit implements the following operations: 

depthwise (DW) convolution, batch normalization (BN) 

layer, ReLU activation, a pointwise (PW) convolution, BN 

layer, and ReLU activation as shown in Fig 1. The number of 

DWS units and filters used with each convolution operation 

varies with each encoder block in the encoder. 

4.2 Decoder (Udec-BL-BN) 

A decoder is essentially meant for upsampling the feature 
maps extracted from the encoder. Different state-of-the-art 
architectures use different upsampling techniques and with 
skip connections at different scales or with no skip 
connections at all. For example, Unet uses skip connections 
at levels 1/2, 1/4, 1/8 and 1/16, Segnet uses a different 
decoder with index based maxpooling. DeepLabv3 and 
DilatedNet use naïve decoders with no skip connections. 
Similarly, PSPNet and DeepLab v3+ use only one skip 
connection at scale 1/8 and 1/4 respectively. Despite having 
rich semantic information present in the last layer of the 
encoder, the models with few or no skip connections are 
unable to get detailed boundary information.  
 The decoder of the proposed architecture uses skip 
connections at all levels i.e. 1/2, 1/4, 1/8, 1/16 which is 
similar to that of the Unet architecture.  The use of skip 
connections leverages the decoder with rich semantic 

information for accurate localization and boundary recovery. 
The proposed decoder uses a series of blocks which is 
similar to the decoder of the Unet model but the difference is 
in the manner upsampling is done and the number of filters 
used per decoder block. Here upsampling is done by bilinear 
upsampling which calculates a pixel value by interpolating 
the values from the nearest pixels which are known. The 
ratio of contribution from each nearby pixel matters here and 
is inversely proportional to the ratio of their corresponding 

 

Fig 1. Encoder block: DWS convolution unit 

 

Fig 2. Proposed decoder block: Udec-BL-BN 
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distance. We have managed to get good accuracy with lesser 
number of filters in our decoder blocks than present in the 
decoder blocks of the original Unet model. By using Bilinear 
upsampling and lesser number of filters in decoder blocks we 
are able to decrease the number of parameters of the model. 
The proposed decoder is shown in Fig. 2. 
 
4.3 Architecture of the proposed model 

The block diagrams of the proposed architecture is 
shown in Fig. 3 and we call it as Unet-Mobilenet architecture 
as it is based on Unet and Mobilenet architectures. It has a 
full encoder decoder structures with skip connections used at 
all levels. The left side of the block diagram represents the 
encoder and right side represents the decoder and in between 
is the bridge block. The Encoder blocks consists of Conv and 
DWS units with first encoder consisting of a Conv unit and 
all other encoder blocks consist of DWS units. The Second, 
third, fourth and the bridge block conatin two DWS units 
each where as fifth encder block contains six DWS units. 
The number of flters used in the DW and PW convolutions 
of each DWS unit is shown along after the ‘/’ symbol 
respectively. Conv unit is a simple block comprising of 
standard convolution, batch normalization and ReLU 
activation. The 3x3 DW convolution, batch normalization, 
ReLU activation, 1x1 PW convolution, batch normalization 
and ReLU activation of the DWS unit is shown to the right 

side of the model in Fig. 3. The output from each encoder is 
downsampled by convolution with a stride factor of 2. In 
decoder, five blocks have been used. The composition of 
each decoder block is shown in Fig. 2 and in Fig 3 alongside 
the model. It consists of bilinear upsampling layer, followed 
by concatenation layer which concatenates the encoder block 
features with the corresponding decoder block features 
having the same resolution shown by dotted arrows. The 
concatenation layer is followed by two standard convolutions 
having different filters at different blocks. Each convolution 
is followed by batch normalization and ReLU activation. The 
last decoder block is followed by 1x1 convolution and a 
sigmoid layer for pixel classification. The output of the 
model is 224x224x1 predicted segmentation  map showing 
the locations of the solar panels. The detailed layered 
architecture of the model is given in Table 1. It gives the 
composition of each encoder, bridge and decoder blocks. A 
DWS/Conv column indicates whether a DWS or Conv unit 
has been used. No DWS units have been used in the decoder. 
The Layer column indicates the different types of layers 
used: Conv-dw indicates a depthwise (DW) convolution, 
Conv-pw indicates a pointwise (PW) standard convoution, 
Conv indicates a standard convolution, Bi-Upsam indicates 
bilinear upsampling, Concat indicates a concatenation layer 
which concatenates features from the corresponding encoder 
and does the job of skip connections.

