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Abstract: Integration of renewable energy sources into the distribution network and the usage of power electronics devices leads 

to the power quality (PQ) issues. FACTS devices are playing a vital role in eliminating PQ issues effectively. UPQC is one 

among the Multi-functional FACTS devices. This work presents an artificial intelligence-based hybrid control technique for the 

unified power quality conditioner (UPQC) integrated with solar PV and battery storage systems. The UPQC comprises a series 

and a shunt voltage source converter, connected with a dc link. UPQC eliminates the voltage and current based distortions 

simultaneously. The hybrid controller adapts both the Fuzzy Logic controller (FL-C) and artificial neural network (ANN). The 

Neuro-Fuzzy Hybrid Controller (NFHC) is adapted to control DC-Link voltage. The prime objectives of the proposed work are 

minimization of harmonics in current waveforms and power factor improvement, rapid action for dc-link voltage balancing, 

elimination of sag/swell in the source voltage, better performance for large disturbances, and suitable compensation for 

unbalanced networks. The performance analysis of the proposed controller was carried out with three different test cases for 

various combinations of loads, solar irradiation and compared with those of existing methods like proportional integral controller 

(PI-C), sliding mode controller (SM-C), and FL-C. The proposed method shows a superior performance in minimizing THD to 

3.6%, 4.16%, and 2.5% for all the three test cases which is much lower than other methods. 

Keywords- Power quality, UPQC, FL-C, PI-C, PWM, solar power generation, battery storage system, ANN 

1. Introduction 

The deterioration of PQ referring to the quality of 

voltage and current such as voltage sags/-swells, harmonics, 

interruptions, flickers, etc., is primarily due to the ever-

growing usage of electric gadgets and nonlinear loads. The 

total harmonic distortion (THD) is an important measure of 

PQ and must be kept as minimum as possible. Lower THD 

helps in improving the efficiency, power factor, and overall 

life of equipment [1]. A novel synchronous-reference frame 

(SRF)-based controller was developed to UPQC for 3ⱷ-

4wire distribution network in order to mitigate PQ issues 

[2]. Moreover, the development of intricate algorithms 

enables online control of active power filters and UPQCs 

through different controllers such as PI-C, FL-C, and ANN 

[3-6] for enhancing their dynamic performances with 

dynamically varying nonlinear loads. 

The solar PV integrated UPQC was developed and its 

performance was investigated with the goal of minimizing 

the THD, voltage distortions by extracting maximum power 

[7].  Various Intelligent Control structures employing fuzzy 

logic and neural networks for improving power quality in 

the distribution system was outlined [8].  A fuzzy control 

was employed for enhancing the performances of the UPQC 

in improving the PQ of the power system [9]. FLC based 

UPQC was presented to minimize the power quality issues 

and comparative analysis was carried out for both with and 

without UPQC) [10]. The Predictive phase dispersion 
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modulation technique was developed for the Cascaded H-

Bridge Multi-Level Inverter based UPQC with the objective 

of compensating the voltage sag/swell, current harmonics, 

and maintains constant DC-Link voltage [11].  

The adaptive distributed power control method was 

developed for the two H-connected setup with eight 

switches of 3-ⱷ UPQC with the aim of eliminating THD, 

voltage distortions [12]. PV/Wind/PEMFCS fed multi-level 

cascade UPQC was developed with SVPWM technique in 

the view of minimizing supply voltage distortions and THD 

to 3.98% which is lower than SPWM [13]. THD mitigation 

with UPQC at steel plant for induction-furnace load was 

investigated and to shows its superiority the comparative 

analysis was carried out with synchronous compensator. 

The proposed method reduces THD from 54.29% to 0.85% 

while DSTATCOM was able to reduce it to 4.98% [14]. 

ANFIS technique based solar integrated UPQC was 

designed for power quality improvement and performance 

analysis was carried out for different load and supply 

conditions [15]. The hybridization of both the series and 

shunt-active power filters (SAPF & SHAPF) was suggested 

for building UPQC with a goal of providing compensation 

to voltage sags/swells, VAR, and harmonic currents. The 

method adapted a control scheme involving instantaneous 

power theory [16]. The functionality of UPQC was 

modified to give equal sharing to both SAPF and SHAPF, 

thereby reducing the rating of SHAPF and the overall cost 

of UPQC [17]. An artificial neural network (ANN) based 

controller was outlined for performing CC for SHAPF of 

UPQC, wherein the ANN was developed off-line using the 

data of classical proportional-integral controller (PIC) [18]. 

