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Abstract- This work presents a real-time implementation of the maximum power point tracking (MPPT) of the PV system using 
an ANN-BSMC controller. Effectively, this hybrid control consists of double stages, namely: the artificial neural network (ANN) 
and the backstepping-sliding mode control (BSMC). The first one can predict the optimum voltage corresponding to the 
maximum power of the PV module while the second one serves for adjusting the duty cycle of the DC/DC boost converter to 
follow the voltage given. Test-bench components include a 20W PV module, boost converter with a resistive load of 50Ω, current 
sensor (ACS712ELC-05B), input voltage and designed output voltage sensors of 0-25V and 0-35V voltage range respectively, 
temperature and irradiation sensors, as well as NI-DAQ 6321 data collection board required to execute the hybrid control. The 
system stability is proved using Lyapunov functions. The applied approach is compared to the P&O-BSMC in real-time under 
the same weather conditions. The comparison efficiency was performed under two experimental tests. In both results, the ANN-
BSMC shows a high dynamic response in terms of tracking rapidity, oscillation around the MPP, steady-state error, and the PV 
system efficiency. Based on the results, the ANN-BSMC technique could reach the optimum value in about 0.3s while the P&O-
BSMC could reach it until 0.7s. As well as the efficiency of the proposed technique is 93%.   

Keywords Real-time implementation, NI-DAQ 6321 data acquisition board, MPPT, ANN, Backstepping sliding mode control. 

1. Introduction 

Recently, renewable energy is in greater demand because 
fossil fuels are becoming more expensive, and because they 
are more environmentally friendly. Among these renewable 
sources, solar system, known as photovoltaic (PV) system, has 
interested researchers all over the world [1], [2]. This system 
is able to convert solar sun into electricity. However, the 
power generated by this source is varying according to the 
weather conditions. Therefore, a MPPT is mandatory to 
improve its efficiency and reduce its cost. A DC/DC converter 
plays a good role to transfer the PV panel maximum power to 
the load. The MPP operation can be achieved through 
adjusting its duty cycle. Buck, buck-boost, boost converters 
are the most dedicated to track the MPP in some relevant 
researches [3], [4]. However, boost converter shows its 

superiority due to the waveform of input current is non-
pulsating [5].  

A variety of MPPT techniques classified conventional 
and unconventional have been developed and improved. 
Among the conventional ones, there is the perturb and observe 
(P&O) [6], [7] and the incremental conductance methods 
(INC) [8]–[10], that depending on the power-voltage 
characteristic curve, they can obtain maximum power. 
However, these methods suffer from fluctuation around the 
MPP, which leads to power loss and the overall system can 
lose its efficiency. 

Other intelligent techniques can be considered effective 
to track the MPP, namely, Genetic Algorithm (GA) [11], [12], 
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and Particle Swarm Optimization (PSO) [13], [14]. The main 
drawbacks of these techniques is that they take time in 
calculation the MPP and they fail to detect the desired value 
in some cases of the weather conditions changes. Artificial 
neural network (ANN) has been reported in different 
researches [15], [16]. The main advantage of this method is to 
handle real time nonlinear system problems and fast prediction 
time of the desired value. 

Recently researchers have been developed in MPPT 
methods considering hybrid methods that combine the 
previous mentioned algorithms with controllers. In these 
methods, the first loop generates the optimum reference value 
and the second loop adjusts the PV panel voltage/current. The 
main advantage of these methods is the high dynamic, and 
steady state response improvement. For example, linear 
controllers was proposed in [17]. However, the nonlinear 
behavior of the DC/DC converter makes this technique 
susceptible to excessive ripple, steady state inaccuracy when 
there is a broad range of environmental condition variations.  

On the other side, to increase the robustness and stability 
of the system against external disturbances such solar 
irradiation, temperature, and load changes, nonlinear 
controllers have been developed. In [18], a cascaded two-loop 
method is employed, in the external loop the P&O was used 
to generate the suitable PV panel voltage while the sliding 
mode controller (SMC) was proposed to manage the operation 
point of the system in the inner loop. This control combination 
suffered from a chattering phenomenon. In [15], [16] have 
combined the P&O algorithm and the backstepping control 
with integral action. This control could not mitigate the steady 
state error despite the existence of integral action and could 
handle the external disturbances. 

