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Abstract- Optimal power flow is regarded as an essential look ahead tool for independent system operators and energy market 

operators to ensure reliable grid operation under normal and severe circumstances. For instance, the system operator will focus 

on power system performance, power quality while considering physical constraints and limits of different network 

components. On the other hand, a market operator will deal with bidding and market clearing mechanisms while ensuring 

optimal and efficient operation. Real-world data submitted by different market players are presented as piecewise linear 

functions composed of linear segments defined through quantity price pairs instead of the conventional polynomial quadratic 

functions. This paper proposes a piecewise linear cost/benefit model based on the incremental method that was presented as a 

Mixed Integer Programming (MIP) model and it was incorporated within a market-based DC-OPF problem. Results were 

analysed and discussed for a modified IEEE 14 bus test system operated under a deregulated market framework using the MIP 

model and the conventional polynomial quadratic functions. The General Algebraic Modelling System (GAMS) was used for 

problem formulation and simulation. 

Keywords Deregulated electricity markets, General Algebraic Modelling System (GAMS), Mixed integer linear programming 

(MILP), Optimal Power Flow (OPF). 

 

1. Introduction 

Electricity markets around the world never ceased to 

evolve in order to accommodate novel technologies, that may 

lead to improved efficiencies and provide more choices while 

ensuring a reliable service. It worth noting that the 

introduction of Distributed Energy Resources (DER), active 

distribution networks and microgrids has pushed the market 

to alter its construction in order to take account for 

bidirectional energy paths, multilateral trading schemes and 

Peer-To-Peer (P2P) contract developed under a consumer 

concentric market design [1]. These technological 

developments have made the conventional market 

approaches less efficient and triggered the implementation of 

novel technologies that focus on the demand side. 

Meanwhile, electricity markets are evolving by introducing 

novel products or by giving birth to whole new entities [2,3], 

which in turn will create additional stress on the existing 

infrastructure and bring further computational complexity to 

the market clearing problem. It should be noted that power 

markets are unevenly deployed worldwide due to technical 

and regulatory complexity [4].  State of art models are based 
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on a decentralized structure integrating the wholesale market 

with the retail market with the presence of power exchange 

contract and P2P contract [5].  

The main idea behind the latest developments is to incite 

consumers to follow a competitive behaviour and stop 

treating power as a highly required commodity, which will 

prevent generating companies from ruling the electricity 

market [6]. In order to deal with renewable energy 

uncertainty and volatility combined to many micro grid 

operating challenges, the researchers tend to extract the 

demand side’s flexible behaviour to support voltage profiles 

and manage network congestions. By the way, many 

European distribution operators have experienced voltage 

stability issues in zones with high renewable energy 

penetration [7]. Flexible demand and energy storage system 

are widely proposed in conjunction with DER in order to 

accommodate aforementioned energy unbalances and 

generation fluctuations [8,9,10]. Demand elasticity may be 

achieved through different demand side management 

strategies. Indeed, introducing load flexibility mechanisms 

may lead to increased efficiency and higher profits [6] 

associated to better economic operation of generating units 

especially wind turbines [11]. Moreover, many issues linked 

to security of supply may be accordingly resolved. 

Mid-continent Independent System Operator (MISO), 

Pennsylvania-New Jersey-Maryland (PJM) interconnection, 

Nord Pool and Guangdong market in China and many other 

markets are requesting participants to send their offers and 

bids using Piecewise Linear Functions (PLF). New York 

Independent System Operator (NYISO) uses exclusively 

stepwise functions (Blocks), while accepting up to 11 price-

power pairs. MISO and Nord Pool still having support for 

stepwise supply curves. New Zealand electricity market 

operator has been studying the adoption of piecewise linear 

curves in order to overcome paradoxal block rejection, 

market degeneracy and price volatility [12]. Market 

degeneracy phenomena arises when the market clearing 

mechanism issues a range of marginal prices instead of a 

unique marginal price for a given a quantity, as shown by 

Fig. 1. 

From a practical operational principle, Piecewise Linear 

Functions (PLFs) are accepted to be compatible with the 

physical characteristics of electricity generators. Indeed, 

production centres involving multiple units are well 

approximated using these curves, since there is a jump in the 

overall cost each time a unit is committed.  Recent academic 

work dealing with hydropower future cost functions [13], 

hydropower production function [14-16], hydropower 

storage efficiency and energy decay and hydropower 

equivalent models [17] are making use of PLFs in order to 

facilitate interaction with balancing authorities and lowering 

computational complexity of unit commitment problems. A 

specific class of the unit commitment problem namely, 

network-constrained hydrothermal unit commitment 

(NCHTUC) incorporating hydropower production function 

(HPF) were approximated using the piecewise linear 

approach as discussed by [16]. This study considers the 

nonlinearities and forbidden zones of the HPF via 

aggregation of generating units while performing piecewise 

mixed-integer linear approximation. 