An exhaustive review was performed for presenting 

different UPQC configurations and various compensation 

schemes [19].  A scheme containing UPQC was suggested 

for a micro-grid comprising PV/Wind/Fuel cell/Battery 

systems with a view of addressing PQ related problem [20]. 

The performances of various PWM strategies and different 

space vector PWM techniques were discussed [21]. The 

benefits and challenges of integrating the renewable energy 

sources into the grid and their control strategies was studied 

[22]. The effects on the smart grid technologies on the 

national grid were highlighted and few suggestions were 

also given to convert conventional grid into smart grid [23]. 

The comparison between P & O and PSO algorithms to get 

MPP for the PV system was studied for solar irradiation 

changes [24]. Experimental set-up of isolated boost full 

bridge DC-DC converter was investigated along with a set 

of low loss active snubber circuit [25]. Integration of 

renewable sources to micro grid for MPPT was studies with 

power management [26]. High voltage isolated ACDC 

converters were developed based on the modular 

technology [27]. FDNE based method was developed based 

on online least square identification algorithm along with 

digital simulators [28]. Fuzzy logic controller was 

suggested for PV-MPPT to improve the overall 

performance by maximum power point tracking [29]. 

Though several methods were suggested in literature, 

there is still a scope for developing new techniques and 

controllers for effectively mitigating the PQ issues. 

In this article, a hybrid controller involving fuzzy logic 

and ANN control for UPQC with solar PV (SPV) and 

Battery storage (BS) has been proposed with a view of 

lowering the THD and improving the power factor under 

unbalanced source voltage with sag/swell and harmonic 

loading conditions. The performances of the proposed 

Neuro-fuzzy hybrid controller (NFHC) of UPQC with SPV 

and BS (U-PVB) for a test distribution system with three 

different test cases have been studied and compared with 

existing and conventional PI controllers.  
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Fig. 1. Structure of UPQC with SP and BS (U-PVB)           

2. Proposed U-PVB 

Fig.1 illustrates the structure of UPQC supported with a 

Battery system (BS) and solar power (SP). The SP and BS 

are coupled to the DC-link of UPQC via a boost converter. 

This work proposes NFHC for exploiting both the 

properties of FL-C and ANN.  aV , bV , cV
 

are the grid 

voltages, aSV _ , bSV _ , cSV _  
are bus voltages at the source 

side,  sR , SL  are source resistance, and inductance. UPQC 

comprises both series converter (SC) and shunt converter 

(SHC). The SC is a 3ⱷ- PWM voltage source converter 

(VSC), which mitigates voltage sags/ swells, distortions, 

and supply voltage unbalances. Subsequently, the series 

RLC filter comprising of resistor seR , inductor seL  and 

capacitor seC  is connected to prevent the flow of switching 

ripples.  

Similarly, the transformers are connected to provide 

isolation between SC and the power line. It injects 

compensating voltage into the grid. The SHC consists of a 

3ⱷ- hysteresis current control, which is connected through 

a resistance shR , interfacing inductor shL , capacitance shC  

to provide isolation between the SHC and power line. The 

purpose of SHC is to restrain the current harmonics and 

control the DC-link capacitor voltage ( dcV ) with low 
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settling-time without overshoot by injecting suitable current

shi . The balanced 3ⱷ rectifier load, 3ⱷ unbalanced R-L 

load, and induction furnace load has been taken in the 

proposed work. The proposed UPQC specifications, ratings 

of loads considered are exhibited in Table- 4. 

 

Table1. BS and SPV ratings 

Device Parameters Values 

 

Li-ion 

battery 

 

 

Rated battery capacity 350 Ah 

Maximum battery 

capacity 

450 Ah 

Nominal-voltage 650 V 

Fully-charge voltage 756 V 

 

 

Solar-PV 

panel 

(SPR-

215-

WHT-U)  

 

Rated Power  214.92 W  

Open circuit voltage  48.3 V  

Short circuit current  5.8 A  

Voltage/current at 

maximum power  

39.8 V 

/5.4A 

Number of parallel 

cells 

11 

Number of series cells 18 
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Fig. 2. Schematic Diagram of external support of DC-Link 

 

2.1 External support for DC-Link 

The SPV and the BS support the DC-bus through a DC-

DC boost converter and BBC respectively for improving the 

stability of the UPQC in compensating PQ problems as 

shown in Fig. 2. The power balance equation of this 

arrangement is given by Eq. (1).  

