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Abstract — Hybrid energy storage system has essential priority in Electric Vehicle applications. Therefore, the design of an 

appropriate power sharing algorithm among energy storage components is necessary to improve battery thermal performance 

and provide extra extension of battery lifetime cycles. This paper presents an analytical study on the effect of using wavelet 

decomposition-based power sharing algorithm to force the high frequency component to be fed by the supercapacitor and 

accordingly reduces the thermal stress on the battery. The proposed approach was investigated by applying it on electric vehicle 

model in ADVISOR Tool/MATLAB using different driving profiles such as Urban Dynamometer Driving Schedule profile, 

Highway Fuel Economy Test, New York City Cycle, Los Angeles 1992 and new European driving cycle. The results declare that 

by using proposed power sharing algorithm, the working temperature of lithium battery decreases significantly while battery 

lifetime cycles increase, apparently. For urban dynamometer driving schedule, the operating temperature of lithium battery is 

improved much at maximum decomposition levels reaching to only 25.6 °C compared to 35 °C. In addition, the battery lifetime 

cycles increased from 2213 to 2585 cycles. Neural Networks pattern recognition tool is also applied to classify the driving cycle 

to the nearest reference cycles chosen to represent the different driving conditions which help to detect the appropriate wavelet 

decomposition level, achieving better battery thermal performance and battery lifetime cycles.  

 

Keywords: Battery lifetime cycles, Battery thermal performance, Electric Vehicle, Hybrid Energy Storage System, Lithium 

Battery, Wavelet Transform. 

 

1. Introduction  

By 2050, the number of cars and trucks worldwide has 

been expected to exceed 2.5 billion. All these amounts of 

vehicles will consume massive fuels. Therefore, alternative 

fuels, particularly for urban transportation, are the most 

pressing demands of our time [1]. Electric traction sector is 

one of the most growing sectors all over the world as a vital 

service to reduce transport sector energy and emissions [2], 

[3].  

Batteries, which are part of energy storage system for 

electric vehicles (EVs), are exposed to harmful, sudden, and 

high discharging currents because of transient demand 

power in acceleration and deceleration [4], [5]. In addition, 

they are exposed to abrupt high charging currents during 

regenerative braking (RB) which increase the thermal stress 

on batteries and affect their battery lifetime cycles [5], [6]. 

Accordingly, it becomes an essential target to overcome the 

problem of aging and degradation of batteries because of 

transient demand of power at sudden acceleration and 

deceleration beside the acquisition of RB power. One of the 

most practical solutions to overcome the transient demand 

of power for EV is to apply hybrid energy storage system 

(HESS) approaches. In general, several HESSs in vehicular 

applications have been studied in the past few decades, such 

as Battery-Supercapacitor (SC), Battery-Superconducting 

Magnetic Energy Storage, Fuel Cells-SC and Fuel Cells 

-Battery-SC combination.  

Because of the significant benefits of SC as high-power 

density, less maintenance, large number of operation cycles 

and less sensitive to temperature variation [6], HESSs of 

battery-SC have been implemented in several reported 

studies. In fact, the effectiveness of using SCs in HESS was 

justified experimentally for urban commercial vehicles on 

standard driving cycles in [7]. The achieved results have 

shown that SCs can improve the expected battery lifespan 

with maximum effectiveness up to 52% for driving patterns 

without negative road slopes.  

In [8], HESSs of battery-SC were used with four different 

semi-active topologies, while SC size was optimized by 

dynamic programming (DP) approach. HESS sizing 

optimization and complete analysis for battery-SC HESS 

mailto:eng.karim_fayez@yahoo.com
mailto:mohamed.shafei@eng.cu.edu.eg
mailto:eng.karim_fayez@yahoo.com
https://orcid.org/orcid-search/search?searchQuery=0000-0003-3309-4675
https://orcid.org/orcid-search/search?searchQuery=0000-0003-0362-1841
https://orcid.org/0000-0003-0177-5089


INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH  
Karim Mostafa Fayez., Vol. XX, No. XX 

 1168 

using DP approach to minimize vehicle lifetime costs was 

also presented in [9]. It refers to the main factor affects the 

EV cost is battery degradation whose impact index reaches to 

89% of HESS costs among eight sensitive factors: driving 

cycle, driving range, HESS topology, bus voltage, DC/DC 

conversion efficiency, battery price, SC price and DC/DC 

converter price.  

Actually, the configuration of HESS calls the need to 

develop effective power sharing algorithm (PSA) to 

determine the amount of energy to be fed by different 

components of HESS.  The most common approaches applied 

for power sharing of HESSs are: look-up tables [10], 

rule-based approaches [11], fuzzy logic techniques [12], 

optimization approaches [5],filtration-based techniques rely 

on Fourier as in [13] and wavelet transform (WT) which was 

also applied in [14], [15] and [16]. 

For HESS comprises two different battery technologies, a 

PSA based on look-up table approach is used in [10] to 

distribute the power delivered by each battery depending on 

its state of charge (SOC). The strategy allocates the power 

between sodium-ion and lithium-ion by specifying power 

allocation factors determined based on different SOC of 

batteries. Despite such a strategy providing a good allocation 

in different operation modes, but it does not take into 

consideration the aging effect of batteries in case of extreme 

variations in power demand. The major disadvantage is that 

RB is limited to be absorbed under specific SOC. However, 

if SC is used, it can absorb RB whatever the SOC of SC is, 

and until reaching 100% SOC. Determining the appropriate 

discharging current from SC using an advanced rule-based 

PSA was proposed in [11] to recover the energy available 

from the RB by dividing the driving modes to three 

strategies: acceleration, constant speed and braking strategy. 