 

 

Fig 3. Proposed Unet-Mobilenet segmentation model 
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Sigmoid layer classifies the pixels into solar panel pixels or 
non-solar panel pixels. Input column indicates the size of the 
input (height and width) that the layer is recieving. Filter size 
indicates size of the kernel used with each convolution 
operation. A filter size of 1x1 is used  with a PW convolution 
and 3x3 filter size is used with DW and standard 
convolution. Each Conv-dw, Conv-PW, and Conv layer is 
followed by Batch Normalization and ReLU function. A 
DWS unit comprise of depthwsie convolution followed by 
pointwise convolution. The number of filters used in each 
convolution operation is specified in ‘number of filters’ 
coulmn. The value in the ‘Stride’ column shows the number 
of strides used in the convolution operation. A stride of 1 
does not change the dimensions of the feature maps while as 
a stride value of 2 halves the dimensions of feature maps. 
The last column ‘Output size’ indicates the ouput dimensions 
(height and width) of the feature maps that a particular layer 
outputs. 

5. Experimental results and discussion 
The proposed architecture is evaluated and compared with 
various state-of-the-art segmentation models: FCN, Unet, 
Segnet, DeepLab v3, Dilated Net, dilated Resnet and 
PSPNet. The results are also compared with the segmentation 
architectures previously proposed by the authors: Vggnet-
Unet, Resnet-Unet and fully Resnet-Unet. The comparision 
is done in terms of classification and segmentation accuracy 
measured through dice coefficient, precision and recall. 

Other performance metrics used for fast training, 
computational efficiency and light weightedness are training 
time, number of floating-point operations and number of 
parameters required respectively. The models are also 
compared by using shapes of solar panels detected.  
 

5.1 Dataset used: 

 

Fig. 4. First row shows an image and its mask from 
dataset of 5000x5000 dimensions. Second row shows an 
image with its mask of 224x224 dimensions. 
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The most commonly used and publicly accessible solar panel 
dataset is Duke California Solar array dataset (DCSA) [11] . 
The dataset has been used in several studies and has satellite 
images of four California cities: Modesto, Oxnard, Stockon 
and Fresno. It has 601 high resolution RGB images of size 
5000x5000 containing approximately 19,000 solar panels. 
The images are dense with a resolution of ≤ 0.3 m and 
represent diverse background of urban, suburban and rural 
landscape. The training of the model on diverse backgrounds 

makes it more reliable. Geometric and pixel coordinates of 
the vertices of solar panels present in the images are also 
given in the dataset. Satellite images and their corresponding 
masks (ground truth) are required for the detection of solar 
panels using the segmentation process. But the DCSA dataset 
does not include the ground truth masks with its satellite 
images. The DCSA dataset images were manually annotated 
with a labelling tool that used the specified pixel coordinates 
of solar panels given in the dataset. The corresponding masks 

Table 1. Layered Architecture of the Proposed Model 

Encoder  
Blocks 

DWS / Conv  
Unit Layer  Input Filter Size Number of Filters Stride Output size 

Encoder  
Block 1 Conv unit Conv 224x224 3x3 32 2 112x112 

 
 
Encoder  
Block 2 

 
DWS  

Conv-dw 112x112 3x3 32 1 112x112 
Conv-pw 112x112 1x1 64 1 112x112 

 
DWS  

Conv-dw 112x112 3x3 64 1 112x112 
Conv-pw 112x112 1x1 128 1 112x112 

 
 
Encoder 
Block  3 

 
DWS  

Conv-dw 112x112 3x3 128 2 56x56 
Conv-pw 56x56 1x1 128 1 56x56 

 
DWS  

Conv-dw 56x56 3x3 128 1 56x56 
Conv-pw 56x56 1x1 256 1 56x56 

 
 