0=−+ dclinkBSPV PPP   (1) 

Where, 

PVP  and BSP  denote the power supplied by Solar and 

Battery respectively 

dclinkP
 
represents the load at DC-link. 

 

2.1.1 Solar Power System (SP) 

The solar power system is used to convert solar energy 

into electrical energy. The SPV controller consists of a 

solar-PV panel, boost converter (BC) with MPPT shown in 

Fig.3. The production of electricity depends on solar 

irradiation incidents on PV cells. 

The MPPT is applied to extract maximum output voltage 

from the PV cell under the precise irradiance/ temperature. 

The basic model of the PV cell is as shown in Fig. 4. The 

output power PVP
 
of the PV panel can be calculated by Eq. 

(2)  

PVPVPV IVP .=   (2) 

Where, PVV , and PVI
 

are the solar PV panel output 

Voltage and Current. In this work, MPPT adopts the well 

known Perturb and observes (P & O) method to control the 

duty cycle (D) of the boost converter. The ratings of SPV, 

BS are given in Table-1. 
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Fig. 4.  Model of PV solar cell. 

 

2.1.2 Battery storage (BS) 

The BS consists of a battery and a bidirectional DC-DC 

buck-boost converter with PI-C, Which is responsible for 

maintaining the DC bus voltage as shown in Fig. 5. The state 

of charge (SOC) is given by Eq. (3). 

)1(100 dtQiSOC BS+=   (3) 

The battery functions in two stages; charging and 

discharging, which depend on the power produced by solar. 

The working of the battery depends on energy constraints 

which are determined by the SOC limits given by Eq. (4). 

maxmin SOCSOCSOC    (4) 

Where,   

Q  is the battery capacity. 

BSV
 
indicates the battery voltage. 

BSi
 
indicates the battery current. 
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Fig. 5. Battery system with Bi-Directional Buck-Boost 

controller 

PI1, PI2 controller gains are heuristically chosen as 1pK

=1.5, 
1i

K =0.1, 2pK =1.477 and
2i

K = 3.077 respectively. 

Table 2 explains the power distribution under different 

operating conditions of the U-PVB. 

 

Table 2. Power Distribution at DC-link 

Level of solar power 

generation 
Power Distribution 

Solar power generated 

>DC-link power 

demand 

BS charge still it attains 

maximum SOC 

Solar power generated = 

DC-link power demand 

SP alone supplies the DC-

link's power demand.  

Solar power generated 

<DC-link power 

demand 

BS supplies the difference 

power till it reaches the 

lowest discharging limit 

No solar generation 
BS supplies DC-link's 

power demand. 

 

2.2 Shunt Controller 

The role of the shunt-VSC is to suppress the supply 

harmonic currents by injecting suitable compensating 

current at PCC and to maintain constant dc-link voltage. 

The hybrid controller for shunt-VSC adapts (i) abc-dq0 and 

dq0-abc domain conversions; (ii) NFHC is used for 

reducing current harmonics and maintaining dc-link 

voltage. The load current is converted into the dq0 domain 

employing the phase and frequency information of the grid 

voltage using PLL. NFHC compares dc-link voltage with a 

reference voltage and transforms the error voltage into a 

required change in current for maintaining the dc-link 

voltage. The d-th component load current is added with the 

error current signal derived from NFHC to produce 

referenced current. The dq0 components are again 

converted into abc domain, which is compared with the 

actual load currents in a hysteresis current controller to 

produce gating pulses for shunt VSC. The schematic of the 

NFHC is depicted in Fig. 6.  As the transformation of 

currents from abc to dq0 and then to abc domain are 

available in the literature, the design of the NFHC control 

part is explained below:  
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Fig. 6. NFHC for Shunt converter 

2.2.1 Proposed NFHC 

The NFHC is a combination of a fuzzy logic control 

mechanism whose process is inspired by the neural network 

technique. The fuzzy logic controller is based upon 

mathematical reasoning that works on designated linguistic 

rules. The fuzzy logic control consist set of fuzzy rules 

which export the output as linguistic variables instead of 

numerical values. The fuzzy logic controller operates on 

three mechanisms fuzzification, inference, and 

defuzzification. Fuzzification is the process of conversion 

of numerical values into linguistic variables. A set of 

membership functions are defined to evaluate the variables. 