Input signals of the algorithm are SOC of batteries, SOC of 

SC, vehicle speed and acceleration, while the output signal is 

DC-DC converter reference. The disadvantage of such PSA 

is that it does not release enough energy from SC to free 

capacity of SC to absorb energy from RB. Also, it does not 

take the factor of speed transient variation in the constraints 

to avoid battery degradation. 

A fuzzy-based PSA was implemented in [12]. A fuzzy 

management system has been realized whenever the battery 

SOC is too low and in order to improve vehicle's autonomy, 

limit the power supplied by the battery pack and allow only 

degraded dynamic performance in terms of velocity and 

acceleration. However, this is considered a drawback, as it 

limits the performance of EV when a high torque is needed.  

In [5], an optimization framework is used to compute the 

discharge current of the HESS; but the driving cycle profile 

is not detected accurately. Simulation results have shown it 

can stabilize the battery current in EV. However, its main 

disadvantage is that it gives priority to minimize battery 

current and increases its stability resulting in an SC 

overstressed and consequently, SC provides all the load 

power in some periods decreasing SOC to very low levels.  

The fast Fourier transform (FFT)-based PSA was also 

applied in [13], where the frequency spectrum of the power 

demand was obtained, and based on a cut off frequency, the 

battery supplies the low frequency components of the power 

profile, whereas the SC will handle the higher frequency 

components. The drawback of that approach is that the cut 

off frequency of the filter is not updated with the change of 

the driving cycle.  

A wavelet-based PSA was suggested in [14] for the urban 

dynamometer driving cycle. The battery feeds a smooth 

power profile along with reduced power levels, while the SC 

serves to meet the dynamic power transients but the main 

drawback is that the power delivered by battery still not 

regular and has a noticeable steep variation which causes 

degradation in battery lifetime cycles (BLTC). The Discrete 

Wavelet Transform (DWT) as a time-frequency filter is also 

incorporated with nonlinear auto-regressive neural network 

time series prediction model to develop a real time PSA for 

battery-SC hybrid vehicles in [15]. However, this approach 

does not reach to optimum regular discharging current of 

battery which can reflect significantly on BLTC and battery 

thermal performance (BTP). Implementing a PSA based on 

combining WT, neural network (NN) and fuzzy logic was 

also proposed in [16]. In which, the dataset obtained from 

WT was used to offline train a NN to predict the low 

frequency power demand for the battery while the high 

frequency component is online calculated and fed by the SC 

and finally the fuzzy logic-based controller was developed to 

keep the SC voltage within suitable range. 

Despite of the huge previous works which propose 

different PSAs, most of them have focused on enhancing the 

SOC of the battery and to reduce the variation of battery 

discharging current to a fewer amount, however the battery 

discharging current can be smoothed more and get better 

effects not only on SOC but also on BLTC and BTP.  

In this paper, HESS of lithium-ion battery and SC is 

applied to optimize BTP and enhance BLTC. The principal 

contribution is to develop a PSA to manage power sharing 

between battery and SC in EV using WT with different 

decomposition levels of power demand signal to reach the 

optimum BTP with extended BLTC. This work aims to 

stabilize the battery current to a regular discharging current, 

in which, the low frequency component of the power demand 

was attributed to the battery while the high frequency 

component was attributed to the SC. Besides, the driving 

cycle is classified by pattern recognition NN technique to 

identify the nearest driving behavior to help in detecting the 

appropriate power sharing. The algorithm was evaluated by 

using modified simulation model from ADVISOR toolbox 

under different drive cycles: Urban Dynamometer Driving 

Schedule (UDDS) profile, Highway Fuel Economy Test 

(HWFET), New York City Cycle (NYCC), Los Angeles 

1992 (LA92) and new European driving profile (ECE). 

2. System Description and Modelling 

As mentioned before, the proposed HESS incorporates 

the lithium battery with SC. The block diagram of the 

studied system is shown in Fig. 1. In the following 

subsections, the configuration design of HESS was fully 

described in addition to the mathematical models of HESS 

components to be used in simulation and validation of the 

proposed power sharing algorithm (PPSA).  
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Fig. 1. System block diagram. 

 

2.1. Configuration design of HESS 

The configuration design of the HESS affects the 

performance and efficiency of the HESS, so it should be 

selected according to the objectives and priorities specified 

by the designer. Three forms of HESS can be considered 

based on the schemes reported in the literature: passive, 

fully active, and semi-active configurations [6]. 

➢ In passive configuration, the battery and SC are 

connected in parallel to the DC bus without using any 

converters. This configuration has the lowest cost but 

the SC performance is not optimum. It also, does not 

include any control algorithm. 

➢ In fully active configuration, the size, cost and 

efficiency are compromised. It is controlled by using 

two bidirectional DC/DC converters and an 

additional control circuit. 

➢ The semi-active HESS comprises only one 

bidirectional DC/DC converter and grants a good 

solution which compromises both system 

performance and cost. 
 

The semi-active HESS was applied in this paper work 

with only one converter so its cost is cheaper than fully 

active configuration, besides the converter provides better 

performance to control the power flow than the passive 

configuration [17]. For this configuration, the battery is 

directly connected to the DC bus and the SC is connected 

to the bidirectional converter so the SC acquires RB 

power. 