Because the earlier MPPT methods have disadvantages. 
A cascaded intelligent robust method, both in external and 
inner loops, is proposed in this paper. An ANN was proposed 
in the external loop thanks to its aptitude to predict the optimal 
voltage corresponding to the MPP quickly and without any 
oscillations in contrary to the conventional algorithms. The 
inner loop consists of The BSMC, which combines the 
backstepping and sliding mode controllers. This controller 
was proposed to mitigate the steady state inaccuracy and the 
oscillation in wide range of operations.  

The suggested MPPT technique's robustness against 
external disturbances to attain the maximum power of the PV 
module has been tested on an experimental bench. The test 
bench consists of a PV module, a boost converter, and a 
resistive load. The MPPT control has been implemented in 
Simulink real time in external mode using the NI-DAQ 6321 
data acquisition board. The National Instruments (NI) data 
acquisition system is chosen for the quality and high 
performance offered by these instruments. The NI DAQ is 
capable of measuring all signals from sensors. Besides, it is 
characterised by its rapidity in transferring data, large 
memory, its ease of use, and it is easy to integrate it with 
Matlab/Simulink.  

 Two experiments have been conducted to assess the 
efficiency of the suggested approach in dealing with the 
irradiation and temperature fluctuations. The performances of 
the proposed technique was compared experimentally with the 
P&O-BSMC technique in terms of steady state inaccuracy, 
oscillation around the MPP, and other parameters. The 
experimental findings, in both tests, have shown the 
superiority of the proposed technique. 

The paper is divided into the following sections: The 
system design is provided in section 2, section 3 presents the 
system modelling, followed by a description of the suggested 
MPPT approach in section 4, followed by a discussion of 
experimental findings in section 5, and finally a conclusion in 
section 6.   

2. The Overall System Scheme 

Fig.1 presents the adopted PV system scheme, which consists 
of a PV module, an adaptation stage, and a resistive load. The 
adaptation stage consists of a boost converter with the 
proposed controller based MPPT. Each part in “Fig.1” will be 
explained separately. 

 
Fig. 1. The global scheme of the applied system. 

3. The System Modelling 

3.1. PV cell modelling 

In order to achieve the necessary output voltage and current, a 
PV module consists of a number of PV cells that are linked in 
series and parallel.  “Fig.2” shows an ideal PV cell model with 
a current source linked in parallel to a diode, as well as two 
resistances connected in parallel and series to present the 
losses [17, 18]. 

 
Fig. 2. The PV cell dynamic circuit. 

In order to simplify the model, both Rs and Rsh might be 
ignored as they are equal to zero [23]. The following equations 
can be used to describe the electrical properties of the PV 
modules [20, 21].  
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                             (1) 

Where Ip [A] and Vp[V] are the PV module output current and 
voltage respectively, q is the electron charge equals to 1.6 × 
10-19 [C], T [°K] is the temperature of the cell, s the  
ideality factor, and K is the Boltzmann constant equals to 
1.3805 × 10-23 J/K. The PV Module utilized has N=36 PV 
cells linked in series.  

In “Eq. (2)”, the cell saturation current is defined as: 

                        (2) 

Where °K] is the cell nominal temperature, and s the 
cell’s semiconductor band gap equals to 1.1 [eV].  

In “Eq. (3)”, the cell saturation current at the nominal 
temperature as follows: 

                                 (3) 

In this case, and refer to the short-circuit 

current at nd the open circuit voltage, respectively. 

 s the photocurrent that can be expressed as follows: 

                               (4) 

A/K] and E [W/m2] are short-circuit current temperature 
coefficient equals to 4x10-4 and the sun irradiation 
respectively.  

The PV module transferred energy to the load can be affected 
by the weather conditions. To transfer the PV module full 
energy, regulation of PV module voltage must be done in 
order to achieve the maximum operating point.  

