
INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
A. Hamdy et al., Vol.11, No.3, September, 2021 

Development of Optimal PI Controllers of an 
Inverter–Based Decentralized Energy Generation 

System Based on Equilibrium Optimization 
Algorithm 

 

Amany Hamdy *‡ , Hany M. Hasanien ** , A.Y Abdelaziz ***  

 

* Department of Electrical Power & Machines, Faculty of Engineering, Ain Shams University, Cairo, Egypt 

** Department of Electrical Power & Machines, Faculty of Engineering, Ain Shams University, Cairo, Egypt 

*** Department of Electrical Power & Machines, Faculty of Engineering, Ain Shams University, Cairo, Egypt  

(dr.amanyhamdy13@gmail.com, hanymhasanien@gmail.com, almoatazabdelaziz@hotmail.com) 

 

‡ Corresponding Author; Amany Hamdy, Department of Electrical Power & Machines, Faculty of Engineering, Ain Shams 
University, Cairo, Egypt  

Email: dr.amanyhamdy13@gmail.com 

Received: 22.07.2021 Accepted:30.08.2021 
 

Abstract- The microgrid model gained considerable interest in the electricity industry due to increased financial and 
environmental benefits. The microgrid views decentralized generation (DG) and associated loads as a subsystem. The controlling 
methodology is the voltage source converter (VSC) cascaded-type converters technique, which depends on the Proportional-
Integral (PI) controller. In this paper, the optimal tuning of the PI controller parameters is formulated as a constrained 
optimization problem for the system under different conditions (i) The system is converted from on-grid to off-grid mode at 
Time = 2 s.  (ii) The system is subjected to three lines to earth fault in an off-grid mode. (iii) The system is subjected to load 
variation in an off-grid mode. The equilibrium optimization algorithm (EO) is physics-based optimization to tune the gains of 
the PI controller. The proposed approach (EO) has been compared with results from other approaches such as Genetic Algorithm 
(GA) which is inspired by a natural evolution process, Salp Swarm Algorithm (SSA) which is inspired by the swarming 
behaviour of salp in oceans. Simulations are conducted using MATLAB/Simulink software. The EO performs perfectly and has 
a fine ability to tune controller gains with smaller errors than other approaches. 

 Keywords Decentralized energy generation (DEG), equilibrium optimization algorithm (EO), Fitness function, Genetic 
Algorithms (GA), Salp Swarm Algorithm (SSA). 

 

1. Introduction 

The importance of energy lies in the transmission and 
distribution of electricity through overhead and underground 
cables at various voltage levels [1]. Networks must have 
meshed to make sure stable customer supply, even if 
individual pathways fail. But it's necessary to deal with the 
challenges of loss of energy on long tracks, which results in 
consumer suffering and affects the quality of the service.  

Microgrids are one solution to this situation in the energy 
transition and their benefits include energy reliability, 
accessibility to energy, independence through renewable 
generation, and optimization of energy costs [2]. At this point, 
it is hard to predict the future of microgrids, but it seems likely 
that we are heading into a period where microgrids will be the 
rule and not the exception. The major equipment of microgrid 
which significant challenge that could help overcome the 
energy problems of the 21st century is a decentralized 
generation (DG). It is defined by his location for energy 
production closer to the energy consumption site [3]. The goal 
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of decentralized energy systems is to minimize inefficiencies 
in transmission and distribution and associated economic and 
environmental costs [4].  

Over the past two decades, the voltage source converter 
(VSC) has become the dominant structure for effectively 
controlled three-phase applications. The increasing usage of 
VSCs in variable-speed electric drive systems has aided this 
evolution. Due to the Pulse Width Modulated (PWM) 
function, VSCs working as active converters have low current 
distortion and reduced harmonic filter requirements, as well as 
the ability to regulate power factor and DC-link voltage [5]-
[8]. 