2.2. Modelling of Battery 

Open-circuit voltage model of the batteries was utilized 

in this paper, which includes the controlled dc voltage 

source 𝐸𝑏𝑎𝑡 in series with the internal resistor 𝑅𝑏𝑎𝑡 . The 

model that represents the dynamics of the battery over the 

driving cycle as in ADVISOR model is mathematically 

shown in eqns. (1)-(3) [18]. 

Battery SOC minimum and maximum values are 

chosen to be 20, 80 % to keep up battery lifetime [19], 

where battery initial SOC is selected to be at 100%. 

Because of the limited representation of battery SOC 

modeling in ADVISOR toolbox, the effect of battery aging 

on the value of State of Health (𝑆𝑂𝐻𝑏𝑎𝑡) and also the 

effect of battery state of charge (𝑆𝑂𝐶𝑏𝑎𝑡) on 𝑆𝑂𝐻𝑏𝑎𝑡 is 

added to the model as, at the sample number 𝑖, as revealed 

in eqns. (4)-(5) [20], [19]. 
 

𝑉𝑏𝑎𝑡 = 𝐸𝑏𝑎𝑡 − 𝐼𝑏𝑎𝑡 × 𝑅𝑏𝑎𝑡  (1) 

𝑃𝑏𝑎𝑡 = 𝑉𝑏𝑎𝑡 × 𝐼𝑏𝑎𝑡 (2) 

𝐼𝑏𝑎𝑡 =
𝐸𝑏𝑎𝑡 − √(𝐸𝑏𝑎𝑡

2 − 4𝑅𝑏𝑎𝑡 ×  𝑃𝑏𝑎𝑡)

2𝑅𝑏𝑎𝑡
 (3) 

𝑆𝑂𝐶𝑏𝑎𝑡(𝑖) = 𝑆𝑂𝐶𝑏𝑎𝑡(𝑖 − 1)

−
𝐼𝑏𝑎𝑡(𝑖)

3600 ×  𝑆𝑂𝐻𝑏𝑎𝑡(𝑖) × 𝐶𝑏𝑎𝑡
 (4) 

𝑆𝑂𝐻𝑏𝑎𝑡(𝑖) = 𝑆𝑂𝐻𝑏𝑎𝑡(𝑖 − 1)
− 𝑍𝑐𝑦 × [𝑆𝑂𝐶𝑏𝑎𝑡(𝑖) − 𝑆𝑂𝐶𝑏𝑎𝑡(𝑖 − 1)] (5) 

Where 𝑉𝑏𝑎𝑡 is the battery output voltage, 𝐸𝑏𝑎𝑡 is the 

battery dc voltage source, 𝐼𝑏𝑎𝑡  is the charging or 

discharging current of the battery,  𝑅𝑏𝑎𝑡  is the battery 

internal resistance, 𝑃𝑏𝑎𝑡 is the power output or input to 

the battery, 𝑆𝑂𝐶𝑏𝑎𝑡 is battery state of charge, 𝑆𝑂𝐻𝑏𝑎𝑡 is 

battery State of Health, 𝐶𝑏𝑎𝑡 is the rated capacity of the 

battery and 𝑍𝑐𝑦 describes the cycling ageing rate of the 

battery. 

2.3. Modeling of battery lifetime cycles (BLTC) 

In paper work, we focus on the effect of steep variation 

of discharging currents of battery under operating 

temperature, the aging, and degradation of BLTC. The 

battery model in ADVISOR does not include BLTC, thus 

the BLTC was modeled and added.  

As discussed in [21], BLTC depends on the operating 

temperature of cell (T), depth of discharge (DOD), 

discharging and charging current rates. The evolution of 

cycle number is a function of operating temperature and 

can be designated by a polynomial relationship of 3rd 

order as in eqn. (6).  

𝐶𝐿(T) = 𝑎 ×  𝑇3 − 𝑏 × 𝑇2 + 𝑐 ×  𝑇 + 𝑑 (6) 

Where 𝐶𝐿  denotes battery lifetime cycles while 𝑇 

defines the operating temperature in ºC. Such empirical 
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equation can be derived using the least-square fitting 

method, and the coefficients 𝑎, 𝑏, 𝑐 and 𝑑 were derived 

as described in [21] from experimental results. 

2.4. Modeling of the supercapacitor (SC) 

By using a similar equivalent circuit described for 

modeling the battery, the SC can be modeled using the 

following eqns. (7)-(9) [18]: 

 

𝐼𝑆𝐶 =
𝑉𝑆𝐶 − √(𝑉𝑆𝐶

2 − 4𝑅𝑆𝐶 ×  𝑃𝑆𝐶)

2𝑅𝑆𝐶
 

(7) 

𝑉𝑆𝐶(𝑖 + 1) = 𝑉𝑆𝐶(𝑖) − 𝐼𝑆𝐶 ×
∆𝑡

𝐶𝑆𝐶
 (8) 

𝑆𝑂𝐶𝑆𝐶(𝑖) =
(𝑄𝑟𝑎𝑡𝑒𝑑  − ∑ 𝐼𝑆𝐶(𝑖))𝑖

𝑖=1

𝑄𝑟𝑎𝑡𝑒𝑑
 (9) 

Where  𝐼𝑆𝐶  is the charging or discharging current of 

the SC, 𝑅𝑆𝐶  is its internal resistance, 𝑃𝑆𝐶  is the power 

output or input of the SC. While, 𝑉𝑆𝐶(𝑖) is the controlled 

dc voltage source, 𝐶𝑆𝐶  is the capacity of the SC, ∆𝑡 is 

time interval, 𝑆𝑂𝐶𝑆𝐶  is the SOC of SC, 𝑄𝑟𝑎𝑡𝑒𝑑  is the 

rated charge of SC in Coulombs which equals the product 

of the rated voltage and its capacitance. 

