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Abstract- The significant growth in electric vehicles use has increased the demand for lithium-ion batteries. Battery modeling 

is vital for optimal and safe usage of batteries. In this paper, a novel battery model based on the Takagi-Sugeno fuzzy has been 

proposed. It has been demonstrated that the battery behavior is strongly dependent on its state of charge (SoC). As a result, the 

developed model takes into account the SoC effect, which can significantly improve the model accuracy. Simulation and 

experimental tests validated the pertinence of the proposed model. It has been also shown that the estimated battery internal 

voltage is identical to the experimental ones with a low root-mean-square error (around 11mV) and high variance accounted 

for function of around 98% for different operating conditions. Overall, a model with high accuracy and reasonable 

computational time of a lithium-ion battery is created. 

Keywords Lithium-ion battery; Battery modeling; Takagi-Sugeno Fuzzy; State of charge; Equivalent circuit model. 

 

1. Introduction 

Nowadays, energy storage technology is considered one 

of the most critical technology for facilitating the integration 

of electric mobility and all sustainable power applications [1, 

28-31, 36-38]. Over the years, various storage technologies 

have been developed to meet different specifications of 

different industrial sectors. Lithium-ion (Li-ion) battery is 
among the most widely used storage technology due to its 

fast development. It has many performance characteristics 

such as the long cycle life, safety, lightweight, high-

temperature resistance and great energy density.  

Battery modeling is an important task for ensuring safe 

charging and discharging and hence, optimal battery 

utilization. Moreover, accurate estimation of batteries’ 

parameters like state of charge, state of health, state of 

energy, remaining useful life, state of function, state of 

power and remaining discharge time requires appropriate 

battery modeling. A good example is the development of an 
advanced Li-ion battery management system (BMS) for 

electric vehicles, which is a trending research topic. Battery 

modeling is one of the key functions of a BMS; hence, 

accurate modeling ensures safe management and reliable 

operation.   

The complex internal mechanism and electrochemical 

reactions make the Li-ion battery system highly nonlinear 

[2].  Numerous models for Li-ion batteries have been 

examined in the literature and mainly fall under two main 

categories: the physics-based electrochemical model [3] and 

the equivalent circuit model [4]. Electrochemical models 

provide full information about the internal battery states as 
they could identify the behavior of Li-ion batteries based on 

the chemical characteristics of the composites and the design 

parameters. Although the high accuracy of the physics-based 

electrochemical models, they are complex to be applied in 

real-time applications and require a large number of 

unknown parameters to be identified [2]. This has been led 

researchers to investigate another type of modeling called 

equivalent circuit (EC) models, empirical models or 

Thevenin models. The EC models have a simplified structure 

and are adequately accurate and easy to be identified. In 

addition, many applications need to achieve the balance 
between the model accuracy and complexity so that models 

can be adequate for embedded microprocessors and ensure 

precise results in real-time [5]. Therefore, the EC modeling 

has gained increasing interest for a wide range of 

applications especially the electric vehicles application [6].    

https://orcid.org/0000-0003-0392-9854
https://orcid.org/0000-0003-0392-9854
https://orcid.org/0000-0003-0392-9854
https://orcid.org/0000-0002-6575-0676
https://orcid.org/0000-0002-6575-0676
https://orcid.org/0000-0002-6575-0676
https://orcid.org/0000-0001-8399-7827
https://orcid.org/0000-0001-8399-7827
https://orcid.org/0000-0001-8399-7827
mailto:hajardoubabi@gmail.com
mailto:abderrahimezzara1998@gmail.com
mailto:isalhi@yahoo.fr
mailto:hajardoubabi@gmail.com


INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
H. Doubabi et al., Vol.12, No.1, March, 2022 

 

340 
 

The EC model uses electrical components to describe the 

battery behavior. It mostly consists of an ideal voltage source 

(the open circuit voltage OCV), a serial resistance (Rs) and 

an RC network (parallel resistor-capacitor). According to the 

level of detail, one [7], two [8], or even more [9] RC 

networks can be employed. In [1], an overview of the 

different EC-type battery models is addressed. By adding 
more RC networks, the model accuracy increases, however, 

the complexity increases too. The model with one RC 

network (See Fig.1) can simulate the charge and discharge 

behavior of Li-ion batteries with high fidelity as shown in ref 

[10]. This model is often chosen for a reasonable 

compromise regarding computational effort and computing 

cost [2].  