A control strategy is based on the output voltage and 
frequency regulation to control the real and reactive power 
delivered from a DG to a local load [9]-[11]. The control 
strategy implements on DG unit controlled by PI controller 
[12]. This topology of the DG unit is constructed by supplying 
a two-level converter from a DC source, which is called a 
cascaded converter. The PI controller is preferred due to its 
simplicity and reliability as well as good performance [13].  

Engineering design optimization appears to be very 
difficult, partly due to the complexity and extremely 
nonlinearity of the topic of interest. Optimization algorithms 
can be divided into many ways. One of them, there are two 
major categories according to their characteristics: (i) 
Deterministic, (ii) Stochastic [14], [15]. In another one, there 
are three categories of existing optimization methods: (i) the 
most well-known Meta-heuristics, (ii) recently developed 
algorithm, (iii) high-performance optimizers [16]. 

Optimization is everywhere with a wide variety of 
applications, is also an essential paradigm itself. We are 
always trying to optimize everything in almost all engineering 
and business applications, whether to minimize cost and 
energy usage or increase energy consumption, benefit, 
production, productivity, and success [17]. Resources, time, 
and money are often limited; optimization in practice is 
therefore much more important. It takes a qualitative change 
in scientific thought to maximize available resources since 
most real-world applications have much more complex 
variables and parameters to control how the system behaves. 

Meta-heuristic algorithms are now among the most 
commonly used for optimization. They have many advantages 
over traditional ones [18]. It gains knowledge about the 
structure of optimization by using information obtained from 
the candidate solutions assessed in the past. This knowledge 
is used to build new candidate solutions that are likely to be of 
better quality. Meta-heuristics are generally classified into 
four types of inspiration: (a) evolutionary algorithms, (b) 
swarm intelligence, and (c) physics-based, and (d) human-
based methods.  

Several research papers have already been published in 
the literature that focused on detecting islanding issues in 
distribution systems using various methodologies and 
perspectives. E.C. Pedrino et al. presented Multi-gene Genetic 
Programming (MGP) for detecting DG islanding [19]. The 
islanding was accurately recognized and categorized by the 
MGP using their technique, which included the use of 
mathematics and logic capacities. The author demonstrated 

computational intelligence solutions for DG islanding 
detection. A. Rostami et al. [20], [21] proposed an islanding 
detection approach for synchronous DG. The concept was to 
run both the rate of change of exciter voltage (RCEV) and the 
open-close circuit breaker (OCCB) at the same time at a DG 
association point. The RCEV parameter was insufficient to 
effectively and precisely distinguish an islanding mode, so the 
author used the OCCB system. The process was practicable 
because the system only uses the CB at the DG and does not 
require any additional hardware, according to their 
methodology. 

The Equilibrium Optimizer algorithm is used in this 
research to present a cascaded voltage source converter 
control for three-phase inverters in a microgrid. The proposed 
method initially formulates the three DGs in a microgrid as a 
standard constrained optimization problem, with decision 
variables consist of twelve parameters of decoupled PI 
controllers. The following are the significant contributions of 
this work: (1) the cascaded voltage source converter control 
method is applied first to the system under study. (2) The 
superiority of the proposed method EO is demonstrated and 
compared to GA and SSA by the simulation results for a 
system. (3) The system is tested under various operation 
conditions are a) It is required to convert to the islanding 
within two seconds after islanding with the equipment 
connected to it, b) The system is subjected to three lines to 
earth fault in an off-grid mode, c) the system is exposed to 
variant load in an off-grid mode. The sensitivity analysis of 
these methods is simulated in MATLAB for different 
operation conditions.The paper is structured as follows: In 
Section 2, the system is modeled. In section 3, the control 
methodology is detailed. In Section 4, the case study using 
EO, GA, SSA algorithms, and objective function are 
discussed. In Section 5, the simulation results and the 
comparative evaluation stage between EO, GA, and SSA 
techniques are demonstrated. Finally, the conclusions are 
stated. 