 Solar radiation forecast error cost has been effectively 

expressed as a convex PLF generated from various forecast 

methods [18]. Piecewise linear approximation (PWA) was 

exploited in [19] to model non-linear cost function for both 

solar thermal and heat storage technologies. The developed 

methods are applied to the optimal planning of a case study 

in Austria. Electricity storage plants arbitrage in the Day-

Ahead Market (DAM) clearing problem considering real 

world price data derived from the Belgian power exchanges 

formatted as hourly piecewise linear curves was treated by 

[20]. A novel approach aimed to solve economic dispatch 

problem incorporating nonconvex cost functions has been 

elaborated in [21]. The overall problem has been transformed 

to several LP problems using an iterative piecewise linear 

function (PLF) approximation. Nonlinear AC optimal power 

flow problem has been formulated in conjunction with 

piecewise linear generation cost functions by [22]. An 

extensive numerical analysis across fifty-four realistic test 

cases illustrates that nonlinear optimization methods are 

surprisingly sensitive to the mathematical formulation of 

piecewise linear functions. 

The need of efficient PLFs valuation methods is 

becoming significant, particularly for market-based OPF 

problems. In fact, incorporating PLFs within the optimisation 

problem will help aligning academic studies with real world 

applications and it will produce more realistic simulation 

results. Studies of load curtailment, load shedding, spinning 

reserve scheduling are still considering quadratic polynomial 

cost functions instead of PLFs which will be used practically 

by energy providers and balancing authorities. Despite the 

paramount importance of offer and bid forms in electricity 

markets, many prior papers seemed to focus exclusively on 

physical constraints linearization at the exception of a limited 

number of those that were dedicated to quadratic cost curve 

fitting techniques [23, 24], approximation error evaluation 

[25], error correction [26], and their impact on feasibility 

[27]. One should notice that [23, 24] are relying on the same 

theory of using SOS2 variables [28] to model convex 

piecewise approximation of polynomial nonlinear functions. 
Fig. 1. Degeneracy phenomena perceived in energy markets 

that uses stepwise offer functions. 
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On the other hand, [25, 26] are treating the LP approximation 

of the cost function quadratic term. 

It worth noting that none of the aforementioned work has 

treated the piecewise approximation of the social welfare 

objective function which involves simultaneously convex 

cost functions and concave benefit function. This objective 

function replicates a realistic open market, where the ISO 

tends to match supply offers with demand bids while 

ensuring reliable operation of the power system. In this work, 

a DC-OPF will be developed around an open economic 

framework while using both quadratic and piecewise linear 

form of the offer and bidding functions. Two locally ideal 

MIP models have been developed for each type of economic 

functions, weather its convex or concave. Curve 

construction, optimal curve fitting, bidding strategies are not 

treated in the present work. 

2. Piecewise Linear Modelling Framework 

Piecewise linear functions are being frequently 

introduced in different engineering optimisation problems to 

approximate nonlinear constraints and objective functions in 

order to achieve better computing performance in the 

expense of loss of accuracy. This type of functions admits 

multiple designations according to the field of application. 

For example, in statistics PLFs are commonly referred to as 

linear splines or linear spline regression, while in 

mathematics they are called polyhedral functions. 

PLFs are composed of affine functions where each one 

of them describe a segment. For the rest of this paper, the 

term ‘breakpoint’ abbreviated as “Bp” will be used to denote 

the point where these affine functions intersect. Generally, 

any univariate function defined on a delimited interval can be 

approximated through piecewise model. This interval is 

supposed partitioned into K segments with K+1 breakpoints, 

then the piecewise approximation of the function f(x) can be 

described by Eq. (1): 
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 (1) 

where, m1, m2, … mk and d1, d2, … dk are the slopes and 

intercepts of the linear segments, respectively. The accuracy 

is affected by the number and the location of the breakpoint. 