3.2. Modelling of the DC/DC Step-up Converter 

The step-up converter is used as interface between the PV 
module and the load in the system. It is responsible for 
maximizing the PV module power. Therefore, the control of 
this converter is mandatory. Assuming the boost converter is 
working in conductance continuous mode (CCM), the 
dynamic modelling of this converter passes through two 
modes of operation. In mode 1, the switch T is on and the 
diode D is reverse biased (not conducting). By applying the 
Kirchhoff’s law to the circuit of “Fig. 1”, we get: 

                                                    (5) 

In mode 2, the switch T is off and diode D is forward biased 
(conducting). According to Kirchhoff’s law: 

                                                  (6) 

Using the inductor's volt-second balance and the capacitor's 
charge balance, the average model of the boost converter in 
both operation switches is as follows: 

                                (7) 

4. The suggested control based MPPT of the 
implemented PV system 

The suggested MPPT control is shown in “Fig.1”. This control 
consists of two stages. In the first one, the ANN is suggested 
to generate the PV module optimum voltage. In the second 
one, the BSMC is used to enforce the PV module voltage to 
follow the provided voltage.  

4.1. ANN based MPPT 

In recent years, ANNs have been explored as an alternate 
approach to deal with complicated, nonlinear systems. ANNs 
do not require any information on the system, which proves 
their advantage to avoid complicated mathematic calculations. 
Input and output are recognized based on previously recorded 
data. The weather conditions (irradiations, temperature) are 
applied as input parameters to ANN. At the output stage, the 
PV module optimum voltage is generated to the BSMC to 
control the boost converter, which drives the PV module 
voltage to the optimal voltage.  

The input layer is supplied with input data, the hidden layer 
includes many sigmoid hidden neurons receiving data from 
the input layer and forwarding it to the output layer with linear 
neurons, which provides the output to the system.  

The output activation function of the hidden layer neurons, 
whose activation function is sigmoid function, are measured 
using the following relationship:  

                                            (8) 

1p
p ph o

qV
I I I exp

NKTg

é ùæ ö
= - -ê úç ÷ç ÷ê úè øë û

g

[ ]oI A

3
1 1g

o or
r r

qETI I exp
T K T Tg

æ öæ ö é ù
= -ç ÷ç ÷ ê úç ÷è ø ë ûè ø

rT gE

1

scr
or

oc

s

I
I

qVexp
N K Tg

=
æ ö

-ç ÷
è ø

[ ]scrI A [ ]ocV V

rT

[ ]phI A

( )
1000ph scr i r
EI I K T Té ù= + -ë û

iK

Cpv pv L

L pv

Cout out

V I I

V V

V I

= -ì
ï

=í
ï = -î

Cpv pv L

L pv out

Cout L out

V I I

V V V

V I I

= -ì
ï

= -í
ï = -î

( )

( )( )

( )( )

pv
pv L

pv

L
pv out

out
L out

out

dV 1 I I
dt C

dI 1 V 1 u V
dt L
dV 1 1 u I I
dt C

-

ì
= -ï

ï
ïï = - -í
ï
ï

= -ï
ïî

N
h h
j ji i j

i 1

y f W X θ  
=

æ ö
ç ÷= +
ç ÷
è ø
å



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
R. El idrissi et al., Vol.11, No.4, December, 2021 

 1962 

Whereas the output layer contains one neuron, whose 
activation function is linear, uses the following relationship to 
provide the measured optimal voltage :  

                                                      (9) 

In order to implement the ANN, nnstart tool in Matlab was 
used. Experimental dataset was taken from the used PV 
module in real-time by changing the irradiation and 
temperature each time and the optimal voltage was measured 
at each change of the input data. The number of hidden 
neurons was chosen 50. The neural network was trained 
offline using the bayezian-regularization backpropagation 
algorithm. This algorithm was chosen due to its robustness 
against difficult, small, and noisy datasets. In our case, we 
have small dataset composed of 15 patterns of irradiation, 
temperature, and the corresponding MPP voltage. Therefore, 
the chosen algorithm was suitable to have best performances. 
So far, the mean squared error (MSE) is minimized expressed 
by the following equation: 

                                       (10) 

Where Vmp is the ith target and is the estimated output. 
The MSE is provided in fig.3 based on the experimental 
datasets given in “Fig.4”. The best MSE during the training 
process equals to 0.42408, which is quite small. It can be 
minimized more if we will add more data.  

 
Fig. 3. The performed mean squared error (MSE). 