The minimum and maximum values SC SOC are 

chosen to be 5%, 100 % to avoid voltage drop on DC-DC 

converter [19]. 

2.5. DC Bus Voltage and DC-DC Converter Constraints  

The DC bus voltage 𝑉𝐷𝐶  is achieved related to the 

voltage of one battery 𝑉𝑏𝑎𝑡 through the number of series 

batteries as shown in eqn. (10). The duty cycle of the 

DC-DC converter 𝐷(𝑖) is calculated by applying eqn. (11) 

[19]. 
 

𝑉𝐷𝐶 = 𝑉𝑏𝑎𝑡 ×  𝑁𝑆𝐵 (10) 

𝐷(𝑖) =
𝑉𝑏𝑎𝑡 × 𝑁𝑆𝐵

𝑉𝑆𝑐 ×  𝑁𝑆𝑆𝐶
. 𝛾(𝑖) +

𝑉𝑆𝑐 ×  𝑁𝑆𝑆𝐶

𝑉𝑏𝑎𝑡 ×  𝑁𝑆𝐵
 . [1 − 𝛾(𝑖)] (11) 

 

Where 𝑁𝑆𝐵  and 𝑁𝑆𝑆𝐶 describe the number of series 

batteries, and series SC units respectively. The binary 

variables 𝛾(𝑖) take the value of 1 in case of motoring and 

zero value in case of regenerating. 

3. Proposed power sharing algorithm (PPSA) 

As discussed before, the paper introduces a scheme to 

manage power sharing between battery and SC in EV 

using WT with different decomposition levels of power 

demand signal. The proposed strategy includes two parts, 

one is achieved offline while and the other is a real-time.   

➢ In the first part, the datasets of selected drive cycles 

are used to train the NN offline.  

➢ In the second part, the trained neural network model 

combined with a wavelet controller is implemented in 

a real-time system. The NN recognizes the input 

drive cycle by checking its data at specific interval 

(set by the designer in terms of time or distance), and 

then the proper number of decomposition levels is 

detected based on such drive cycle profile. 

Consequently, the wavelet based PPSA is applied to 

determine the battery power while the remaining 

demand power is fed by the supercapacitor.  

 

The procedures of PPSA are summarized in Fig. 2 and 

then described in details in next subsections. 
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Fig. 2: Schematic diagram to implement the overall 

proposed scheme 

3.1. Selecting optimum mother wavelet 

As known, DWT is an effective technique to transform 

signals from time domain and decompose them in 

time-frequency domain without hiding the details of the 

signals that are usually hidden in the frequency domain. 

The first step is to choose the best mother wavelet, so 

number of factors is considered according to the 

application. For EV application, it is appropriate to choose 

the Haar mother wavelet, described in Fig. 3, because [22]: 

➢ It has the smallest filter length in time domain with 

simple mathematical formulation, which is very 

interesting for PSA in EV for real-time algorithm, 

where rapid mathematical implementation is needed. 

➢ For the approximation signal, the values are constant 

at fixed intervals of time (related to the 

decomposition level), which is optimum for slow 

response source such as the battery in our case. 

3.2. Determining optimum number of decomposition levels 

In several reported works in literature, it is found that 

the number of decomposition levels was selected in an 

arbitrary procedure according to the required details, 
which desired to be extracted from the signal. For 

example, it is found that the number of levels was selected 

to be three, as in [23], four in [24], or five decomposition 

levels in [19].  
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Fig. 3: Haar mother wavelet 

On the other hand, in this paper, as the low frequency 

component of the power demand is related to the battery 

while the high frequency component is related to the SC, 

the number of decomposition levels is chosen based on the 

maximum allowable wavelet decomposition levels (𝑁𝑚𝑎𝑥) 

depending on the number of samples 𝑁𝑖 according to the 

drive cycle profile. Such value of the maximum allowable 

wavelet decomposition levels is calculated using eqn. (12) 

[25], (e.g., UDDS profile has 𝑁𝑖=1370 samples, and thus 

𝑁𝑚𝑎𝑥  will be 10). 

 

𝑁𝑚𝑎𝑥 = log2 𝑁𝑖 (12) 
 

Therefore, PPSA based on DWT is implemented to 

here to decompose the demand power signal (𝑃𝐷) of EV 

for any driving cycle profile using developed MATLAB 

M-file, where decomposition and reconstruction process 

are done at 𝑁𝑚𝑎𝑥  decomposition levels. Therefore, the 

approximation decomposed signal is assigned to the 

battery and the summation of all detailed decomposed 

signals, which contains the high frequency components, is 

assigned to the SC. The following eqns. (13)-(15) describe 

that: 
 

𝑃𝐷 = 𝑃𝑏𝑎𝑡 + 𝑃𝑆𝐶  (13) 
𝑃𝑏𝑎𝑡 = 𝑎𝑵𝒎𝒂𝒙

 (14) 

𝑃𝑆𝐶 = 𝑑1+𝑑2+𝑑3 … … … … . 𝑑𝑵𝒎𝒂𝒙
 (15) 

 

Where 𝑃𝑏𝑎𝑡 describes the delivered power by battery, 

𝑃𝑆𝐶  is the power delivered by SC, 𝑎𝑁𝑚𝑎𝑥
 is the 

approximation signal at level 𝑁𝑚𝑎𝑥   and 𝑑𝑁𝑚𝑎𝑥
 denotes 

the detail signal at same 𝑁𝑚𝑎𝑥  level. 