Several methods have proposed to represent PLFs as a MIP 

model including multiple choice methods, convex 

combinations and incremental methods. Indeed, incremental 

method or the delta method has shown efficient behaviour 

especially in term of required continuous variables and its 

ability to produce a locally ideal model. The approach 

presented hereafter is founded on the study realised by [29]. 

 

 

 

2.1. Piecewise linear generation cost function 

Supply functions GC are convex increasing functions and 

they are approximated by the piecewise linear 

function GC defined by Eq. (2) 
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where, ,G kP and ,G kIC are provided by contractors as 

quantity (MW) - price ($/MWh) pairs for each generating 

unit. ,

c

G kd  represents the segment intercept cost for generator 

G. ,G tP is denoting the scheduled power output of the 

respective generating unit at time step t. 

Allocated power supply is expressed as the sum of 

continuous variables ,

c

G ky as depicted by Eq. (3). 
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Continuous variables must satisfy two sets of 

inequalities denoted by Eq. (4) and Eq. (5). 

 
,1 , , 1

, 0

c

G G K G K

c

G K

y P P

y

− −


 (4) 

The second set of constraints is enforced using binary 

variables ,

c

G k  as follows 
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Discontinuous functions will give birth to the delta 

jump ,

c

G k  defined at breakpoint by Eq. (6). 

 , , , 1 , , 1( ) ( )c c
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Finally, the supply function is expressed using 

continuous variables and jumps as follows. 
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2.2. Piecewise linear demand benefit function 

Demand functions DLB are concave strictly increasing 

functions and they are approximated by the 

function DLB depicted by Eq. (8). 
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where, ,DL kP and ,DL kIB are provided by market players as 

quantity (MW) – price ($/MWh) pairs for each dispatchable 

(price responsive) load. ,

b

DL kd  represents the segment 

intercept benefit for dispatchable load DL. ,DL tP  is denoting 

the dispatched demand at time step t. 

Dispatched power demand is expressed as the sum of 

continuous variables ,

b

DL ky  as follows 

  min

,

1
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K

b
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Continuous variables must satisfy two sets of 

inequalities denoted by Eq. (10) and Eq. (11). 
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The second set of constraints is enforced using binary 

variables ,

b

DL k  as shown by the equation hereafter. 
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Discontinuous functions give birth to the delta 

jump ,

b

DL k  parameter expressed by Eq. (12). 
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Finally, the benefit function is expressed using 

continuous variables and incremental jumps as follows 
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3. Optimisation Problem Formulation 

The conventional Direct Current - Optimal Power Flow 

(DC-OPF) is used to interpret the behaviour of the 

transmission network. The DC-OPF is a linearized version of 

the full OPF except the objective function that constitutes the 

only part incorporating inherently quadratic components 

rising from the generation cost functions, thus making the 

overall problem quadratic. In other words, dealing with 

objective function non linearities may lead to computational 

improvements and may enable the use of more mature and 

robust linear programming solvers. 

In order to study the impact of PLFs on the model 

complexity, solution quality and computational performance, 

a deregulated economic environment has been formulated 

using both the quadratic and the piecewise linear from of the 

objective function. Simulation scenario is taking account of 

flexible demand behaviour and it will reflect the interaction 

with market prices while maximising the system operator 

social welfare. 

Objective functions, equality and inequality constraints 

that constitutes the optimisation problem are discussed 

hereafter. 

• Maximum social welfare objective function 

In deregulated power markets, the independent system 

operator is responsible for grid operation and security whilst 

the market operator will guarantee efficient grid operation by 

maximising consumer benefit and minimising generation 

cost which is translated by the expression denoted by Eq. 

(14). 
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where, , ,b b b

G G Ga b c  are quadratic polynomial coefficients 

of the consumer benefit function and , ,c c c

G G Ga b c  represent 

quadratic polynomial coefficients of generation cost 

function. 

The main objective function F is expressed by the Eq. 

(15). 

 
, ,

1 1 1

max .
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where, ,W tC  represents the wind generation cost and ,

C

W tP  

represents the wind power curtailment and VCW is the value 

of curtailed wind energy in $/MWh. 

• Wind generation cost function 

 , , ,W t W t W tC d P=  (16) 

where, ,W td is the negotiated day ahead price of wind 

generation and ,W tP is the wind energy injection at bus W and 

at time step t. 

• Reference bus voltage angle 

 0ref =  (17) 

This constraint is setting the phase reference for the 

system. 

• Nodal power balance equation 
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where, shG is the conductance shunt matrix, ffB is a 

portion of the admittance branch matrix expressed by Eq. 