The EC battery model parameterization is a significant 

task in the modeling procedure based on two main parts (i) 

Experimental tests, and (ii) parameters identification. 

Imagine we applied a current impulse to a battery where the 

resulted response is as presented in Fig. 2. Then, each part of 
this response must be taken into consideration for an 

appropriate modeling process. The charge-discharge current 

impulse tests are the most common types of experimental 

tests. Then, a system identification technique is used to 

calculate the battery model parameters. Several techniques 

have been proposed in the literature enabling the estimation 

of the EC model parameters. They can be classified to four 

principal techniques according to Ref. [11] (i) analytical 

equations-based [12, 13] (ii) least square-based [14, 15] (iii) 

metaheuristic algorithm- based [16, 17] and (iv) Kalman 

filter-based [18]. Each technique has its own merits and 
demerits, nevertheless, guaranteeing a high-fidelity 

parameterization technique is still considered an important 

issue.  

The Takagi-Sugeno (TS) fuzzy- based modeling tool has 

been widely employed to represent nonlinear and complex 

systems [25, 32-33]. The fuzzy model is generally described 

by a collection of fuzzy IF-THEN rules where each rule 

represents a local linear relationship between the input and 

output of the system. The global fuzzy model is obtained by 

blending together the local models using the fuzzy 

membership functions. As far as we know, the TS fuzzy 

approach has never been explored for battery modeling. In 
[34], a Mamdani fuzzy- based model has been proposed for 

Li-ion battery. However, the Mamdani fuzzy type is less 

flexible and less effective and accurate in computational 

terms than the TS one [35]. In addition, the authors in [34], 

have not deeply investigated the parameterization part.         

In this work, the TS fuzzy has been adopted as a method 

of modeling enabling the accurate prediction of the Li-ion 

battery behavior under its different states of charge.  

First, a characterization test has been conducted to 

extract the experimental characteristic of the battery and 

determine its EC model parameters at different SoC values. 
Second, local models ensuring the minimum estimation error 

have been defined according to each SoC range. Then, the 

global behavior of the battery has been represented using the 

multi-model representation, which is developed by 

combining the adopted local models through the TS fuzzy 

approach. Finally, the developed battery model has been 

validated and its accuracy has been evaluated.  

Hence, the purpose of this research is to analyze the Li-

ion battery behavior, cope with the problems of parameters 

extraction, and propose a novel well-performed battery 

model. The main contributions of the present paper can be 

summarized as follow: 

• Develop an advanced EC battery model based on 

Takagi-Sugeno fuzzy logic, which is an intelligent approach 

known for its accuracy, its flexibility and its practical 

feasibility in managing the nonlinearities of the system and 

dealing with uncertainties.  

• Investigate the effect of SoC on the model 

parameters, which can hugely improve the reliability as well 

as accuracy. 

• Validate the proposed modeling technique through 

simulations using Matlab/Simulink as well as experimental 

tests.  

• An average root mean square error of around 11mV 
and an average variance accounted for function of around 

98% have been achieved, which evaluate quantitatively the 

proposed model accuracy. 

 

Fig. 1. Li-ion battery’s equivalent circuit model. 

 

Fig. 2. Battery response to a current impulse. 

2. The Proposed Li-Ion Battery Modelling 

As aforementioned, the EC model structure presented in 

Fig.1 is selected in this study to ensure both accuracy and 

simplicity. 