To ensure that the approximation signal frequency will 

be in the interval of characterization frequency of the 

battery 𝑓𝑐 within range [0, 𝑓𝑐], the decomposition level 

must exceed the minimum limit specified by the following 

eqn. (16) [22]: 
 

𝑁𝑚𝑖𝑛 = ⌊
log

𝑓𝑠
𝑓𝑐

log 2
− 1⌋           (16) 

Where 𝑓𝑐  is the battery characterization frequency 

that can be calculated from eqn. (17) based on the specific 

power (𝜌𝑝 in W/kg) and the specific energy (𝜌𝑒 in J/kg) 

of the battery [26], while  𝑓𝑠  describes the sampling 

frequency. 
 

𝑓𝑐 =
𝜌𝑝

𝜌𝑒
          (17) 

For Li-Ion batteries, 𝜌𝑒 ranges 30-300 Wh/kg, and 

𝜌𝑝  ranges 8-2000 W/kg [27]. In paper work, the 

implemented Li-Ion battery is SAFT 6 Ah LI-Ion Cells 

which has 𝜌𝑒 of 64 Wh/kg and 𝜌𝑝 of 1500 W/kg [28]. 

Accordingly, 𝑓𝑐= 0.0065 Hz.  

The power demand in paper work is discretized with 

sampling time 𝑇𝑠  of 1 second. Consequently, as the 

sampling frequency  𝑓𝑠  is 1 Hz, thus the estimated 

numerical value of 𝑁𝑚𝑖𝑛 equal 6.265, therefore 𝑁𝑚𝑖𝑛 is 

approximated to the integer number of 6 levels. 

3.3. Driving cycles pattern recognition using neural 

networks (NNs) 

Neural networks (NNs) techniques are properly used 

for identification, classification and pattern recognition in 

different applications such as roadway type detection and 

traffic congestion prediction [29]. 

In this paper, for more accurate specifying the 

appropriate maximum decomposition level depending on 

the driving cycle profile, NN is developed, trained and 

tested by datasets of different drive cycle profiles. A 

two-layer feed-forward network, with sigmoid activation 

function for neurons work, can recognize the correct 

driving cycle, given that adequate neurons are 

implemented in its hidden layer. The training used for this 

network was scaled conjugate gradient back propagation. 

Accordingly, Table 1 shows a list of three driving 

cycles used for training the NN in this study, which are 

Urban Dynamometer Driving Schedule (UDDS), Highway 

Fuel Economy Test (HWFET), and new European driving 

cycle (ECE). Three different driving cycles as shown in 

Table 2, are also used for testing the network: SC03 

Supplemental Federal Test Procedure (SC03), US06 

Supplemental Federal Test Procedure (US06), Extra Urban 

Driving Cycle (EUDC) [30], [31]. It is worth mentioning 

that these driving cycles were chosen to form a diverse 

group of conditions. Some were highway driving cycles, 

some were urban driving cycles, and some belong to 

modal cycles (there are parts in these cycles where the 

speed is constant).  

Using MATLAB neural pattern recognition tool, the 

input matrix used to train the NN has 3 rows, containing 

the six statistical parameters for the cycle values 

mentioned in Table 1. The desired output matrix called the 

target matrix was 3×3 matrix. The first row has a ‘1 0 0’ 

for UDDS driving cycle, ‘0 1 0’ for HWFET driving cycle 

and ‘0 0 1’ for ECE driving cycle. 

The network is generated with performance cross 

entropy (CE) value equals 3.61e-07 and 0 percent error (% 

E) which means good classification with no 

misclassification error. After training the NN with inputs 

and targets shown in Table 1, the NN was tested with the 

same inputs to check whether it could produce the targets. 

Then the network is tested with three inputs matrices 

representing the cycles mentioned in Table 2. The results 

are summarized in Table 3. According to results, both 

SC03 cycle and US06 cycle are classified to be near 

UDDS cycle. On the other hand, the EDUC cycle is 

classified to be near ECE cycle. 
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Table 1: Training-driving cycles 

Parameter 
Cycle 

UDDS HWFET ECE 

Max. Speed km/h 91.25 96.4 50 

Avg. Speed km/h 31.51 77.58 18.26 

Max. Acc. m/sec2 1.48 1.43 1.06 

Max. Deacc. m/sec2 -1.48 -1.48 -0.83 

Avg. Acc. m/sec2 0.5 0.19 0.64 

Avg. Deacc. m/sec2 -0.58 -0.22 -0.75 
 

Table 2: Test driving cycles 

Parameter 
Cycle 

SC03 US06 EUDC 

Max. Speed km/h 88.19 129.23 120 

Avg. Speed km/h 34.51 77.2 62.44 

Max. Acc. m/sec2 2.28 3.76 0.83 

Max. Deacc. m/sec2 -2.73 -3.08 -1.39 

Avg. Acc. m/sec2 0.5 0.67 0.38 

Avg. Deacc. m/sec2 -0.6 -0.73 -0.93 
 

Table 3: Neural networks classification results 

Training 

UDDS cycle UDDS HWFET ECE 

CE 3.33E-07 4.89 4.78 

%E 0 100 100 

HWFET cycle UDDS HWFET ECE 

CE 4.53 5.14E-07 5 

%E 100 0 100 

ECE cycle UDDS HWFET ECE 

CE 4.87 5.05 2.35E-07 

%E 100 100 0 

 

Test 

SC03 cycle UDDS HWFET ECE 

CE 3.37E-06 3.83 5.6 

%E 0 100 100 

US06 cycle UDDS HWFET ECE 

CE 4.85E-06 3.71 5.64 

%E 0 100 100 

EUDC cycle UDDS HWFET ECE 

CE 4.61 1.08 1.31E-02 

%E 100 100 0 

 

4. Analysis of simulation results and discussion 

To validate the PPSA performance, system simulation 

was established according to the power demand of the 

hypothetical small car EV (VEH_SMCAR-EV) using 

ADVISOR software libraries MATLAB/Simulink based 

simulation program. 

