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Abstract- This paper proposes a sensitivity matrix-based formulation methodology for decentralized optimal reactive power 

dispatch problems on multi-region interconnected power systems. A large power system is divided into multi-region, with 

region operators agreeing on the progression of variables and determining optimal local control variables using the local 

system model and a communication network with its adjacent control regions. The constrained objective function is substituted 

with a sequence of unconstrained sub-problems using the augmented Lagrangian approach to achieve global optimization. To 

specify control variables, such as reactive power injections, and transformer tap positions, a linearized objective function with 

a set of local constraints must be addressed in each region. A nonlinear optimization algorithm using function fmincon in 

Matlab is utilized to solve the mathematical model effectively and is applied to the modified IEEE 30-bus system to 

demonstrate the validity and effectiveness of the proposed method. 

Keywords - Decentralized optimization; multi-region interconnected power system; network partitioning; reactive power 

dispatch; voltage control. 

 

1. Introduction 

As a sub-problem of optimal power flow (OPF), the 

optimal reactive power dispatch (ORPD) problem 

significantly improves the system security, voltage profile, 

power transfer capability, and overall network efficiency. 

The ORPD's goal is to fine-tune the control variables to 

achieve permissible voltage profiles and minimal power 

losses while lowering operational costs Hata! Başvuru 

kaynağı bulunamadı.. By minimizing the real power loss, 

the ORPD helps to reduce the system congestion. And 

adjusting transformer tap settings, generator voltages, and 

reactive power sources like flexible alternating current 

transmission systems (FACTS) are all part of this strategy. 

The power system operators are in charge of operating and 

maintaining the system voltage profile, hence requiring a 

sufficient amount of reactive power to manage voltage 

violations in the transmission grid Hata! Başvuru kaynağı 

bulunamadı.,[3]. In typical circumstances, both the voltage 

profile and the active power losses are determined by the 

system's reactive power. Active power losses minimization 

must be considered a substantial goal when operating a 

power system efficiently Hata! Başvuru kaynağı 

bulunamadı.–Hata! Başvuru kaynağı bulunamadı.. As a 

result, regional operators must coordinate control operations 

while remaining local information relevant to system 

infrastructure undisclosed [12]. The objective function (OF) 

in this paper is the minimization of the transmission power 

losses while ensuring that the voltage remains within 

permissible limits. 
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Various studies have been made to address the ORPD by 

using centralized approaches, namely the centralized optimal 

reactive power dispatch (C-ORPD). These approaches have a 

significantly increased requirement of computation, storage 

resources, and communication bandwidth along with the size 

of power systems. Furthermore, the system data are gathered 

and processed by the operation center; therefore, the data of 

all regions must be exposed. As a result, the traditional 

centralized optimization is inapplicable to the multi-region 

interconnected power systems. The distributed optimization 

method known as fast calculation speed, high robustness, and 

the decomposition capability is a suitable solution to the 

multi-region optimization problem. This paper presents a 

distributed optimization scheme using the Lagrangian 

decomposition algorithm and augments the OF by including 

global optimization of linearized multi-area power systems 

Hata! Başvuru kaynağı bulunamadı.–Hata! Başvuru 

kaynağı bulunamadı.. The goal is to keep centralized 

coordination among regions, considering loss reduction as 

investigated distributed optimization while safeguarding each 

region's important data. Each region's OF efficiency is due to 

the application of sensitivity of active power loss to the 

system's control variables. In the initial stages, sensitivities 

of the loss to the control variables are employed, which are 

generated using the linearized system model Hata! Başvuru 

kaynağı bulunamadı., [17]. Finally, this paper addresses a 

centralized optimization problem using the decomposition 

approach. 

The classical technique for tackling constrained 

optimization problems is lagrangian decomposition. The 

augmented Lagrangian approach simulates a Lagrange 

multiplier by adding the term to the unconstrained objective 

[18]. This method has been widely utilized to solve various 

engineering problems, particularly in the field of power 

systems Hata! Başvuru kaynağı bulunamadı.–Hata! 

Başvuru kaynağı bulunamadı.. The benefit of this method 

is that local grid data remains confidential. However, because 

it takes iterating several times to reach the optimization, it 

degrades computational efficiency.  

Strategies using nonlinear power flow (PF) equations in 

solving the ORPD are frequently used; however, they usually 

suffer from a significant computation burden due to 

repetition of the PF calculation, making them unsuitable for 

real-time applications [13]. To overcome this shortcoming, 

the ORPD problem is formulated by using sensitivity 

analysis in this paper. 