A set of membership functions (MF) are defined to evaluate 

the variables. Based upon the membership functions the 

variables take a specific linguistic value. The membership 

functions and the set of rules are determined at the inference 

stage. Based on the input, the output takes any one of the 

values in the defuzzification stage.  The overall fuzzy 

controller is shown in Fig.7. 

The Takagi–Sugeno fuzzy model takes error (E) and 

rate of change of error (COE) as inputs. The error is 

calculated by Eq. (5).  Triangular MF is used for an error 

and change in error of the FL-C as given in Figs.8 and 9 

respectively. The linguistic variables for E ,COE , and D  

are given as ‘‘PSH” – Positive-High, ‘‘PSM” – Positive-

Medium, ‘‘PSL”- Positive-Low, ‘‘ZO” – Zero, ‘‘NEL” – 

Negative-Low, ‘‘NEM” –‘‘Negative-Medium, and ‘‘NEH” 

– Negative-High. Fuzzy "IF-THEN" rules are developed 

using these linguistic variables. The value of the DC link 

voltage takes values in-between any of these linguistic 

variables. The DC link voltage is made to be operated within 

a set of membership functions hence a total of 49 possible 

sets are obtained which is given in Table 3. 

6,5,4,3,2,1; =−= iVVE dc
i

dc
ref

  (5)  

The neural network is an adaptive control technique 

that works identical to the human brain. The neural network 

controller can train itself based upon the different working 

conditions. The neural network consists of interconnected 

neurons which are trained to work based on requirement. 

The network consists of input, an output layer, and 

numerous hidden layers are embedded between the input 

and output layers. These hidden layers are allocated with 

specific weights and based upon the weights of the layer the 

priority is assigned at each stage.  
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Table 3. MF mapping for DC-Link voltage 

E 

COE 

PSH 
PS

M 
PSL ZE NEL 

NE

M 
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NEH ZE 
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L 

NE

M 
NEB NEH NEH NEH 
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NEH NEH NEH 

NEL 
PS

M 
PSL ZE NES 
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PSL ZE NEL NM NEH 

PSL PSH PSH PSM PSL ZE NEL 
NE

M 

PSM PSH PSH PSH PSM PSL ZE NEL 

PSH PSH PSH PSH PSH PSM PSL ZE 

 

The proposed adaptive neuro-fuzzy controller is a more 

reliable adaptive controller that combines the functionality 

of both the neural network and fuzzy logic mechanism. The 

inputs are first trained according to the membership 

functions and then the inputs are fed to the neural networks 

and based upon the number of hidden layers the controller 

gets trained and output is got after proper evaluation. The 

overview of the proposed NFHC is shown in Fig.10. The 

triangular inference output is trained by the hybrid neural 

network algorithm to generate the optimized output. In the 

PV integrated UPQC system dc
ref

V  is compared with 

reference dc
ref

V  signal, the DC link voltage sensed from 

the DC link capacitor is fed to the NFHC controller. The 

ANN system is trained with the Levenberg-Marquardt 

algorithm. 

 

Fuzzy if-----Then 

rule base

Inference 

System
Fuzzification NFHC 

Training

Fuzzy input Clustering
Crisp input

Crisp output

Voltage/ Current PWM Ref signal

Real-time Data

PWM

Fig. 10. Overview of NFHC 

The NFHC system can be modeled mathematically as 

two input parameters ( u and v ) with an AND operator to 

get the output ( z ) can be expressed as Equation (6). 

IF u  is X  and v  isY , then z  = ),( vuf   (6) 

There exist five layers, consider the membership 

function at the fuzzification layer with first input u  is 

expressed as )(uxj , the membership functions used is 

denoted by j . The AND operator is implemented in the 

second layer, the neurons at the second layer are given in 

Equation (7).  

)()( * vuw yjxji =   (7) 

The third layer contributes to the normalization of the 

values from the second node. The normalized values in the 

third layer are expressed in Equation (8).  

21 ww

w
w i

i
+

=   (8) 

The self-adaptive property of the ANN controller is 

implemented by using the inference parameters ),,( iii cba

in the fourth node through Equation (9). 

)( iiiiii cvbuawfw ++=   (9) 

The inputs get summed up at the fifth layer to generate 

the output given in Equation (10).  