2. Model Formulation  

The system contains three DGs, each one is represented 
by a DC voltage source, a PWM, and a series filter. Three DGs 
are connected via a two-level converter to a utility grid. The 
three DGs and the grid are associated with the point of 
common coupling (PCC) to feed a local load. A delta-star 
step-up transformer is a principal link between the three DG 
and the grid. A three-phase parallel RLC network models the 
local load. For most off-grid detection methods, a Parallel 
RLC is a complex load class when the inductance and 
capacitance of load are set on the frequency system and the 
three DGs deliver their total power as shown Fig. 1.  

When the three DGs and the local load separate from the 
grid, a disturbance may occur if the three DGs haven't a robust 
control strategy. The off-grid connected activity must be 
monitored and, therefore, voltage and frequency controlled to 
achieve continuous off-grid operation.  
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Fig.1 Schematic of the 3DG’s microgrid. 

 

Data of the three DGs, the Grid, and the rated load values 
that have been used in this analysis are listed in Table 1. The 
system works in both modes when it is connected on-grid or 
off-grid. The conversion of power between the three DGs and 
the grid is easily achieved by the (dq) frame current control. 
The on-grid and the potential off-grid will share real and 
reactive electricity. The system operates in a stable power 
condition when its values are zero. 

Table 1. Parameter values of DEGs  

Base Value 
Sbase = 1.6MVA Vbase,low = 0.6kV Vbase,high = 13.8kV 

DER Rating 
DER1 = 1.6MVA DER2 = 1.2MVA DER3 = 0.8MVA 

Transformer 
0.6/13.8 ∆/Yg XT = 8% 

Load Parameters 
Load1 Load2 Load3 

pf= 0.96 Lagging pf= 0.90 Lagging pf= 0.94 Lagging 

R1=350Ω = 2.94 P.U R2=375Ω = 3.15 P.U R3=400Ω = 3.36 P.U 

XL1=41.8Ω=0.35P.U XL2=37.7Ω=0.32P.U XL3=45.2Ω= 0.38P.U 

XC1=44.2Ω=0.37P.U XC2=40.8Ω = 0.34P.U XC3=48.2Ω=0.417P.U 

RL1=2Ω=0.02P.U RL2=2Ω=0.02P.U RL3=2Ω=0.02P.U 

Line Parameters 

R     =         0.35Ω      =      0.0029P.U               Segment 1    =    5km 

X     =         0.31Ω      =      0.0026P.U               Segment 2    =  10km 
Filter Parameters (based on DER1 Rating)  

Xf  = 15%                                      Quality Factor = 50 
Grid Parameters 

Xg  = 2.3Ω  =  0.024PU                             Rg   =      2Ω   =  0.021 
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3. Control Methodology  

The voltage source converter (VSC) cascaded-type 
converters technique uses the control loop for each of the three 
DEGs in the microgrid [22]. For on-grid connected mode, the 
purpose is to integrate the distributed generations(DGs) of 
low-voltage continuous current (DC) into the medium-voltage 
system [23],[24]. Since the converter does not dictate the grid 
voltage, this is achieved by controlling the current supplied by 
the converter to the grid. The control system required an 
accurate phase value for the grid voltage's fundamental 
component. The frequency and currents in the direct and 
quadrature axes (Id, Iq) are generated by a phase-locked loop 
(PLL) with the grid voltage as an input. Voltage angle δ and 
magnitude |V| of each DG. The output real power Pi and 
reactive power Qi of i-th module are derived as follows: 

Pi = � |Vi ||Vҝ |(Giҝ cos δiҝ +  Biҝ sin δiҝ) 𝑁𝑁
𝑘𝑘=1     (1) 

 
Qi = � |Vi ||Vҝ|(Giҝ sin δiҝ +  Biҝ cos δiҝ) 𝑁𝑁

𝑘𝑘=1    (2) 

     Otherwise, for the off-grid connected mode, the aim is to 
control the terminal voltages of direct and quadrature axis 
components (Vd, Vq). The output voltage is specified at the 
grid level as in [25], which defines Vrms to be within ±5% of 
the nominal voltage.  

The control structure commonly used to achieve these is 
the two-loop control [26], [27], with an inner current and outer 
voltage loop as shown Fig 2.  