2.1. Experimental Setup and Test Procedures 

The complete experimental setup is depicted in Fig.3. It 

is principally made up of:  

• A Lithium-ion battery with a nominal voltage of 

12.8V and a nominal capacity of 27.5Ah; 
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• An automatic battery discharger BDX, which can be 

programmed to discharge the battery with a precisely 

controlled constant current, adjustable from zero to the 

maximum rated value; 

• Voltage and current sensors; 

• High-speed NI USB-6259 data acquisition board, 

connected to a PC. 

The experimental measurements have been performed in 

the laboratory at an ambient temperature of 25°C. 

 

Fig. 3. The complete experimental setup. 

To determine the EC model parameters (OCV, Rs, Rp 

and Cp) of the utilized battery at different SoC values, a 

characterization test was conducted.  

First, the battery is fully charged. Afterward, the 

discharge current pulse test starts, where the current profile 

used to excite the battery is shown in Fig.4 (a). We applied a 

constant current pulse with an amplitude of 8A and 50% duty 
cycle, hence, the pulse period and relaxation period are the 

same 10min. The test was ended when the discharge voltage 

limit was met. The resulted battery voltage curve is shown in 

Fig.4 (b). For the SoC calculation, the Coulomb counting 

method defined by Eq.1 is used in this study due to its 

simplicity and good accuracy [19]. 

       (1) 

where Cn is the nominal capacity of the battery. 

(a) 

 
(b) 

 
Fig. 4. Characterization test. (a) Current profile (b) Battery 

voltage response. 

 

The EC model parameters were estimated with the aid of 

the Optimization Toolbox of Matlab [20], which can use an 

optimization technique as Nonlinear Least Squares to 

minimize the error between the measured and the estimated 
battery voltage curve. Specifically, this tool can be 

effectively utilized if the following steps are respected [21]: 

• Build the EC model in Simulink or Simscape as 

shown in Fig.5, where the current profile is the input signal 

and the voltage and SoC are the output signals. To represent 

the battery nonlinearity, use the nonlinear capacitors and 

resistors. 

• For parameters estimation, import the measured data 

into the tool Parameter Estimation of Simulink as shown in 

Fig.6, then select the parameters to estimate that are OCV, 

Ri, Rp and Cp and set the optimization options. 

• After getting the estimation results, compare the 
simulated and experimental data to be sure that the error is 

small enough. If not the case, then either the model or the 

identification technique or the current profile should be 

changed.  

A block diagram of the general parameter identification 

is depicted in Fig.7. As previously stated, the optimization is 

performed based on the least-squares criterion defined by 

Eq.2, which minimizes the sum of the squared errors 

between the experimental battery voltage   Uexp (t) and the 

simulated one Usim (t). 

      (2) 

where N is the number of samples and Θ is the model 

parameters estimator. 

By using the described identification procedure above, 

the obtained values of the different model parameters within 

the entire SoC range are shown in Fig.8. 

 

Fig. 5. The EC model in Simulink.  
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Fig. 6. Parameter estimation using Optimization Toolbox of 

Matlab.  

 

 
Fig. 7. Block diagram of the general parameter identification. 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 8. Evolution of the EC model parameters as a function 

of SOC (a) OCV (b) Ri (c) Rp (d) Cp. 

 

As it can be observed, the model parameters vary 

depending on the state of charge SoC. From the results, the 

average values of each parameter can be obtained as: 

OCVmoy=13.122V, Rimoy= 0.043 Ω, Rpmoy= 0.01635 Ω, 
Cpmoy= 4876.83 F.  Assuming the model is identified using 

these values, then the estimated battery voltage profile 

compared to the experimental one will be as illustrated in 

Fig.9 (a) and the resulted error between both curves is shown 

in Fig.9 (b). To report the error quantitatively, we calculated 

the Root Mean Square Error (RMSE) and the Variance 

Accounted For (VAF) function.  

(a) 

 
(b) 

 
Fig. 9. Time response of the studied battery. (a) Simulated 

and measured voltage (b) The error between them. 