=
i

ii fwf    (10)  

The block diagram representing the five layers of the 

NFHC system with two input parameters is as shown in 

Figure 11. The fuzzy rules that apply to the structure are 

given as Eq.  (11) - (12).  

 If u  is 1X  AND v  is 1Y , then 1111 cvbuaf ++= (11) 

If  u  is 2X AND v  is 2Y ,then
2222 cbaf vu ++= (12)  

The NFHC system works based on the above 

mathematical equations. 

 

2.3 Series Controller 

The control signals are generated by comparing the 

load voltage with reference voltage after transformations 

from the abc-to-dq0 domain and then the reference voltage 

signals are generated with PI-C in the d-q domain and again 

converted to abc domain, as shown in Fig. 12. The control 
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signals serve as gating pulses for performing PWM in a 

series converter. The kp, ki values of PI-C are chosen 

arbitrary as 1.32, 0.01 respectively. 
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Fig. 11. Structure of NFHC 

3 Results and Discussions 

The proposed UPQC with SP and BS (U-PVB) was studied 

on a 3-ⱷ AC distribution system. The Simulation model for 

the U-PVB has developed in Matlab 2016a is shown in Fig. 

13. Three different test cases with various combinations of 

loads, conditions like sag/ swell and, variation in solar 

irradiation from 1000W/m2 to 800W/m2 as given in Table 

5, were considered for studying the performances of the U-

PVB. 
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The source voltage is considered balanced with voltage 

sag/ swell, disturbance for cases 1-2, and unbalanced for 

case 3. The solar irradiation variation is as shown from 

case1 to case2. The results are compared with existing 

methods available in the literature. The THD for source 

current ( SI ) of the U-PVB was obtained for all the test cases 

and compared with those PI-C, SM-C, FL-C, and NFHC in 

Fig.14. The power factor (PF) at the source side of the 

proposed NFHC calculated by Eq. (16) for all test cases and 

comparison is as shown in Fig.15. 

2
1

1
*cos

THD

rPowerfacto

+

=     (13) 

Where, 


 is the measured angle between voltage and 

current, while 2
1

1

THD+  

represents displacement factor. 

 

 

Table 4. UPQC specifications and loads 

Source Voltage: 415V , Frequency: 50Hz  

Resistance: 0.10Ω , Inductance: 

0.150mH 

Series 

compensator 

Resistance: 1.0Ω , Inductance: 3.60 

mH ; Capacitance: 60.0 µf 

 

Shunt 

compensator 

Resistance: 0.001Ω , Inductance: 

2.15 mH, Capacitance: 1.0 µf , VSC 

hysteresis controller band: 0.010A 

Dc-Link Capacitance: 9400.00µf ; Voltage: 

700.0V 

 Balanced-3 ⱷ Rectifier Load: 30.0Ω 

& 20.0mH 

 

Loads  

Unbalanced-3 ⱷ RL Load 

R: 10.0, 20.0 &15.0 Ω; L: 9.50, 10.50 

& 18.50 mH. 

Induction Furnace load: LC = 400.0 

mH,50.0 Μf, RL = 10.0 Ω,100.00 

mH 

 

The source voltage ( SV ), injected voltage ( injV ), load 

voltage ( lV ), dc-link voltage ( dcV ), load current ( li ), 

injected current ( inji ), source current ( Si ) waveforms 

during steady state as well as  sag/swell, disturbance 

conditions of the U-PVB for test cases 1-3 are shown in Fig. 

16-18. 

 

 

Fig. 13. Simulink model of UPVB along with test system 

In case1, the voltage was sagged by 30% during the 

interval 0.2-0.3s and swelled by 30% during 0.4-0.5s. The 

voltage disturbance was introduced during 0.6-0.7 s, as 

shown in Fig. 16(a). Moreover, the load current was non-

sinusoidal but balanced with a THD of 22.67% and a PF of 

0.789 due to nonlinear rectifier load is presented in Fig. 

16(b). It can be seen from Fig. 16 that the U-PVB can 

provide a more stable load voltage and sinusoidal source 

current. Such enhancement in current waveforms also 

reflected in the THD and PF values the THD of the load 

current was reduced from 22.67% to 3.60%, which is 

smaller than those of the existing methods [18], and the PF 

rose from 0.789 to 0.989 by injecting appropriate series 
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voltages and shunt currents. It is also seen from Fig. 16 (c) 

that under constant irradiation of 1000W/m2 the NFHC was 

able to quickly settle the dc-link voltage to the steady-state 

around 0.04 s and maintain the voltage constant.  