 
Fig.2 The cascaded voltage source converter mechanism for 
off-grid modes. 

An internal oscillator is used to control the frequency of 
the system in an inner loop controller [28],[29]. The internal 
oscillator frequency is set at the nominal frequency of the 
system ω0. So as the frequency of voltage and current signals 
within the off-grid connected is predetermined in ω0. PWM 
the generator produces a triangular signal with constant value 
and compared to the reference voltages.  

4. Case Study  
This paper explores three optimization algorithms applied 

to the modeled system, which is simulated using 
MATLAB/Simulink software. The optimization algorithms 
include a recently developed optimization algorithm [30], 
called Equilibrium Optimizer (EO); GA as the most well-
studied algorithm; and a swarm intelligence optimizer of SSA. 
The concept of the proposed System, how Transfer from on-
grid connected to off-grid after constant time. In this task the 
PI parameters required for optimal microgrid operation to be 
utilized for each technique. The parameters for each algorithm 
are listed in Table 2. 

Table 2. Parameter setting for algorithms   
 Parameter  Value 

EO 

a₁,a₂ 2,1 
Generation 0.5 

Type Real coded 

Selection Roulette wheel 
(Proportionate) 

Maximum iteration 50 
Number of search agents 24 

GA 

Crossover Whole Arithmetic 
Mutation Probability=0.8,α=[-0.5,1.5] 

Max_iteration 50 
Population size 20 

SSA 
Leader position update probability 0.5 

Maximum iteration 50 
Number of search agents 30 

4.1. Proposed techniques  

4.1.1 Genetic algorithms (GA) 

It’s inspired by the process of a natural evolution of 
generation improved to produce better solutions [31]. The 
technique chooses individuals as parents from the current 

population randomly and uses them to create children for the 
next generation. The population achieves an optimal solution 
over evolutionary generations as "good" parents generate 
"good” children. The "bad" points of the generation are 
eliminated. In general, the three major genetic factors, 
crossover, mutation, and selection of the fittest. 
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 Selection: is a competitive process that determines 
the use of fitness chromosomes as parents. Then these 
chromosomes will be used to produce new chromosomes as 
offspring. 

 Crossover: acts as a binary operator, in general, new 
individuals are generated as the offspring of two parents. 
Inside within each parent's chromosome, one or more so-
called crossover points (usually at random) are selected. The 
parts denoted by the crossover points between the parents are 
then overlapped. The individuals who generated are the 
offspring. There are several crossover styles beyond one point 
and multiple point crossovers. 

 Mutation: By making modifications to one chosen 
individual, a new individual is created. That can be consist of 
modifying one or more values or adding/deleting parts of the 
representation. The mutation is a source of variability in GA, 
and the rate of very large mutations leads to less efficient 
development, except for the case of simple problems 
particularly [32].  

The GA's illustrative flowchart Implementation of 
algorithms is presented in Fig. 3. [33]. 

 
Fig.3 Flow chart of the general GA algorithm. 

4.1.2 Salp swarm algorithm (SSA) 

The algorithm of the Salp Swarm (SSA) has been 
proposed by Mirjalili et al as a population optimization 
technique. Salpes belong to the Salpidae family and have a 
translucent body in the form of barrels. Their shape and 
movement are very similar to jellyfish, where water is pumped 
into the body to move forward. The biological studies of these 
creatures are still in their early stages due to their very 
difficulty to access living environments and their difficulty in 
keeping them in laboratory environments. Their swarming 
behavior is one of the most interesting. In deep waters, salpes 
frequently form a swarm known as the salp chain. The 
standard model of salp chains is proposed [34], [35] to solve 
various problems with the optimization process. 

Mathematically, the salp chains are divided randomly into two 
groups of population: The first salp in Series is called leader, 
which is either explicit or implicit. The remaining salps are 
considered followers [36]. 

The SSA illustrative flowchart Implementation of 
algorithms is presented in Fig. 4. 

 
Fig. 4. Flow chart of the general SSA algorithm. 