 

The RMSE defined by Eq.3 is one of the most 

commonly used measures of accuracy as it is considered an 

excellent general-purpose error metric for numerical 

predictions. 

     RMSE =                            

(3) 

where y is the measured output,  is the predicted output 

and 1 ≤ k ≤ N is the number of samples available for analysis. 

The VAF is often calculated to verify the correctness of 

a model, by comparing the experimental output with the 

predicted output of the model. If both signals are the same 
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then the VAF is 100%, otherwise, the VAF will be lower. 

The VAF between y and  for the ith component can be 

defined as 

                     (4) 

By using Eq.3 and Eq.4, an RMSE value of 0.23V and a 

VAF of 70.81% were obtained. These resulting measures 

demonstrated that the model fitting was not sufficient. 

Hence, the model accuracy cannot be achieved by using the 

average parameter values. As noted earlier, this is due to the 

model’s parameters that are not fixed-value constants and 

strongly change with the battery SoC. Therefore, an adaptive 

fuzzy logic-based EC model taking into consideration the 
SoC effect on the parameters has been proposed in this 

paper. 

2.2. Introduction to the Proposed TS Fuzzy-Based EC Model 

Since Zadeh’s works [22], fuzzy logic has been very 

successful in the modeling and control of complex nonlinear 

systems [24]. In the literature, two main classes of fuzzy 

approaches can be distinguished: The Mamdani approach 

and the Takagi-Sugeno approach [23, 24]. The main 

difference between these two approaches lies in the 

consequence part. The Mamdani fuzzy approach uses fuzzy 

subsets in the consequence part while the TS fuzzy approach 
uses (linear or nonlinear) functions of the input variables. 

The TS fuzzy systems can be generally described by a set of 

IF-THEN fuzzy rules and they are based on three main stages 

[25]: Fuzzification of crisp inputs, Fuzzy Inference using 

knowledge base and Defuzzification. 

To cope with the problem of parameters variation with 

the SoC described in the above section, a new TS fuzzy-

based model has been introduced in this study. The proposed 

model would be able to generate the appropriate value of the 

parameters (OCV, Ri, Rp and Cp) depending on the state of 

charge of the battery.  

Specifically, an EC model with the parameters' values 

ensuring the minimum error will be selected according to the 

SoC range.   This can be met by adopting the so-called multi-

model representation illustrated in Fig.10, which is 

developed by combining local models through the TS fuzzy 

approach.  The SoC of the battery has been identified as an 

input of the fuzzy inference system that processes it 

employing pre-specified fuzzy rules to produce the outputs 

that are the four battery parameters as shown in Fig.11.   

For typical values of SoC, the fuzzy inference rules have 

the form in Eq.5, 

 :     IF    is      THEN    and and and 
i i i i

i

i i i p pR SoC OCV R R C   (5) 

where i=1, 2…n; n is the number of inference rules, 
i    

is the ith fuzzy set. The premise variable SoC is a measurable 
variable of the system (Eq.1). Crisp input data is converted 

into fuzzy values using membership functions. In this study, 

the number and value of each membership function were 

properly selected as follow 

Based on the presented finding in Fig.8, we have 

considered six EC battery models (named M1, M2…M6) 

with different parameters values over SoC range of 10-90% 

which is the widest operating range for real-world 

applications. The EC model parameters values corresponding 

to the different SoC are provided in Table I. 

 
Fig. 10. The multi-model representation using TS fuzzy 

logic. 