Encoder 
Block 4 

 
DWS  

Conv-dw 56x56 3x3 256 2 28x28 
Conv-pw 28x28 1x1 256 1 28x28 

 
DWS  

Conv-dw 28x28 3x3 256 1 28x28 
Conv-pw 28x28 1x1 512 1 28x28 

Encoder 
Block 5 

 
 5 * DWS  

Conv-dw 28x28 3x3 512 2 14x14 
Conv-pw 14x14 1x1 512 1 14x14 

 
Bridge Block 

 
DWS  

Conv-dw 14x14 3x3 1024 2 7x7 
Conv-pw 7x7 1x1 1024 1 7x7 

 
DWS  

Conv-dw 7x7 3x3 1024 1 7x7 
Conv-pw 7x7 1x1 1024 1 7x7 

 
Decoder  
Block 5 

- Bi-Upsam 7x7 - - - 14x14 
- Concat 14x14 - - - 14x14 
- Conv  14x14 3x3 128 1 14x14 
- Conv 14x14 3x3 128 1 14x14 

 
Decoder  
Block 4 

- Bi-Upsam 14x14 - - - 28x28 
- Concat 28x28 - - - 28x28 
- Conv  28x28 3x3 64 1 28x28 
- Conv 28x28 3x3 64 1 28x28 

 
Decoder  
Block 3 

- Bi-Upsam 28x28 - - - 56x56 
- Concat 56x56 - - - 56x56 
- Conv  56x56 3x3 48 1 56x56 
- Conv 56x56 3x3 48 1 56x56 

 
Decoder  
Block 2 

- Bi-Upsam 56x56 - - - 112x112 
- Concat 112x112 - - - 112x112 
- Conv  112x112 3x3 32 1 112x112 
- Conv 112x112 3x3 32 1 112x112 

 
Decoder  
Block 1 

- Bi-Upsam 112x112 - - - 224x224 
- Concat 224x224 - - - 224x224 
- Conv  224x224 3x3 16 1 224x224 
- Conv 224x224 3x3 16 1 224x224 

  Conv 224x224 1x1 1 1 224x224 
  Sigmoid 224x224 - - - 224x224 
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were prepared by changing the pixels of solar panels to white 
and all other pixels to black as depicted in Fig. 4. For 
training purposes, images were cropped to the size of 
224x224. Fig. 4 displays sample image of size 5000x5000 
and a cropped image of size 224x224 with their 
corresponding masks. 

5.2 Experimental setup and training details 

All models have been implemented in Python using Keras 
with TensorFlow as backend and trained on the Google 
Colab platform with 12 GB Tesla K80 GPU and 13 GB 
RAM. A total of 958 images from the cities of Oxnard and 
Fresno have been used for training purposes. The training 
and validation split value of 0.2 has been used. The Adam 
training algorithm has been used and all the models have 
been trained for 200 epochs, using a commonly used learning 
rate of 1e-4 and 1e-5.  

 5.2.1    Performance metric used 

The performance measuring metrics of Dice similarity 
coefficient, precision and recall have been used in this work. 
Training time, number of parameters used and number of 
floating-point computations required have been used for 
training speed, light weightedness, and computational 
efficiency comparison purposes. The performance metrics 
are briefly summarized below: 

i. Precision  

It is the measure of correctness and is defined as 
number of true positives (TP) to the total number of 
true positives and false positives (FP). 

Precision = TP / TP + FP 

ii.  Recall 
It is the measure of completeness and is calculated 
as the number of true positives divided by the total 
number of true positives and false negatives. 

Recall = TP / TP + FN 
 

iii. Dice similarity coefficient (DSC) 
Also known as f1 score and is the most commonly 
used performance measure for segmentation. This 
metric is used to quantify how similar the ground 
truth annotated segmentation matches with the 
predicted segmentation of the model. Given two set 
of pixels X (predicted) and G (ground truth) the 
DSC can be defined as: 

DSC =       

The value of dice similarity coefficient ranges from 
0 to 1. Value close to 1 means more overlap and 
similarity between the between the two regions, 
hence more accurate predicted segmentation from 
the model and value of 0 means no overlap and no 
similarity between two regions. 

iv. Gigaflops  
Flops stands for floating-point operations per 
seconds and is usually calculated in Giga units for a 
model. GFlops are used to determine the 
computational requirements of a model. Less 
number of GFlops means less operations and less 
computation requirements of the model. 
 

5.2.2    Dice Loss Layer 

The reason behind the use of dice loss function is its ability 
to deal with unbalanced datasets where background pixels 
are far more than the foreground pixel like solar panels. 
Dice loss function does not need to reweight the foreground 
pixels. Dice loss (DL) is defined as: 

DL =       

 
5.3    Performance Comparison 

The experimental results of the proposed architecture are 
compared with those obtained from the various state-of-the-
art DL segmentation architectures.  