 

 
Fig. 4. The experimental used data set. 

 

4.2. Backstepping sliding mode control for MPPT design 

Here the backstepping and sliding mode controllers are 
combined to perform a robust control against the weather 
conditions changes. The basic principle of this control is to 
reduce the steady-state inaccuracy of the backstepping control 
and to eliminate the chattering phenomena of the SMC. This 
control is intended to force the PV module voltage to follow 
the voltage provided by the ANN. The design procedures of 
this controller are as follows: 

Firstly, the tracking error has to be defined as follows: 

                                                                   (11) 

Where Vref is the PV module optimum voltage provided by 
the ANN. For making the error converging to zero, let us take 
the time derivative of “Eq. (11)” and considering the “Eq. (7)”, 
yields: 

                            (12) 

To check if the tracking error is converged to zero a lyapunov 
function was chosen as follows: 

                                                                        (13) 

The time derivative of this function using “Eq. (12)” yields: 

 
 

 

(14) 

For the lyapunov function to be negative, let us put: 

 
 

 

(15) 

“Eq. (14)” becomes: 

    (16) 

Considering iL as a virtual control, we get: 

    (17) 

Considering a second error as follows: 

    (18) 

If we replace ith  in Equation (14), we obtain the 
following: 

 
   

(19) 

To guarantee the convergence of the second error a second 
Lyapynov function has to be defined in the following 
equation: 
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(20) 

Where the sliding surface was chosen as follows: 

    (21) 

The time derivative of this function becomes: 

 
   

 

(22) 

In order that the stability of the system is guaranteed, we 
select: 

 
   

 

(23) 

Where K2 and K3 are positive defined. The following 
control input is deduced from “Eq. (22)”: 

 
   

(24) 

Which leads to “Eq. (25)”: 

    (25) 

According to the prior study, the system is stable. Errors 
converge to zero, resulting in convergence of to . 

5. Experimental prototype 

The experiment is performed using a prototype, which 
includes the following hardware: 

 
(a) 

 
(b) 

 
 

(c) 
Fig. 5. The experimental test bench: (a) the left view, (b) 

the test bench , (c) the right view. 

Using Matlab-Simulink in a real-world environment, 
experimental findings are provided as test 1 and test 2 on PV 
system to evaluate the efficacy of the proposed controller. The 
main specifications of the adopted system are listed in “Table 
1.” and “Table 2.” 

Table 1. The used PV Module electrical characteristics 
(SP20-36P) 

Parameters Values 
Maximum power (Pm) 20 W 
Maximum voltage (Vmp) 17.3 V 
Maximum  current (Imp) 1.16 A 
Short-circuit current (Isc) 1.26 A 
Open-circuit voltage (Voc) 21.7 V 
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Table 2. The designed boost and controller parameters 

Parameters Values 
Inductor  0.66 mH 

Input capacitor  470 µF 
Output capacitor                220 µF 
Load resistance  50 Ω 

Switching frequency  64 Khz 
K1 6x10# 
K2 100 
K3 1000 

A NI-DAQ 6321 data acquisition board was used to execute 
the ANN-BSMC controller and generate the PWM signal. The 
NI-DAQ receives the analogue data through the BNC 2110 
connector board using current sensor (ACS712ELC-05B), 
input and output voltage sensors of 0-25 V and 0-35 V ranges 
respectively as well as irradiation (Apogee SP-215) and 
temperature (Apogee ST-100) sensors to be converted into 
digital values for the digital controller in Matlab/Simulink. 
The NI-DAQ's PWM module delivers the driving signal to the 
boost converter's switch to conduct the MPPT. The boost 
converter switching frequency was chosen equals to 64 KHz 
as well as the sampling time at 2ms. Low-pass filters have 
been used to reduce the unwanted noises coming from current 
and voltage measurement. After these filters, the gains are 
used to restore the real measured values by the sensors. 
“Fig.6” depicts the implementation scheme of the proposed 
techniques in Matlab/Simulink environment to upload the 
PWM signal into the NI-DAQ board.  

 
Fig. 6. NI-DAQ implementation scheme of the suggested 

MPPT techniques. 
 