The SSA algorithm mechanism: [37] 
 It saves and assigns the best solution to the food 

source variable, therefore, they are never lost even if the 
population is fully degraded. 

 It only updates the leading salp position for the food 
source, which the best solution is found until now. So the 
leader always seeks to discover and taking advantage of the 
space around the best solution. 

 It updates the follower slaps position for each other, 
so they follow gradually the leader salp. 

 It cannot stagnate easily in local optima as a result of 
the progressive movement of followers slaps. 
     The SSA algorithm can effectively improve initial random 
solutions and converge to the optimal. It only has one 
parameter that gradually decreases to make the perfect 
equilibrium between diversification and intensification. The 
dynamic motions of salps improve the SSA's search 
capabilities to mitigate local optima and convergence defects. 

4.1.3 Equilibrium optimizer (EO) 

The equilibrium optimizer (EO) is the mass balance 
model of control volume used to about dynamic and 
equilibrium states [38], [39]. The EO algorithm has the 
advantage of being able to adjust the solution at random due 
to high exploration and exploitation. The particles and 
positions represent search agents. The search agents change 
their concentration at random concerning best-so-far 
solutions, which are called equilibrium candidates. That loop 
has repeated until it reaches the equilibrium state (optimal 
result).  
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The EO algorithm mechanism [40]: 
 Initialization: EO  generates initial candidates 

Cinitial random: 

      For  𝑖𝑖 = 1:𝑛𝑛𝑝𝑝 

              𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑚𝑚𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟(𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚 − 𝐶𝐶𝑚𝑚𝑖𝑖𝑖𝑖)     

𝐶𝐶𝑚𝑚𝑖𝑖𝑖𝑖&𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚: minimum & maximum values of concentration. 

𝑛𝑛𝑝𝑝 : The number of particles. 

rand: Number randomly created in range (0, 1). 

 Assign a large number to the fitness of equilibrium 
candidates and let a₁ = 2; a₂ = 1; GP = 0.5. In all meta-heuristic 
algorithms, the fitness function is considered a key step. For 
solving tuning PI controller using EO, it must be provided 
with a function to evaluate the solution given by each particle 
in the group. 

 Equilibrium Pool and Candidates CEq: there are five 
candidates for equilibrium. The first four are the best-so-far 
particles found during the process of optimization, which 
improved exploration capability. The fifth is the arithmetic 
mean of the first four, which focuses on exploitation. 

     𝐶𝐶𝑒𝑒𝑒𝑒,𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 = [𝐶𝐶1,𝑒𝑒𝑒𝑒 ,𝐶𝐶2,𝑒𝑒𝑒𝑒 ,𝐶𝐶3,𝑒𝑒𝑒𝑒 ,𝐶𝐶4,𝑒𝑒𝑒𝑒 ,𝐶𝐶𝑖𝑖𝑎𝑎𝑒𝑒,𝑒𝑒𝑒𝑒]               (4) 

 The exponential term F is the fundamental 
concentration update rule in EO. The term F can be calculated 
using the formula  

         𝐹𝐹 = 𝑒𝑒−ҝ(𝑖𝑖−𝑖𝑖0)                                                          (5) 

        𝑡𝑡 = (1 − 𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖
𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

)(𝑖𝑖₂× 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

)                                   (6) 

𝑡𝑡0 =  1
ҝ

ln�−𝑟𝑟1𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 − 0.5) × (1 − 𝑒𝑒−ҝ𝑖𝑖)� + 𝑡𝑡   (7) 

ҝ  : The turnover rate. 
𝑡𝑡 : selects appropriate values to control the rate of 
convergence 
𝑡𝑡0 : The initial time 
𝑟𝑟2 : Constant value controls the exploitation feature. 
𝑟𝑟1 : Constant value that controls exploration feature. 
𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟, 𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚  : The current number of iterations and the 
maximum number of iterations. 
𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 − 0.5) : assisting with the direction control of 
the search. 