In this paper, the augmented Lagrangian technique was 

developed and studied using loss minimization as the OF. An 

unique formulation employing sensitivity analysis to 

characterize the decentralized optimal reactive power 

dispatch (D-ORPD) is presented. Not only can our method 

handle decentralized problems of optimal reactive power 

dispatch, but it can also tackle decentralized real-time 

computing difficulties in the multi-region interconnected 

power systems. Furthermore, the D-ORPD employing the 

proposed formulation is applied on a modified IEEE 30-bus 

system, and the control scheme’s performance has been 

investigated for numerous scenarios, followed by a 

conclusion. 

2. The RPD Problem’s Formulation 

2.1. Objective Function 

A formulation of the D-ORPD problem is proposed in 

this study to deal with the inequality constraints and reduce 

active power losses across the power grid. The objective 

function J is loss minimization, and the voltage profile is 

allowed from 0.9 to 1.1 p.u. Sensitivities achieved by 

linearizing the PF equations are used to introduce the OFs in 

(2) in a linearized form. Changes in the control variables 

( )i kw  are obtained by minimizing the OFs (2). 
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where Na is the number of control regions in the 

interconnected power system, /loss

i iP w    and /i iv w  

are sensitivities of the loss and the voltage to control 

variables of the region i, respectively, and 
'

ijv  is voltage 

magnitude at boundary nodes, linked to the region i, of 

adjacent regions j which is desired by the region i. ui 

represent control variables of the region i. 

The sensitivities in the D-ORPD can be calculated in two 

layers, as shown in (4). 
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According to the number of branches Nbr  of the region 

i, the active power loss 
loss

iP  of region i is presented by 
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where Gk  is the branch k’s conductance which links buses a 

to b. 

The equation (4) is then used to calculate the partial 

derivatives of 
loss

iP to the voltages at nodes a and b as 

follows: 
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The sensitivities of the loss to all node voltages in the 

system are formed by adding partial derivatives for each bus. 

The control variables' vector iw  is the result of 

combining the inter-region variables 
'

ijv , generator reactive 

power injection ,g iq , and tap ratio ,tap i . As a result, the 

second layer was defined by calculating 03 sensitivities: 
'/i ij v v , ,/i g i v q , and ,/i tap i v  .  

 It is obvious that 
'/i ij v v  is a unity vector and 

,/i g i v q  is the Jacobian matrix inversion calculated 

below: 

Injection of reactive power into bus k 
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Then the Jacobian matrix is structured in the following 

way: 
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Changing the transformer's tap ratio is equal to injecting 

two reactive power sources into the transformer terminals in 

this paper. As a result, the sensitivities ,/i tap i v   are 

comparable to the following two levels of sensitivities: 

 
,
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The sensitivities ,/i tap i v q  are a sub-matrix of the 

g,/i i v q . While ,/i tap i v   is calculated as follows: 

Due to the direct involvement of two nodes in the tap 

changing process, transformer tap change is more 

challenging to simulate. Consider the transformer in Figure 1 

that connects nodes a and b with a tap  . An equivalent   

circuit can be used to represent this branch. 

The branch admittance is: 

 
ab ab aby g jb= +

 
(12) 

From Hata! Başvuru kaynağı bulunamadı.1, the 

injection of complex power to node a is 

 *
* 2( )a a a a a a a abs p jq v i v v y  = + = = −   

(13) 

where * shows the complex conjugate. Hence, 

 2 2 2 2( ) ( )a a ab a abs v g jv b   = − − −
 

(14) 

Similarly, node b is shown as 

 2 2(1 ) (1 )l l ab b abs v g jv b = − − −
 

(15) 

From equations (14) and (15), we have 

 2 2( )a a abq v b = − −
 

(16) 

 2 (1 )b b abq v b= − −
 

(17) 

If aq  is the change of aq in regards to tap position and 

voltage changes, then 
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However, for the PF in Hata! Başvuru kaynağı 

bulunamadı., we have 

 
ta aq q = −

 
(19) 

So, differentiating (16) with respect to av  and  ,  

 2 22 ( ) (2 1)ta ab a a ab aq b v v b v    = −  + − 
 

(20) 

Similarly, differentiating (17) with respect to bv and   

 22 (1 )tb ab b b ab bq b v v b v  = −  − 
 

(21) 

Equation (20) can also be rewritten: 
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Fig. 1. Equivalent   circuit for the tap changing 

transformer  
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Since  is close to unity, av and  are small, 

therefore 

 
2ta
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In the same way, from equation (21),  
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2.2. Constraints 
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where  and are the maximum and minimum of 

voltages that are permitted in region i respectively. The 

aforementioned equations' constraints are the result of 

linearizing the PF equations. They depict voltage limitations, 

reactive power injections through devices, and transformer 

tap-positions. The regional operators would analyze and re-

calibrate these parameters after each local optimization. 