In case2, the voltage sag, swell, and disturbances 

introduced are similar to case1, shown in Fig. 17(a). Here, 

the load current was sinusoidal but unbalanced with a THD 

of 18.88% and a power factor of 0.623 due to nonlinear 

unbalanced load as presented in Fig. 17(b). It is seen that the 

U-PVB was able to eliminate sag/swell and disturbances 

effectively and reduce THD from 18.88% to 4.16% thereby 

improving PF value from 0.623 to 0.985 as given in Fig. 16-

18 respectively by injecting suitable shunt currents. It is also 

seen from Fig. 17 (c) that when irradiation variation from 

1000W/m2 to 600 W/m2 PV current reduces from 14.87A to 

8.928A and voltage reduces from 19.98V to 9V the U-PVB 

was able to quickly settle the dc-link voltage to the steady-

state voltage around 0.04 s and maintains the voltage 

constant. 

In case3- the unbalanced supply voltage under constant 

irradiation of 1000W/m2 was considered shown in Fig. 

18(a). The load current was sinusoidal and unbalanced with 

a THD of 11.91% and a PF of 0.875 Fig. 18(b). The NFHC 

is able to reduce the THD from 11.91% to 2.50% and 

improve PF from 0.875 to 0.999 by injecting suitable shunt 

currents and maintaining the voltage is constant as shown in 

figure 18(c). It also settles the dc-link voltage to the steady-

state voltage around 0.04s given in table 6. The THD 

spectrum for all test cases is as shown in Fig.19. 

 

Table 5. Test cases considered 

State of the system  Case1 Case2 Case3 

Balanced source voltage  ✓ ✓  

Unbalanced source voltage   ✓ 

Voltage Sag/ Swell, 

Disturbance 
✓ ✓ 

 

Constant 1000 W/m2 

irradiation 
✓  ✓ 

Irradiance from 1000 W/m2 to 

800 W/m2  
 ✓ 

 

Balanced-3 ⱷ Rectifier Load ✓ ✓ ✓ 

Induction Furnace load   ✓ 

 

Fig. 14. THD comparison bar chat 

 

 

 

Table 6. Settling-time of DC-Link voltage 

Case PI-C SM-C FL-C NFHC 

1 0.191 0.102 0.080 0.050 

2 0.202 0.104 0.080 0.050 

3 0.272 0.100 0.060 0.050 

 

 

Fig. 15. PF for test cases 

 

(a) SV , injV , lV  

 

(b) li , inji , Si  
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(c) PVI  , PVV , dcV  , G  

Fig. 16.  Waveforms of proposed system for case-

1 

 

(a) SV , injV , lV  

 

(b) li , inji , Si  

 

(c) PVI  , PVV , dcV  , G  

Fig. 17. Waveforms of Proposed system for case-

2 

 

(a) SV , injV , lV  

 

(b) lI , injI , SI  

 

(c) PVI  , PVV , dcV  , G  

Fig. 18. Waveforms of Proposed system for case-3 

 

 

Case 1 
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Case2 

= 

 

Case 3 

Fig. 19. THD spectrum for case studies 

 

3. Conclusion 

A hybrid controller involving FL-C and ANN controller 

was proposed for U-PVB. The design of  BS and SP were 

given in addition to developing NFHC for shunt SVC 

controllers with a goal of achieving fast action in balancing 

dc-link voltage, eliminating sags/swells in supply voltage, 

minimizing the THD in load voltage and source current, and 

improving the power factor under balanced and unbalanced 

supply voltage conditions. The study on three test cases with 

different load combinations, balanced and unbalanced 

source voltages, voltage sag and swells,  and variation on 

irradiation with constant temperature clearly exhibited that 

the NFHC was able to improve power factors almost unity. 

Moreover, the performance in minimizing THD to 3.6%, 

4.16%, and 2.5% for all the three test cases were 15% better 

than those of the existing controllers. In addition, the NFHC 

took a smaller time to reach the steady-state DC-link 

voltage which is 50% less when compared to PI-C, SM-C, 

FL-C. The proposed model can further be studied on 

distribution systems with the micro-grid as future work. 

Moreover, the hybrid controller concept can be extended for 

the series VSC of UPQC.  
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