Three terms provide the rules for updating the particle as 
shown Fig.5:  

Fig. 5. Schematic of basic rules for updating the particle. 
 

The EO illustrative flowchart Implementation of 
algorithms is presented in Fig. 6. 

 
Fig. 6. Flow chart of the general EO algorithm [41]. 

4.2. Computational Complexity analysis  

The computational complexity [42] of an optimization 
algorithm is expressed in the form of a function relating the 
algorithm's running time to the input size of the problem. For 
this purpose, Big-O notation is a typical word used for this 
purpose. To obtain a final shape, complexity is dependent on 
various parameters. Table 3 lists the parameters for each 
algorithm.

 

 

 

 

 

 

 

 

 

(3) 
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Table 3. Parameters & Complexity Function 
 Complexity parameter Complexity Function 

EO 
n: number of particles. 

𝑂𝑂(𝐸𝐸𝑂𝑂) = 𝑂𝑂(1 + 𝑛𝑛𝑟𝑟 + 𝑡𝑡𝑡𝑡𝑛𝑛 + 𝑡𝑡𝑛𝑛 + 𝑡𝑡𝑛𝑛𝑟𝑟) ≅ 𝑂𝑂(𝑡𝑡𝑛𝑛𝑟𝑟 + 𝑡𝑡𝑡𝑡𝑛𝑛) d: number of dimensions. 
t: number of iterations.  

𝑡𝑡: cost of function evaluation. 

GA 

n: number of Population. 

𝑂𝑂(𝐺𝐺𝐺𝐺) = 𝑂𝑂(𝑡𝑡(𝑡𝑡 + 𝑚𝑚)𝑟𝑟 + 𝑡𝑡𝑡𝑡𝑛𝑛) = 𝑂𝑂(𝑡𝑡𝑛𝑛𝑟𝑟 + 𝑡𝑡𝑡𝑡𝑛𝑛) 
d: number of dimensions. 

t: number of iterations. 
𝑡𝑡: number of offsprings. 

m: number of mutated populations. 

SSA 
n: number of solutions. 

𝑂𝑂(SS𝐺𝐺) = O(t(d∗n + C∗n)) d: number of dimensions. 
t: number of iterations. 

𝑡𝑡: cost of objective function. 
 

Analyses show the increased complexity of the algorithms 
provides some advantages over the regular PI controller. 
Gains in performance are reducing as the delay capacity 
becomes slightly smaller than the process's time constant. 

5. Simulation Result  

5.1. Simulation study for PI controller of cascaded Voltage 
source converter  

The system is modeled in the MATLAB /SIMULINK, in 
which the case study is divided to (i) the conversion from the 
on-grid connected to off-grid connected occurred at Time = 2 
s.  (ii) The system is subjected to three lines to earth fault in 
an off-grid mode. (iii)The system is subjected to load variation 
in an off-grid connected. EO, SSA, and GA are executed in 
the m‒file which is interconnected to the SIMULINK model 
for simulation and obtaining the results to be utilized in 
computing the optimal PI controller parameter. The tuned PI 
parameters were tabulated in Table 4.  