The main parameters of VEH_SMCAR-EV, batteries 

and SC are shown in Table 4, which are taken from the data 

files on ADVISOR tool  depending on the achieved testing 

at National Renewable Energy Laboratory (NREL). 

 
 

Table 4: Main parameters of VEH_SMCAR-EV 

EV total mass 866 kg 

Motor 32 kW (PMSM) 

Batteries 

Saft Lithium-Ion battery 

3.2 V, 6 Ah cells, 

25 modules in series 

SC 

Maxwell PC2500 SC 

2.5 V, 2500 F, 

32 modules in series  

with 6 modules in parallel 

500000 duty cycles 

10-year life capability 
 

The series number of batteries modules is determined 

depending on the DC bus voltage, which is ranged from 200 

to 600 volts [32] according to system specifications, as the 

battery is connected directly to the bus. While the parallel 

modules number is assumed one as it is desirable according 

to the distance range requested by the designer. The series 

and parallel number of supercapacitor modules are chosen 

according to [19], where the size of SC is optimized to 

minimize cost, weight, and volume and maximize the 

battery life cycle. 

4.1. Evaluating battery & SC discharge current profile 

When the battery is only used as energy storage power 

source, the discharge current consumed to meet the power 

demand for UDDS profile will have steep variations with 

high transients because of the variation in speeds at 

acceleration and braking as shown in Fig. 4.  
 

 

Fig. 4: Battery discharging current for UDDS profile when 

using battery only 

When using the SC as a secondary power source, and 

applying the PPSA based on DWT to meet the high 

frequency components of the power demand, the battery 

discharge performance is evaluated. Decomposition and 

reconstruction process are done at different decomposition 

levels, starting from three levels to 𝑁𝑚𝑎𝑥  of ten levels for 

UDDS profile to validate the effectiveness of using the 

maximum decomposition level and its effect on BLTC and 

BTP. In fact, the limitation for 𝑁𝑚𝑖𝑛 levels will also be 

investigated by applying lower levels of decomposition as 

used in literature (three & five levels as examples) to check 

the effects on BTP & BLTC. The battery discharge current 
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for UDDS profile is shown in Fig. 5 for different wavelet 

decomposition levels: 3, 5, 6 (𝑁𝑚𝑖𝑛) & 10 (𝑁𝑚𝑎𝑥).  

It is clear from Fig. 5-d that for 𝑁𝑚𝑎𝑥  at ten levels, the 

current is constant which is considered the perfect 

performance for the battery from the point of view of the 

thermal operating temperature and BLTC as will be shown 

in the next section. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5: Battery discharging current for UDDS profile when 

using battery-SC HESS at different decomposition levels 

(a) At 3 levels wavelet decomposition, (b) At 5 levels 

wavelet decomposition, (c) At 6 levels wavelet 

decomposition, (d) At 10 levels wavelet decomposition 

 

Discharging currents for the SC at same decomposition 

levels for UDDS profile are also illustrated in Fig. 6. 

Because of the fast time response of the SC and its 

flexibility to send/receive power at a fast rate, it is deduced 

that SC is convenient to feed this amount of power to EV. 
 

  
(a) 

 
(b) 

 

(c) 

 

(d) 
Fig. 6: SC discharging currents for UDDS profile when 

using battery-SC HESS at different decomposition levels 

(a) At 3 levels wavelet decomposition, (b) At 5 levels 

wavelet decomposition, (c) At 6 levels wavelet 

decomposition, (d) At 10 levels wavelet decomposition 
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4.2. Evaluating battery thermal performance (BTP) 

Depending on the geographic regions and climatic 

zones, the operation range of EV is possible between -30 °C 

and 60 °C [33], [34], while the best temperature range of 

ambient temperature for Li-ion batteries is between 25 °C 

and 40 °C. Table 5 describes the influence of temperature 

on the working principle of Li-ion batteries [33]. 

The operating temperature and the heat generated from 

the battery were expressed as follows in eqn. (18): 

𝑞 = 𝐼𝑏𝑎𝑡
2 × 𝑅𝑏𝑎𝑡 − 𝐼𝑏𝑎𝑡 × 𝑇 ×

𝑑𝐸

𝑑𝑇
 (18) 

Where 𝑞  is the heat generated, 𝑅𝑏𝑎𝑡  is the total 

resistance of the battery, 𝐼𝑏𝑎𝑡 is the discharging/charging 

current, 𝐼𝑏𝑎𝑡
2 × 𝑅𝑏𝑎𝑡  is the joule heat caused by internal 

resistance of Li-ion battery and the polarization heat caused 

by the loss of mass transfer, 𝐼𝑏𝑎𝑡 × 𝑇 ×
𝒅𝑬

𝒅𝑻
 is the reaction 

heat on anode and cathode (thermal entropy change) [34]. 