 

 
Fig. 11. The studied TS fuzzy system 

 

Table I. The EC model parameters for different state of 

charge SoC 

 SOC (%) OCV (V) Ri (Ω) Rp (Ω) Cp (F) 

M1 9.77 12.8278 0.0450 0.0246 2.9124e+3 

M2 15.07 12.9041 0.0440 0.0222 3.2646e+3 

M3 20.41 12.9798 0.0465 0.0125 6.3588e+3 

M4 31.01 13.0759 0.0457 0.0161 5.8348e+3 

M5 52.19 13.1474 0.0417 0.0149 4.1505e+3 

M6 89.41 13.2691 0.0401 0.0153 4.2672e+3 

 

For each model, the error between the experimental 

battery voltage and the model’s prediction has been drawn as 

illustrated in Fig.12. As it can be seen from this figure, there 

are intervals (named I1, I2…I6) on which at least one model 
presents the best agreement with the experimental data and 

shows the minimal estimation error. As an illustrative 

example, let us consider interval I6 which corresponds to a 

SOC range [76, 100%], the black curve corresponding to the 
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EC model M6 gives the minimal error over this interval. The 

remaining curves show likewise the minima of the estimation 

error in a specific interval. These observations lead us to 

properly define the universe of discourse and the 

membership functions associated with the fuzzy rules. 

 
Fig. 12. The error between the measured and estimated 

battery voltage for six different EC models 

The TS fuzzy system parameters have been set according 

to the above findings, the number of inference rules n=6, the 

chosen membership functions corresponding to the SoC are 

portrayed in Fig.13. The shape of membership functions has 

been decided using the trial-and-error method. 

 
Fig. 13. Membership functions for the battery SoC 

 

Using a standard fuzzy inference method that uses 

singleton fuzzifier, product inferred, and weighted average 

defuzzifier, the fuzzy system inferred outputs are 

1

1

( )

( )

i

i

n

i i

i

n

i

i

SoC OCV

OCV

SoC





=

=

=



 (6) 

1

1

( )

( )

i i

i

n

i i

i
i n

i

i

SoC R

R

SoC





=

=

=



  (7) 

1

1

( )

( )

i i

i

n

i p

i
p n

i

i

SoC R

R

SoC





=

=

=



 (8) 

1

1

( )

( )

i i

i

n

i p

i
p n

i

i

SoC C

C

SoC





=

=

=



 (9) 

where is the normalized membership function and 

1

( ) ( ) 0
i i

n

i i p

i

pv vI I 
=

 are the normalized weights. 

3. Validation of The Proposed Battery Model 

Simulations have been conducted into the 

Matlab/Simulink environment in order to validate the 

proposed TS fuzzy-based EC battery model. Simulink block 

diagram of the developed model is depicted in Fig.14. The 

TS Fuzzy system was created using the fuzzy logic controller 

(FLC) block from the Simulink library. This block enables 

flexible configuration and convenient implementation of the 

fuzzy interference system. 

In order to verify how accurately the proposed 

parameterization procedure and the developed performance 

model are, the battery voltage was simulated for the same 
current profile shown in Fig.4 used in the practical tests. 

Comparing the obtained results in Fig.15, excellent 

accordance between the experimental and estimated battery’s 

voltage curves can be observed over the studied SoC range 

[10-90%]. This confirms that the proposed model can 

accurately estimate the battery parameters and hence, 

represent its real behavior. This good agreement of the 

simulation and the measured data has been also evaluated by 

plotting the estimation error as illustrated in Fig.16. As 

expected, the proposed TS fuzzy model was able to 

accurately predict the Li-ion battery voltage with a mean 

error of 45mV only. 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
H. Doubabi et al., Vol.12, No.1, March, 2022 

 

345 
 

 

Fig. 14. Simulink block diagram of the proposed TS fuzzy-

based EC battery model.  

 

 
Fig. 15. Experimental and estimated battery’s voltage 

profiles using the proposed modeling. 

 

 
Fig. 16. The error between the simulation and experiment 

 

 To evaluate the model performance, the RMSE and 

VAF function were computed based on Eq.3 and Eq.4. A low 

RMSE value of 11mV and a high VAF of 98.85% have been 

achieved. Accordingly, the proposed consistent EC model 

using the TS fuzzy approach can significantly reduce the 

estimation error and improve the model accuracy. This is 

owing to the fact that the developed model managed 

correctly the variation of the parameters with the SoC and 

thus, the battery is properly characterized. It is worth 

mentioning that generally the battery cannot be ideally 

modeled as different factors contribute to errors apart from 
the model imprecision, such as the equipment error and the 

experimental data noise.  