Table 4. Adjusted gain values of PI controller  

  PI No. EO 
kp            ki 

GA 
kp            ki 

SSA 
kp            ki 

DG1 

On-grid / off-grid 

1 

0.96 0.101 1.04 0.092 1.1682 0.1004 

 (LLL-G) fault 0 .8 0.076 1.1 0.045 3.78 0.089 

Load variation 0.978 0.097 0.978 0.097 0.978 0.097 

On-grid / off-grid 

2 

0.118 1.06 0.118 1.18 0.1199 1.1671 

 (LLL-G) fault 0.13 1.1 0.1 1 0.44 0.082 

Load variation 0.097 0.978 0.097 0.978 0.097 0.978 

On-grid / off-grid 

3 

0.5933 14.066 0.5667 14.0667 0.4455 16.1316 

 (LLL-G) fault 0.876 12 0.5321 16.32 0.2376 18.453 

Load variation 0.489 14.89 0.489 14.89 0.489 14.89 

On-grid / off-grid 

4 

34.0667 0.5667 35.1333 0.5133 34.3133 0.3627 

 (LLL-G) fault 32 0.783 21.114 0.341 23.023 0.546 

Load variation 34.897 0.489 34.897 0.489 34.897 0.489 

 On-grid / off-grid  0.0433 4.0667 0.0433 4.3333 0.0596 5.5269 

  (LLL-G) fault 5 0.0768 2.45 0.04 5.421 0.0542 5 

 Load variation  0.0489 4.89 0.0489 4.89 0.0489 4.89 

 On-grid / off-grid  0.114 1.32 0.118 1.88 0.108 1.4052 

  (LLL-G) fault 6 0.34 0.22 0.1 1 0.1 1.657 

DG2 Load variation  0.097 1.961 0.097 1.961 0.097 1.961 
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 On-grid / off-grid  0.7 26.4662 0.62 24.0667 0.6847 26.1949 

  (LLL-G) fault 7 0.55 7 0.84 21.436 0.75 29.21 

 Load variation  0.789 24.897 0.789 24.897 0.789 24.897 

 On-grid / off-grid  34.0667 0.0163 36.2 0.0163 35.3478 0.0123 

  (LLL-G) fault 8 33 0.023 33.432 0.03 38 0.008 

 Load variation  34.897 0.0977 34.897 0.0977 34.897 0.0977 

DG3 

On-grid / off-grid  0.4333 0.0993 0.4333 0.0993 0.4184 0.0945 

 (LLL-G) fault 9 0.403 0.1435 0.365 0.32 0.165 0.0678 

Load variation  0.489 0.097 0.489 0.097 0.489 0.097 

On-grid / off-grid  0.1087 0.0567 0.1087 0.0567 0.1001 0.0526 

 (LLL-G) fault 10 0.098 0.034 0.11 0.0532 0.34 0.08 

Load variation  0.097 0.0489 0.097 0.0489 0.097 0.0489 

On-grid / off-grid  0.5667 8 0.5667 11.2 0.3276 8.6556 

 (LLL-G) fault 11 0 .7 3.065 0.7423 10 0.341 12.435 

Load variation  0.489 9.61 0.489 9.61 0.489 9.61 

On-grid / off-grid  10.1333 0.094 11.2 0.0927 10.0421 0.1008 

 (LLL-G) fault 12 8.54 0.2 9.6822 0.1 12.5 0.42 

Load variation  9.61 0.097 9.61 0.097 9.61 0.097 

After adjusting the parameters using EO, SSA, and GA 
algorithms, a step change analysis was carried out with the 
help of the simulation environment. For models obtained with 
the designed controller, compare time field specifications with 
the output terminal voltage. 

Figures 7-9. Display the simulated responses of the 
microgrid of various three DGs with different PI controller 
settings. The process response was observed by giving 
simulated results for the output terminal voltage (Vt) via each 
DG. 

Case (1): the transfer from the on-grid connected to off-grid 
connected occurred at time = 2s. 

 
                                          (a) 

 
                                           (b) 

 
                                    (c) 

Fig. 7. Comparative terminal voltage profile (Vt) using 
suggested algorithms: (a) For DG1; (b) For DG2; (c) For DG3 
under case (1).  

Case (2): The system exposes three lines to earth fault in an 
off-grid mode. Fault (LLL-G) occurred at t=4 sec. Fault 
clearance occurred after 0.1 sec. 
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                                          (a) 

 
(b) 

 
                                          (c) 

Fig. 8. Comparative terminal voltage profile (Vt) using 
suggested algorithms: (a) For DG1; (b) For DG2; (c) For DG3 
under case (2).  

Case (3): The system exposes to load variation in an off-grid 
mode. The load resistance changes over the existing value by 
152Ω at t= 5 sec for 0.4sec.  

 
                                       (a) 

 
                                       (b) 

 
                                             (c) 

Fig. 9. Comparative terminal voltage profile (Vt) using 
suggested algorithms: (a) For DG1; (b) For DG2; (c) For DG3 
under case (3).  