(26) and Eq. (29), Br is the phase shifting angle at branch 

number Br and Brb is the branch susceptance.  

, , ,, ,G t W t L tP P P  are the active power generated by conventional 

generators, the active power injected by wind generators, and 

the active power consumed at respective bus ID and at time 

step t. 

• Branch power flow equation 

 , , ,( )ij t Br i t j t BrP b   = − −  (19) 

where, ,ij tP is the active power flowing from bus i 

towards bus j, ,i t and ,i t are the voltage angles of the 

respective bus at time step t. Brb  is the branch susceptance 

expressed by Eq. (30) 

• Generating unit operational limits 

 
min max

,G G t GP P P   (20) 

where, min

GP and max

GP are defining the lower and the 

upper generator limit. ,G tP is the active generation output 

scheduled at time step t. 

• Generating unit ramping rates 
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where, Down

GR  and Up

GR  are the lower and the upper 

ramping rates for conventional generator G. 

• Wind energy availability 

 , ,0 W t W tP A   (22) 

This constraint is defining the variation range of wind 

injection ,W tP . Where, ,W tA is the available wind power at 

time step t. 

• Wind energy balance 

 , , ,

C

W t W t W tP P A+   (23) 

where, ,

C

W tP is the amount of curtailed or undispatched 

wind energy at time step t. 

• Branch power flow limits (Thermal limit) 

 
max

,ij t ijP P  (24) 

• Demand flexibility constraint 

In order to consider the price responsive demand, the 

flexibility range is set to each dispatchable load using the 

constraints below 

 
min max

,DL DL t DLP P P   (25) 

In case of load curtailment engagement, the load power 

factor is supposed to be kept constant. It worth noting that 

interruptible demand is one of the most common load 

management programs used by the ISO to deal efficiently 

with power unbalances and severe congestions. The customer 

signs a contract with the ISO to reduce the demand as and 

when requested. 

• Branch susceptance matrix 
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  t tf ttB B Cf B Ct = +   (28) 

  T T

Br f tB Cf B Ct B = +   (29) 

Connection matrices Cf and Ct used in building the 

branch admittance matrices are equal to 1 for each branch Br 

connecting bus i to bus j. otherwise, the rest of their elements 

is equal to zero. 

Brb is defined in terms of the series reactance Brx and tap 

ratio Br for branch. 

 
1

Br

Br Br

b
x 

=  (30) 

In order to implement the MIP approach in the main 

optimisation algorithm, one should simply replace the 

quadratic cost and benefit of Eq. (14) by the appropriate PLF 

model. Integrating this MIP model will result in a MILP 

problem. 

4. Piecewise Linear Modelling Framework 

In order to study the impact of using piecewise linear 

function on the OPF solution several simulations were 

conducted on a modified IEEE 14 test. Numerical 

simulations were executed in the General Algebraic 

modelling System (GAMS) environment using an 

appropriate solver. The test hardware was running Windows 

10 64 bits version operating system on an AMD A8-7410 @ 

2.5 GHz with 8GB of DDR3 RAM. 

GAMS/IBM ILOG CPLEX solver was chosen to 

provide solution to the optimisation problem whether it’s a 

Quadratic Problem or Mixed Integer Linear Problem. The 

same solver configuration was used for the entire test 

process. The dual simplex method was specified through 
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lpmethod and qpmethod GAMS/CPLEX options. Modified 

solver options are summarized in table 1in Table 1. 

Table 1. Modified solver options 

Solver option Value 

aggind 1 

Prepass 1 

Probe -1 

 

The modified IEEE 14 is composed of 5 Generating 

Companies (GenCos) and 11 Distribution Companies 

(DisCos), 20 transmission lines, 3 on load tape changing 

transformers and one shunt at bus 9. Case peak active power 

demand is increased by 50% while preserving original power 

factor. Voltage limits were adjusted to 1.05 and 0.95 for the 

upper and the lower bound respectively. A wind farm with a 

rated capacity of 100 MW is connected to the 9th bus. The 

wind farm is assumed to operate at unity power factor. The 

number of segments K is supposed equal to 7. 

The capability of the proposed approach is illustrated by 

comparing optimal power flow results obtained with 

polynomial quadratic functions against those obtained with 

piecewise linear models. Results are presented for both QP 

and MILP formulation of the DC-OPF discussed above for a 

power base of 100 MVA and bus 1 selected as reference bus. 