The resulting RMSE value using the proposed model is 

comparable to the RMSE values obtained in the literature. 

For the same EC model (Fig.1), the RMSE calculated in [26] 

was around 12mV, whilst in [28] results showed an average 

RMSE of around 12.35mV, which indicates the accuracy of 

the developed battery modeling technique. 

To further analyze the proposed battery modeling, a 

series of pulse tests with different current profiles have been 

carried out. We present the results of three of them in this 

paper.  

As illustrated in Fig.17, the Li-ion battery is subjected to 

three pulse discharge tests with different constant currents 

(4A, 12A and 16A). The considered current profiles are 

shown in Fig.18. More details about the experimental pulse 

tests are documented in Table II. The proposed battery model 
was simulated for the same current profiles, and then the 

obtained voltage response is compared to the measured one.   

 
Fig. 17. Diagram of the proposed model validation for 

different current profiles 

The model estimation is accurately matched to the actual 

test data for the three current profiles. This has been 

numerically evaluated by calculating the mean estimation 

error, the RMSE and the VAF as given in Table III. As it can 

be noticed, the proposed model remains valid and was not 

affected wherever the applied current level (4, 8, 12 and 

16A). From the findings, the interval of RMSE, VAF and 

mean estimation error can be defined as [8-13mV], [97-99%] 

and [1-7mV], respectively. Thus, the proposed model is able 
to correctly identify the battery parameters, shows good 

accuracy and preserves its performance whatever the applied 

current profile. 

(a) 

 
(b) 

 
(c) 
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Fig. 18. The three considered current profiles (a) 4A (b) 12A 

(c) 16A  

 

 

 

 

Table II. Information about the experimental pulse tests 

 Amplitude 

(A) 

Pulse-

discharging 

period (min) 

Rest 

period 

(min) 

Test 

period 

(h) 

I=4A 4 20 10 10 

I=12A 12 10 20 7 

I=16A 16 12 20 4 

 

Table III. Comparison of errors for different applied current 

profiles 

 RMSE 

(V) 

VAF 

(%) 

Mean estimation 

error (V) 

I=4A 0.00808 97.3459 0.00210 
I=12A 0.01246 97.3661 0.00083 

I=16A 0.01174 98.1740 0.00681 

 

4. Conclusion 

This paper presents the development and validation of an 

advanced Thevenin EC model based on TS fuzzy approach 

for Li-ion batteries. The adopted process to extract the 

battery model parameters has been described in detail. It has 

been noted that the model parameters are highly dependent 

on the battery SoC. Hence, we investigated the effect of the 

SoC on the model parameters in order to achieve higher 

accuracy. The TS fuzzy-based model was developed to 

estimate the parameters' values precisely according to the 

SoC.   

The current pulse test has been carried out to extract the 

experimental voltage response of an actual battery and then, 

the verification with the simulated voltage under 

Matlab/Simulink was demonstrated that the proposed model 

is able to appropriately identify the parameters. It has been 

concluded from the obtained results that the proposed TS 

fuzzy battery model reveals a high prediction ability to 

describe the battery bank behaviour. The RMSE values 

calculated when validating the model were low, while the 

achieved VAF value was high (around 98%), which evaluate 

quantitatively the proposed model accuracy.  

Furthermore, the influence of the applied discharging 

current pulse profile was analyzed.  It has been proven that 

the proposed model remains valid with the same precision of 

estimation.  

The proposed TS fuzzy-based model contributes towards 
the future development of more accurate and advanced 

battery models to be utilized in real-world applications. 

Future works include incorporating the effect of the 

temperature and the state of health on the battery internal 

voltage and the EC model parameters. 
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