 It is observed that from Fig. 7-9. The MPOS and 
MPUS are very low when applying the proposed EO 
algorithm for tuning the PI controller compared to the other 
algorithms. Also, the EO-PI technique possesses a better 
response in the transient period than the SSA & GA 
techniques. 

 It is noted from figure 7 that the voltage varied at the 
specified moment t = 2 seconds, the time of disconnection 
from the main grid.  The voltage had decreased to 0.96 before 
being boosted to 1.09. SSA appears to be descending faster 
than EO, GA. However, EO is rapidly rising and making 
stability better for both SSA and GA. 

 Fig. 8 that the EO algorithm improves the system 
response during the transient period for the microgrid during 
LLLG fault occurrence in the off-grid mode. 

 Fig. 9 We can see that before t = 5s, EO, SSA, and 
GA showed similar performance. But after time t = 5s, GA, 
and SSA have the same shape and are followed by EO. EO 
show significantly better performance compared to GA, SSA.  

5.2. Comparative convergence analysis  

      This study chose the optimal to obtain a brief and effective 
comparison of algorithms. To compare the performance of the 
algorithm in each mode category to optimize the parameters 
of PI controllers. Specifically, if the system has a target to 
minimize MPUS. A designed analytical MATLAB file and 
different fitness functions were tested to assess insight into 
this problem. It can determine and plot the shown in Fig.10, 
and Fig.11. 

 
                                   (a) 
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                                   (b) 

 
                                   (c) 

Fig. 10. Convergence comparison of suggested algorithms for 
the three proposals: (a) On-grid/off-grid; (c) the fault (LLL-
G); (d) Off-grid.  

 

Fig. 11. Processing time of suggested algorithms. 
 

A MATLAB file designed to draw the value of the 
objective function is applied under the influence of algorithms 
considered for adjusted PI controllers. It's worth noting from: 

 Fig. 10(a, b, c) for each of the previous proposals, that 
the suggested EO-optimized the least minimum fitness value 
in considerable computation time, and exhibits better 
convergence mobility than other techniques. 

 Fig. 10 (a) We can see that before iteration 10, EO 
and SSA showed similar performance, followed by GA. But 
after iteration 10, EO show significantly better performance 
compared to GA, SSA. The performance becomes the same 
stability for all methods after iteration 20. 

 Fig. 10 (b) We can see that before iteration 20, EO 
and SSA showed similar performance, followed by GA. But 
after iteration 20, EO, SSA, and GA have the same shape. EO 
show significantly better performance compared to GA, SSA.  

 Fig. 10 (c) We can see that before iteration 20, EO, 
SSA, and GA have the same shape. But after iteration 20, EO 
show significantly better performance compared to GA, SSA. 

 Fig.11 shows that the suggested EO-optimized 
achieve the minimum processing time compared to other 
techniques. 

6. Conclusion 

This paper suggests a new optimized PI controller for 
improving the performance of a microgrid system with three 
DGs. The EO algorithm is effectively used to improve input 
measurement factors, output gains for the proposed PI 
controller. For the same case study, the effectiveness of the 
suggested EO-PI controller was compared with other 
algorithms such as GA and SSA algorithms. In addition, 
various scenarios have been implemented to verify the 
robustness and sensitivity of the proposed algorithms for 
different load variations, fault occurrence, and conversion of 
the system from on-grid connected to off-grid connected. The 
results proved that the proposed EO algorithm is more 
effective than the other algorithms because it provides the best 
fitness function of 0.043 while at GA 0.08 and SSA 0.07. As 
a result, the EO-PI controller outperforms algorithms in 
response time and fitness function in different scenarios. 
Variations in dynamic response specifications due to different 
variant loads (1 to 30%) and other system characteristics were 
also determined to be within an acceptable range, verifying the 
suggested controller's stability and performance robustness. 
For future studies, the proposed controller should be used to 
control different responses in a smart grid with different 
renewable sources and storage batteries. 
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