For UDDS drive cycle profile, Fig. 7.a illustrates the 

battery thermal performance when using the battery only 

compared with HESS of battery/SC and applying PPSA. As 

shown, the battery suffers from highest operating 

temperature when the battery is only used as a storage 

system; it reaches to about 35 °C for one cycle of UDDS 

with 1370 seconds. On contrary, it only reaches to about 

25.6 °C when the battery is combined with SC and applying 

the PPSA with 10 decompositions levels. 

The same procedure is repeated for different profiles:  

➢ HWFET with 𝑁𝑚𝑎𝑥  of 9 levels,  

➢ NYCC with 𝑁𝑚𝑎𝑥  of 9 levels,  

➢ LA92 with 𝑁𝑚𝑎𝑥  of 10 levels and 

➢ ECE with 𝑁𝑚𝑎𝑥of 7 levels. 

The results are illustrated in Fig. 7.b, c, d and e respectively, 

where the best BTP is achieved for all cycle profiles at the 

corresponding 𝑁𝑚𝑎𝑥 . 
 

 
(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 7: BTP for different profiles when using only battery 

compared to HESS and applying PPSA at different wavelet 

decomposition levels 

(a) For UDDS profile, (b) For HWFET profile, (c) For 

NYCC profile, (d) For LA92 profile (e) For ECE profile 

 

Table 5: Temperature influence on batteries [33] 

Low  

temperature  

(< 0 °C) 

- Capacity drop 

- Internal resistance increase 

High 

temperature  

(> 40 °C) 

- Internal resistance decreases 

- Accelerated aging phenomena 

- Higher self-discharge 

- Decomposition of electrolyte 

- Thermal runaway, safety considerations 

- Reduced BLTC 

4.3. Evaluating battery lifetime cycles (BLTC)  

As discussed before, ADVISOR tool battery block does 

not have any mathematical model for BLTC representation 

so a mathematical model was added to the simulation to 

validate the PPSA. The data of BLTC was used for 

Lithium-ion battery but with different positive electrodes 
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(Lithium cobalt oxide instead of Lithium iron phosphate 

oxide); this replacement was done because of the lack of 

data for BLTC model for Lithium cobalt oxide, and 

according to [35], it will not affect the accuracy of results 

referring to battery aging. 

Extension increment in BLTC is investigated at 

different wavelet decomposition levels for UDDS profile to 

show the superiority of using the maximum decomposition 

level allowed. The simulations are also carried out for 

different driving profiles to assure the validity of using the 

developed algorithm.  

As discussed before in eqn. (6), the coefficients 𝑎, 𝑏, 𝑐 

and 𝑑 are derived from the experimental results in [21]: 𝑎 

= 0.0039, 𝑏 = 1.95, 𝑐  = 67.51, 𝑑 = 2070. By applying 

such values, BLTC is compared when using the battery 

only compared with using the HESS of battery-SC and 

applying PPSA for different drive cycles as revealed in Fig. 

8. 

For example, for UDDS drive cycle profile (Fig. 8.a), 

the battery 𝐶𝐿(T)  reaches about 2213 cycles while it 

increases significantly to about 2585 cycles with about 372 

cycles rise for HESS of battery-SC and applying PPSA at 

𝑁𝑚𝑎𝑥  decomposition levels. 

Figures 8.b, c, d and e have also ensured best 𝐶𝐿(T) 

during different profiles of HWFET, NYCC, LA92 and 

ECE respectively. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 8: BLTC when using only battery compared to HESS 

and applying PPSA at different decomposition levels 

(a) For UDDS profile, (b) For HWFET profile, (c) For 

NYCC profile, (d) For LA92 profile (e) For ECE profile 

4.4. Evaluating SOC for battery and SC 

The SOC of lithium battery is also investigated for 

UDDS profile for the two cases: when only using the 

battery and when using the HESS of battery/SC and 

applying PPSA at 𝑁𝑚𝑎𝑥  decomposition levels as illustrated 

in Fig. 9. It is clear that applying HESS via PPSA extends 

the range of battery capacity. 

Moreover, for UDDS drive cycle, the SOC of SC is 

compared when applying PPSA at three levels & 𝑁𝑚𝑎𝑥  

wavelet decomposition levels. As shown in Fig. 10, when 

applying 𝑁𝑚𝑎𝑥  of 10 levels, the SOC of SC decreases 

considerably to about 0.7 because of feeding the transient 

power and recovered to about 0.88 due to RB power 

harvesting. On the other hand, when applying three levels 

of decomposition, the SOC of SC is enhanced to 0.98 with 

slight variations. 

It is supposed that at 𝑁𝑚𝑎𝑥 , the SC is loaded more than 

at three levels decomposition. This is because of feeding 
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more high frequency transients’ components of the power 

demand but SC is still kept at normal loading as SC is not 

overstressed and the SOC is within acceptable range. 

 

 
Fig. 9: Battery SOC for UDDS profile when using only 

battery compared to HESS and applying PPSA at 𝑁𝑚𝑎𝑥  

decomposition levels 

 

Fig. 10: SC SOC for UDDS profile when applying 

PPSA at three & 𝑵𝒎𝒂𝒙 wavelet decomposition levels 

4.5. Results discussion for optimum selection of 

decomposition levels  

The verification of using the maximum number of 

decomposition levels as the optimum selection for both 

BTP & BLTC of the battery is summarized in this section. 