5.1. The performed Test 1 

When the PV system is subjected to a changeable weather 
conditions, the previously defined controller strategy is 
implemented in real time using Matlab/Simulink real time 
desktop in external mode, which is employed to upload it into 
the NI-DAQ 6321 board as depicted in “Fig.6”. The 
performances of the ANN-BSMC are discussed comparing 

them to the P&O-BSMC in real time. Under the given 
irradiation and temperature from the used sensors in “Fig.7”, 
the experimental results show that both the compared 
techniques are tracking the MPP.  

Although, in “Fig.9”, the PV voltage produced by the ANN-
BSMC exhibits better tracking performances compared to the 
P&O-BSMC that exhibits a significant oscillations around the 
MPP as well as a considerable rise time. The proposed 
technique tracks the optimum voltage quickly compared to 
P&O-BSMC; it could reach the optimum value in about 0.3s 
while the P&O-BSMC could reach it until 0.7s. In addition, 
“Fig.8” shows that the control law of the ANN-BSMC 
presents less oscillation compared to the P&O-BSMC. 
Moreover, as observed in “Fig.10”, the power produced by the 
proposed controller is much higher with reduced oscillations 
compared to the P&O-BSMC. Therefore, the wasting power 
is reduced by the proposed technique. Elsewhere, the 
experimental load power response is shown in “Fig.11”. In 
fact, an undeniable smooth power is guaranteed for feeding 
the load in case of the ANN-BSMC. Therefore, the ANN-
BSMC improves suitably the power quality. A little 
discrepancy can be seen between the PV module power in 
“Fig.10” and the load power in “Fig.11”, which is attributable 
to the system losses.  

 
(a) 

 
(b) 

Fig. 7. Measured irradiation (a) and temperature (b). 

 
Fig. 8. The duty cycle. 
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Fig. 9. The PV module output voltage. 

 
Fig. 10. The PV module output power. 

 
Fig. 11. The load power. 

5.2. The performed Test 2 

In this test, we switched between the two techniques in real 
time in order to avoid the mismatch in the testing system 
conditions. Both techniques are tested simultaneously, using a 
manual switch, under irradiations of 350 W/m2 and 1000 
W/m2 as depicted in “Fig.12”. The experimental waveforms 
of the PV voltage “Fig.13”, the PV power “Fig.14”, the duty 
cycle “Fig.15”, and the load power “Fig.16” extracted by the 
ANN-BSMC technique in the two switching conditions 
confirm the effectiveness of the proposed technique as the 
MPPT is successfully identified and load power is improved 
without oscillations. We can say that the experimental results 
show an undeniable outperformance of the ANN-BSMC 
technique, which could improve all the performances 
measures. “Table .3” gives comparison of the proposed 
techniques. 

 
(a) 

 
(b) 

Fig. 12.  Experimental measured profile of irradiation (a) 
and temperature (b). 

 
Fig. 13. The experimental PV module voltage response. 

 
Fig. 14. The experimental PV module power response. 

 
Fig. 15. The duty cycle. 

 
Fig. 16. The load power response. 

Table 3. Comparison of the controllers’ performances at 
1000W/m^2  

 Tracking 
speed(s) 

Efficiency  
(%) 

Settling 
time (s) 

ANN-BSMC 0.3 93 0.43 
P&O-BSMC 0.7 84 0.64 
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6. Conclusion 

This study focused on an experimental test of the robust 
ANN-BSMC technique for a PV system in order to prove its 
tracking performances in real-time. The applied experimental 
test-bench consists of a PV module of 20W, a boost converter, 
and a resistive load of 50 ohm with 100W maximal dissipated 
power. The proposed technique was implemented in 
Matlab/Simulink in external mode using NI-DAQ 6321 data 
acquisition board. Based on the given real time experimental 
results of the performed tests, the ANN-BSMC strategy 
successfully handled the irradiation and temperature changes 
and provided several advantages including quick convergence 
to the optimum value, precision in identifying the MPP, and 
decreased steady-state oscillations. As a result, the PV system 
quality has been appropriately improved. This was confirmed 
by the comparison with the P&O-BSMC technique; in both 
tests, the ANN-BSMC outperformed the P&O-BSMC 
technique. 

In the future work the implementation of this controller 
will be applied to the PV system connected to the grid. 
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