5.3.1    Comparison with State-of-the-art DL Segmentation       
Models 

The proposed model has been compared with the state-of-
the-art DL models using recall, precision, dice similarity 
coefficient (DSC), loss, number of parameters and training 
time and GFLOPS. The results have been categorized 
according to the different classes of the metrics as under. The 
encoders for all models are same in all comparisons as 
mentioned in Table 2. 

5.4 Empirical Comparison 

This section gives empirical comparison of the proposed 
model with various models pointed out above. 

5.4.1 Comparison based on precision and recall scores 

The comparison of models using precision and recall is 
shown in Table 2. As can be seen from the Table 2, the 
proposed model produces the best precision measure value. 
The best recall value is produced by authors’ previous 
models. High precision means less false positive rate but a 
tradeoff between precision and recall is necessary for a 
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model to minimize both the false positives and false 
negatives. Increasing the training time of the proposed model 
can improve its recall score. 

5.4.2   Comparison based on Segmention metrics 
 
Dice similarity coefficient (DSC) and dice loss have been 
used for measuring the segmentation accuracy. A DSC score 
close to 1 means more overlap of ground truth and predicted 
segmentation maps and hence better segmentation accuracy. 
Lower values for dice means higher values for DSC. The 
comparison is shown in Table 3. The proposed model has 
about 90% of segmentation accuracy, which is much better 
than the state-of-the-art models. 
 
 
 
 

5.4.3   Comparison based on speed 

The time taken to train the proposed model and its 
comparison with other models is shown in Table 4. The 
proposed model takes 0.91 hours for its training which is 
much better improvement over the previous models proposed 
by authors and the state-of-the-art models. This feature of the 
proposed model makes them suitable for small devices that 
offer low computational power.  

5.4.4 Comparison based on number of model parameters and 
number of floating-point operations   

A model is a light weight model if the number of model 
parameters and number of floating-point operations 
(GFLOPS) required are less. This metrics gives the light 
weight measure of a model. The comparison of light weight 
measure of the proposed model and various other models is 
shown in Table 5. The proposed model uses 5.53 million 
parameters and requires 4.74 GFLOPS which is a better than 
the authors previous models and state-of-the-art models. The 
proposed model has less values for this metrics which makes 

Table 3. Comparison on the basis of Segmentation 
metrics. 

Model DSC Dice 
Loss 

Unet 0.8780 0.1277 

Segnet 0.7698 0.2301 

DilatedNet 0.6698 0.3399 

PspNet 0.6555 0.3477 

DeepLab v3+ 0.7420 0.2607 

Dilated Resnet 0.6608 0.3421 
O

ur
 o

th
er

 Im
pl

em
en

ta
tio

ns
 Unet-Vggnet-BN 0.9284 0.0757 

Unet-Vggnet-
DWS 0.9132 0.11 

Unet_Resnet 0.9184 0.0868 

Fully Unet-
Resnet 0.9192 0.0825 

Proposed Unet- Mobilenet 0.9094 0.1 

 

Table 2. Comparison on the basis of classification metrics 

Model Encoder Recall Precision 

Unet Vggnet 16 0.8695 0.8773 

Segnet Vggnet 16 0.816 0.8252 

DilatedNet Vggnet 16 0.6427 0.6813 

PspNet Resnet 50 0.7002 0.6113 

DeepLab v3+ Resnet 50 0.7536 0.7319 

Dilated Resnet Resnet 18 0.6615 0.6557 

O
ur

 o
th

er
 Im

pl
em

en
ta

tio
ns

 

Unet-Vggnet-
BN 

Vggnet 16 
(with batch 

normalization) 
0.9266 0.9227 

Unet-Vggnet-
DWS 

Vggnet 16 
(with DWS 

convolution) 
0.9115 0.9045 

Unet_Resnet Resnet Blocks 0.9078 0.9198 

Fully Unet-
Resnet Resnet Blocks 0.8994 0.9421 

Proposed Unet- 
Mobilenet 

Encoder 
(Mobilenet) 0.8498 0.9595 
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it ideal for smaller devices with limited computational 
power. The file size of model parameters of Unet-Mobilenet 
is 64 MB which is much smaller than the file size of state-of-
the-art models which is hundreds of megabytes. 