A detailed comparison is carried out to investigate the effect 

of the frequency band for the wavelet approximation signal 

fed to the battery on BTP, BLTC, battery SOC and SC SOC 

for UDDS drive cycle. All decomposition levels from three 

to ten are investigated; the wavelet approximation 

frequency ranges (a3, a4, a5, a6, a7, a8, a9 and a10) are 

compared against the characterization frequency of the 

implemented Li-Ion battery of 0.0065 Hz as shown in Fig. 

11. Table 6 summarizes the accomplished results. As 

shown, the wider frequency range of the approximation out 

of the characterization frequency range, the worse values of 

BTP, BLTC, battery SOC and SC SOC are achieved. 

For different drive cycle profiles, Table 7 summarizes 

the achieved results for applying PPSA a 𝑁𝑚𝑎𝑥  

decomposition levels compared to using 𝑁𝑚𝑖𝑛. As shown, 

both BTP & BLTC have improved in all profiles and 

especially in UDDS, LA92 profiles which are characterized 

by great variations with frequent stops. In fact, BTP has 

improved in such profiles by 4% and 8.76% when using 

𝑁𝑚𝑎𝑥  instead of 𝑁𝑚𝑖𝑛 , while BLTC has enhanced 

significantly by 13.28% and 12.38% when applying UDDS 

and LA92 respectively.  

 

 

Fig. 11: Frequency ranges of wavelet approximation for 

decomposition levels from three to ten 

 

Table 6: Comparative results for different decomposition 

levels and applying PPSA for UDDS drive cycle 

No. of 

decomposition 

levels 

Parameter 

BTP BLTC Battery SOC SC SOC 

3 35 2213 0.9635 0.983 

4 34.5 2240 0.9642 0.98 

5 31 2405 0.9656 0.954 

𝑁𝑚𝑖𝑛= 6 29 2484 0.9658 0.94 

7 27.4 2537 0.9659 0.864 

8 26.7 2557 0.9659 0.799 

9 26.4 2565 0.9664 0.833 

𝑁𝑚𝑎𝑥  = 10 25.6 2585 0.968 0.887 

 

Table 7: Comparative results for different drive cycle 

profiles and applying PPSA with 𝑁𝑚𝑎𝑥  decomposition 

levels compared to 𝑁𝑚𝑖𝑛   

Parameter 
Drive cycle profile 

UDDS HWFET NYCC LA92 ECE 

𝑵𝒎𝒂𝒙 10 9 9 10 7 

𝑵𝒎𝒊𝒏 6 6 6 6 6 

BTP at 

𝑵𝒎𝒂𝒙 (°C) 
25.6 37.7 21 31.5 20.2 

BTP at 

𝑵𝒎𝒊𝒏 (°C) 
29 39.2 21.23 35.4 20.4 

BLTC at 

𝑵𝒎𝒂𝒙(cycles) 
2585 2053 2663 2383 2670 

BLTC at 

𝑵𝒎𝒊𝒏(cycles) 
2484 1957 2661 2191 2663 
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5. Conclusion 

A proposed power-sharing algorithm (PPSA), using 

DWT to decompose the EV power demand signal at 

maximum number of decomposition levels, was 

implemented. NN is also developed to recognize the driving 

cycle profile to use the appropriate power sharing to 

achieve the best BTP and BLTC for the driving behavior 

and to get the best performance for the battery integrated in 

HESS with SC. 

The simulation model of the HESS in the 

VEH_SMCAR-EV based on ADVISOR is established to 

validate the PPSA for the power-balancing strategy of 

power distribution. Different driving profiles (UDDS, 

HWFET, NYCC, LA92 & ECE) are applied to validate the 

effectiveness of applying maximum decomposition levels 

and study the effect on BTP and BLTC. The proposed 

algorithm proves its efficiency in decreasing the battery 

temperature, by controlling the power sharing between 

battery and SC with respect to the drive cycle profile. For 

UDDS, the operating temperature of lithium battery is 

improved much at 𝑁𝑚𝑎𝑥  decomposition levels reaching to 

only 25.6 °C compared to 29 °C at 𝑁𝑚𝑖𝑛 decomposition 

levels. In addition, BLTC is increased from 2484 to 2585 

cycles by raising the decomposition levels from 𝑁𝑚𝑖𝑛 of 

six levels to 𝑁𝑚𝑎𝑥  of ten levels. Enhanced battery 

performance is also attained for other drive cycle profiles 

(HWFET, NYCC, LA92 & ECE) in both BTP and BLTC; it 

ensures the suitability of the PSSA to be applied in all drive 

cycle profiles. 

Finally, through paper work, the following features are 

accomplished and highlighted: 

➢ The aging effect of the battery at steep variations is 

modeled. 

➢ The effect of speed transient variation is taken into 

consideration to avoid battery degradation by 

assigning the low frequency component of power 

demand to be fed from the battery. 

➢ The dynamic performance of EV is not limited in case 

of sudden high velocity and acceleration as SC is 

feeding the high frequency components of power 

demand. 

➢ The PPSA free sufficient capacity of SC to absorb RB 

power efficiently without the limitation of specific 

SOC and thus SC is not overstressed and SOC of SC is 

retrieved in suitable range. 

 

Experimental test with real time hardware platform 

could be implemented in further research work to reveal the 

achieved results for such proposed PSA. Also, an additional 

supervisory controller could be further developed for 

controlling the supercapacitor voltage within a certain 

suitable range. 
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