 

In real-world circumstances, power systems cover 

thousands of kilometers, sometimes even countries and 

continents, mostly for the sake of improved use, efficiency, 

and management. When these regions are divided into 

several regions, each operated by a local operator, a network 

of numerous operators with local control emerges. For a 

system to be efficient and reliable, these operators must 

communicate with one another. Nonetheless, regional data 

such as reactive power reserves, power generation capacity, 

and infrastructural details, among other things, must be 

safeguarded against one another. Assume jiv  is the 

magnitude of the voltage at these buses, but is expected by 

its region j. Achieving consensus in these locations entails 

negotiating the voltage profile at the tie-lines, as shown in 

equation (25). The regions are connected via tie-lines or 

linking buses, as shown in Figure 2, and the voltages 

ijv solution to the previous equations for Na regions regulate 

the entire system. 

3. Augmented Lagrange Method 

The augmented Lagrangian methods have obtained large 

attention in the recent past for solving constrained global 

optimization problems. In the same way that penalty methods 

replace a constrained optimization problem with a set of 

unconstrained problems and add a penalty term to the OF, 

the augmented Lagrangian techniques add yet another term, 

aiming to simulate a Lagrange multiplier. The augmented 

Lagrangian is similar to, but not identical to, the Lagrangian 

multiplier approach. 

Due to the boundary constraints, the overall control 

problems (1)–(3) and (25)–(29) cannot be divided into sub-

problems utilizing the variables of the region i only. As a 

result, in this section, a distributed algorithm based on the 

augmented Lagrangian method is developed and presented to 

deal with the global OF of the entire system by addressing 

local problems independently. 

To integrate the boundary constraints of equation (25) 

into the global goal function (1), the augmented Lagrangian 

technique is employed.  The global goal, as well as the losses 

and inter-region constraints, can now be displayed in (30). 
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with constraints ranging from (26) to (29) and a penalty 

parameter   penalizing interconnecting constraint breaches. 

Then the equation (30) is rewritten in the form of 

individual sub-problems 
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where the subscript prev denotes the value of the variables at 

the previous iteration step. 

Region 1
Region 2

Region 3

'

12 21=v v

'

23 32=v v

'

31 13=v v

'

21 12=v v

'

13 31=v v

'

32 23=v v

 

Fig. 2. Multi-regions interconnected power system 

managed by decentralized algorithm based system 
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Figure 3 depicts the algorithm for implementing the 

augmented Lagrangian method. To identify the optimal local 

and boundary variables, each region first updates its 

sensitivity and then minimizes its issue (31) while 

unchanging the variables of the other regions.  After the last 

region finishes solving its sub-problem, termination 

requirements such as the condition on the maximum 

permissible number of iterations in (34) or the boundary 

variables in (35) are checked. The selected actions are carried 

out if the requirements are met. In the case of the 

requirements unfulfilled, the equations (32) and (33) are used 

to update the Lagrangian multipliers, and the procedure is 

repeated. 

 

 ( )'

ij ij ij ji= +  v - v  (32) 

 ( )'

ji ji ji ij= +  v - v  (33) 

 
maxloop loop  (34) 

 
'

ij ji  
v

v - v  (35) 

with , ai j N    

4. Simulation Results 

4.1. Test System 

The proposed method was tested using a modified IEEE 

30-bus system from [22]. As illustrated in Figure 4, the test 

system is divided into three sections, totaling 10 tap-changer 

equipped transformers, each with 02 generators and multiple 

loads. There are seven tie-lines, which correlate to fourteen 

boundary variables. Table 1 gives the details of the 

partitioning of the IEEE 30-bus system. It also gives details 

on the number of boundary buses and tie lines present in 

each system. 

 

4.2. Simulation Process 

The simulation results displayed below are based on 

Table 2's control parameters. They are divided into global 

parameters that apply to the global optimization and 

augmented Lagrangian parameters that apply to the 

augmented Lagrangian approach. 

 

 
A larger 

stepN  may imply stronger performance but also 

a greater computational load. In this case, 4stepN =  is chosen 

intuitively. Furthermore, it is expected that the controller's 

calculating time to provide values of the control variables is 

within 2 seconds. 