5.4.5   Comparison based on predicted segmentation maps  

A comparison of predicted segmentation maps obtained by 
the proposed model with those of authors’ earlier models and 
state-of-the-art models is given in Fig 5. As can be seen from 
Fig. 5, the proposed model gives correct predictions with fine 
and crisp boundaries with less false positives and false 
negatives. This is mainly due to the reason that the proposed 
model uses full encoder decoder structure and transfers 
features using skip connections at all scales.  

5.5   Comparison with the Existing Deep Learning Models 

Used for Solar Panel Detection 

Table 6 provides a comparison of the proposed model with 
those reported by the researchers in the literature on solar 
panel detection. The proposed model has better  precision 
and DSC scores. 

In summary, the proposed Unet-Mobilenet segmentation 
model, which is computationally efficient requiring less 
number of model parameters, has managed to produce good 
segmentation results without significant drop in accuracy. 

6. Conclusion 

This paper presented an efficient deep learning segmentation 
architecture for detection of solar panels. The model was 
tested on satellite images of solar panels mounted on ground, 
buildings and roof tops. The training and testing datasets, and 
ground truth images were prepared by using the DCSA 
dataset. The proposed architecture was based on Unet and 
Mobilenet architectures. The use of depthwise separable 

Table 5. Comparison on the basis of model 
lightweightedness and Computational efficiency. 

Model Number of 
parameters 

(in 
millions) 

GFlops 

(in giga 
units) 

Unet 43.41 84.9 

Segnet 29.43 68.5 

DilatedNet 23.59 54.3 

PspNet 27.72 45.4 

DeepLab v3+ 41.43 40.2 

Dilated Resnet 11.53 19.8 
O

ur
 o

th
er

 Im
pl

em
en

ta
tio

ns
 

Unet-Vggnet-
BN 25.86 78.1 

Unet-Vggnet-
DWS 3.47 14.8 

Unet_Resnet 30.12 177 

Fully Unet-
Resnet 

31.26 188 

Proposed Unet- 
Mobilenet 

5.53 4.74 

 

Table 4. Comparison on basis of fastness. 

Model Training time (in 
hours) 

Unet 4.7 

Segnet 5.46 

DilatedNet 1.83 

PspNet 7.85 

DeepLab v3+ 6.68 

Dilated Resnet 1 

O
ur

 o
th

er
 Im

pl
em

en
ta

tio
ns

 

Unet-Vggnet-BN 3.5 

Unet-Vggnet-DWS 2.2 

Unet_Resnet 3.33 

Fully Unet-Resnet 8.5 

Proposed Unet- Mobilenet 0.91 

 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
M. Arif Wani and T. Mujtaba, Vol.11, No.1, March, 2021 

 41 

convolutions made the proposed model efficient in terms of 
training time, number of model parameters, and floating-
point operations required while maintaining good 
segmentation accuracy. The proposed model produced 
accurate segmentation maps with accurate shapes and fine 
boundaries and had less false positives and false negatives. 
These features make the proposed model suitable for devices 

with limited computational power and for real time 
applications. Future work can include improving the 
architecture of the model for improving the results further. 

 

 

 

      

      

      

Table 6. Comparison with Models used in the literature. 

Study Model Used Dataset used Recall Precision DSC 

Yaun et al [24] FCN 
Satellite images of Boston [24] 0.840 0.812 n.r* 

Satellite images of San Francisco [24] 0.873 0.855 n.r* 

Malof et al [25] n.r 
DCSA  dataset [11] 0.77 0.76 0.76 

Satellite images of Connecticut [25] 0.83 0.88 0.85 

Castello et al [21] Unet Satellite images of Switzerland [21] n.r* n.r* 0.8 

  Proposed Model Unet-Mobilenet DCSA  dataset [11] 0.8498 0.9595 0.9094 
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Fig. 5.  The first row consists of RGB images from the test dataset, the second row consists of the corresponding masks for RGB images. 

Each row after that shows the solar panel shapes detected by different models in the following sequence: Unet, Segnet, Dilatednet, Pspnet, 

Deeplab v3+, Dilated Resnet, Unet-Vggnet-BN, Unet-Vggnet-DWS, Unet-Resnet, Fully Unet-Resnet, and Unet-Mobilenet. 
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