Fixed loads located at bus 4, 5, 9, 10, 11, 12, 13, 14 were 

converted to price responsive demands with a predefined 

flexibility of 20%. The same power factor was preserved for 

the entire operating interval (i.e., active and reactive power 

are cut by the same proportion). Due to licensing limitation 

only 18 hours of simulation has been achieved for the MILP 

formulation. 

4.1. Model Convergence 

This subsection is dedicated to discuss convergence 

characteristics and computational performance analysis. Fig. 

2, demonstrates the convergence characteristic of the 

elaborated optimisation problem. Main model statistics have 

been regrouped in Table 2. 

It is clear that the MILP formulation have generated 

more equations and variables compared to the QP 

formulation. It should be noted that for a cost or benefit 

function that is indexed to one variable and partitioned into K 

segments, the incremental method requires K continuous 

variables and K -1 binary variables. The MILP model took 

longer to solve the problem, even it requires less iterations to 

attain optimality as illustrated by Fig. 2. This time delay is 

mainly due to pre-processing operations executed by CPLEX 

before starting the solution algorithm which will be 

compensated for larger test cases. 

Table 2. Model Statistics 

Problem Formulation QP MILP 

Number of variables 1207 4483 

Number of equations 1081 4915 

Non-zero elements 3555 13635 

Iteration count 2196 640 

Completion time (s) 0.084 0.271 

Number of variables to 

time ratio (×10-5) 
6.9594 6.0450 

4.2. Load Flow Results 

In this subsection, load flow results are provided as 

follows; Voltage angles for selected buses are depicted in the 

Fig. 3. Generators’ output profiles are illustrated in Fig. 4. 

Injected and curtailed wind power are presented by Fig. 5 

and Fig. 6, respectively. Branch flows are depicted in Fig. 7. 

From the figure above, it can be stated that voltage angle 

profiles produced by the MILP formulation are very similar 

to those produced by QP formulation. 

As it can be seen from the Fig. 4, generators 3, 6 and 8 

have generated the same amount of power. Generators 1 and 

2 are approximated in a complementary manner (an 

increased generation output of generator 1 results in a 

decrease in generator 2 output and vice versa). This 
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mismatch in output power may be attributed to the fact that 

the MILP model tend to fix generators’ operating point on 

their break points. 

 
As shown in Fig. 5, MILP formulation resulted in a 

maximised wind energy injection throughout the simulation 

process on the other hand wind power curtailment is kept at 

its minimum as shown in the Fig. 6. It should be noted that 

wind curtailment has been engaged for the first six hours 

while demand was relatively low and it was supplied mainly 

with conventional generators. 

The formulation based on the piecewise linear model has 

produced identical power transactions to those generated 

based on the quadratic model, as demonstrated by Fig. 7. 

4.3. Market Prices 

In this subsection, results based on MILP model are 

compared to those produced by the QP model from an 

economical point of view. Fig. 8, illustrates the variation of 

locational marginal prices throughout the simulation process. 

Table 3 and 4 regrouped the standard deviation values based 

on QP and MILP formulation. Fig. 9, represents objective 

function values. 

Different locational marginal price patterns have been 

produced by MILP formulation for the 4th and the 5th bus 

while we had a perfect match for bus 6. 

The standard deviation parameter is employed to 

determine the price deviation from LMP mean value. Higher 

values of the standard deviation parameter may lead to 

volatile market. MILP based formulation produced inferior 

price dispersion on selected buses and time steps, as 

demonstrated in Table 3 and 4. This may be translated to a 

more consistent and stable market. 

Table 3. Standard deviation at specific bus 

Formulation QP MILP 

Bus 4 22.56 19.51 

Bus 6 0.28 0.27 

Table 4. Standard deviation at specific time step 

Formulation QP MILP 

4th step 12.68 12.64 

14th step 35.43 33.04 
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As shown in Fig. 9, MILP formulation has generated a 

good match of objective values for different loading 

conditions. 

5. Conclusion 

In this paper, Piecewise linear functions have been 

introduced to the DC-OPF as a MIP model using the 

incremental method. The overall optimisation algorithm was 

formulated as a MILP problem and it was solved by 

GAMS/CPLEX. Results generated by quadratic cost/benefit 

functions were compared to those generated by piecewise 

linear cost/benefit functions for a deregulated market 

framework. It has been found that the MILP version of the 

DC-OPF has succeeded to produce acceptable solutions 

while ensuring maximum social welfare, although it requires 

more variables. 
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