Table 1. Details of the IEEE 30-bus system and its 

partitioning 

No. of nodes 30 

No. of regions 3 

No. of transformers 10 

Nodes in each region 11, 10, 9 

No. of tie-lines 7 

Boundary nodes in each 

region 
3, 4, 3 

 

 
 

Fig. 4. Modified IEEE 30-bus test system. 

Region i addresses its problem in (31)

Transmit the inter-region 

variables to its adjacent regions

ai N

End

0i =

Using (32)-(33) to 

update Lagrangian 

multipliers 

0loop =

Check termination 

condition in (34) or 

(35)?

Local 

regions

Update sensitivities

Transmit Lagrangian 

multipliers to local 

areas
Communication 

links

1loop loop= +

1i i= +

 

Fig. 3. Flow chart of implementation algorithm 
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4.2.1. Performance comparison between decentralized 

method and centralized method 

Figure 5 shows that the centralized method delivers a 

greater convergence value of the losses compared to the 

decentralized method. This is most likely since the greater 

the  v
 value of the consensus on boundary variables in (34) 

is, the poorer the performance of reducing losses. Moreover, 

the convergence speed of the centralized method is quicker. 

Furthermore, the simulation results demonstrate the 

potential of the proposed control algorithm in promoting 

regional collaboration to attain the global goal. Figure 5 

shows that the loss in region 3 (D-Region 3) shows a trend 

toward a rise from the control circle 12, whereas the losses in 

other regions fall and the entire system reduces in response. 

 

 

4.2.2. Effects of global parameters on the control 

performance 

To investigate the effects of control settings on 

performance, we simulate each scenario below with only one 

of the parameters altered while keeping the other parameters 

fixed. The settings are presented in Table 2. 

Figure 6 shows loss convergence for various voltages 

with varied change limits. The narrower constraints, as 

illustrated below, result in a slower convergence speed but a 

higher convergence value within the first control circles, 

which is far from optimal. Because the algorithm 

performance is inversely proportional to the limitations, 

significant limits frequently cause the convergence value to 

fluctuate, increasing the probability of triggering the 

termination condition (34). 

As shown in Figures 7 and 8, the greater change in 

magnitudes of control variables may harm the algorithm’s 

performance. It is obvious since calculated sensitivities are 

utilized for modest changes in control variables. 

 

 

 
Fig 7. Convergence of losses with varying reactive 

power injection limits from generators 

Table 2. Setup parameters 

Global 

parameters 

loss

i  (MW) 0.01 

max

iv  &
min

iv (p.u.) 0.03 

max

iq  &
min

iq (p.u.) 0.02 

max

i  &
min

i (p.u.) 0.002 

Parameters 

of multi-

regions 

system 

  (p.u.) 0.0005 

   9.5 
maxloop   300 

 
 

Fig. 6. Convergence of losses with varied voltage limits 
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Fig. 5. Comparative convergence profiles of power loss 

between centralized and decentralized methods 
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4.2.3. Effects of multi-region parameters on the 

performance  

It appears that selecting the suitable value of the penalty 

parameter   to get the best performance is very 

challenging, as shown in Figure 9. Furthermore, it should be 

noted that the penalty parameter   is strongly related to the 

performance of the control scheme. 

 

5. Conclusions 

In this paper, a novel formulation of the D-ORDP based 

sensitivity analysis is presented to enable the decentralized 

optimization method. The idea for a decentralized method-

based system came from the necessity for protection and 

coordination of sensitive data in vast interconnected power 

systems for reliable power system operation. Loss 

minimization was used as the OF to build and analyze an 

effective augmented Lagrange decomposition technique. As 

shown in the simulation results, the proposed strategy not 

only safeguards local data but also can be comparable to the 

traditional centralized method. While the centralized method 

achieves a better loss convergence value, the proposed 

control algorithm is shown to promote regional collaboration 

in order to achieve the global goal. 

Improper control setting selection, on the other hand, 

decreases performance. In this paper, these parameters were 

chosen by trial and error, however precise estimation of these 

parameters will help to reduce computation time and improve 

the algorithm's performance. Furthermore, due of its reliance 

on the updating of the Lagrangian multipliers, the augmented 

Lagrange decomposition approach has the drawback of no 

longer being separable across subsystems. We can instead 

employ the alternating direction method of multipliers, 

which has been widely adopted in numerous industries due to 

its ease of decomposition and convergence guarantees on a 

wide variety of problems, to accomplish both separability 

and robustness for distributed optimization.  
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