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Abstract- Transport sector electrification is probably the most viable choice for minimizing transport emissions and so Plug-in 

Electric Vehicle (PEV) growth is expected to increase dramatically for the decades to come. The massive use of electric 

vehicles corresponds to a rise in the number of charging stations, which has a significant effect on the electrical grid. The 

integration of Distributed Generators (DGs) with the EV charging station and the optimal scheduling of DGs in the system for 

an intermittent load demand is a major problem. In this paper an optimal placement of EV Charging Station (EVCS) and DGs 

in IEEE 33 bus system was proposed by using Loss Sensitivity Factor (LSF) approach and optimal Scheduling of DGs for a 

24-hour load profile is carried out by Arithmetic Optimization Algorithm (AOA). The proposed hybrid model attempts to 

schedule both the EVs and DGs for the reduction of the losses in the power and achieve an improved voltage profile. Due to 

the stochastic nature of EV load demand and DGs in the distribution system, several analyses were conducted to analyse the 

persistence of the proposed methodology. Finally, the optimal scheduling of DG in 24-hour load setting for an IEEE 33 bus 

system is presented. 

Keywords Electric Vehicle Charging Station (EVCS), Distributed Generator (DG), Arithmetic Optimization Algorithm 

(AOA), Optimal Scheduling. 

1. Introduction 

Due to the depletion of the fossil fuels and the 

environmental consequences connected by its usage, the 

number of electric vehicles (EVs) are expected to grow 

dramatically over the upcoming years. The global 

electrification of transportation has been encouraged due to 

the economic and environmental difficulties associated with 

fossil fuel transportation. As a result, initiatives to reduce 

polluting emissions in cities have increased and are being 

coordinated. As per current trends, electric vehicles (EVs) 

are a promising technology for road transportation, because 

of its technological and environmental advantages; so, the 

EVs are becoming a viable substitute for conventional 

vehicles. In contrast to internal combustion engines, Electric 

vehicles are becoming more popular due to its enhanced 

energy efficiency and reduced environmental effect [1]. The 

increasing penetration of electric vehicles has resulted in a 

rise in the number of charging stations, which has a 

significant influence on the electrical grid. Various charging 

techniques and grid integration approaches are being 

developed to reduce the negative impacts of EV charging 

simultaneously enhancing the potential advantages of EV 

grid integration. The present available energy is not able to 

meet the demand, in the future an electric vehicle consumes 

more energy than a typical household appliance, Industries 

etc. Voltage drops and power flow violations on the 

Distribution System (DS) may exist as a result of vehicle 

charging. In the case of unregulated charging, DS peak load 

demand will coincide with EV charging, causing a load 

effect on the distribution network. Due to growing demand 

for electrical energy, Distributed Generation (DG) sources 

have become more significant in distribution networks 

(DNs). The placement and size of DGs will have an 

influence on power distribution system losses, voltages. The 

improper planning of DGs harm the distribution system, 
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determining the best position and size of DGs in the DNs 

will experience a severe problem by the Distribution system 

operators. By overcoming the difficulties created by their 

fluctuating nature, a proper mix of solar, wind and Battery 

Energy Storage System (BESS) based DGs with the 

coordinated charging strategies may enhance the 

effectiveness and sustainability of the system. Due to the 

unpredictable nature of the EV load demand on various 

charging patterns, the optimal scheduling of DGs plays a 

vital role for effective operation of the DS. The formulation 

of a multi-objective optimization problem having, optimal 

placement of DG and its optimal scheduling are necessary 

with the integrated distribution network for stable and 

reliable operation of the DS.  

2. Literature review 

In this study [2] the use of electric vehicles and batteries for 

capturing the fluctuations of energy prices and load demands 

is proposed and the framework is focused on developing a 

long-term and efficient method for managing the resource 

requirements.  A novel approach for various uncertainties 

related to electricity markets, such as wind turbine 

deployment and solar system demand is presented. Hybrid 

energy sources making use of various resources such as 

solar, wind, and storage are more efficient than traditional 

approaches. A test case is also carried out. to study the 

optimal capacity of these systems. The model that has been 

proposed using a mixed-integer linear programming problem 

(MILP) to determine the capacity of solar, wind, and battery 

electric storage systems (BESSs). The outputs of the problem 

are then analysed and optimized. The rapid growth of the EV 

penetration is expected to create various challenges for 

utilities as they try to accommodate the increasing number of 

vehicles [3]. This paper explores the various strategies that 

utilities can use to charge EV's during peak times. The 

factors that determine the impact of charging on a DS are 

analysed. The paper then explores the different charging 

modes and their potential impact on the DS at a given level. 

A simulation of a residential DS is also conducted. The paper 

aims to develop a novel method to numerically estimate the 

amount of time it takes for electric vehicles to charge and to 

analyse the effects of charging on a DS under different 

scenarios [4]. The proposed method would allow utilities to 

identify and manage the load impacts of charging on their 

networks in a robust and realistic manner. The increasing 

acceptance of electric vehicles in the transport industry has 

raised concerns regarding their effect on the electricity 

market. The placement of EV charging stations and DGs at 

the optimal places to reduce the loading impact of electric 

vehicles on the radial DS. The paper tackles the issues of the 

average voltage deviation index and actual power losses [5]. 

The paper's main contribution is to identify the optimal 

locations of EVCSs and to consider the various factors that 

affect their operation, such as system bus voltage regulation 

and DS losses. The increase in the number of plug-in electric 

cars (PEVs) is expected to have a substantial influence on the 

DSs performance. This paper explores to minimize the 

effects of charging behaviour and power loss on the system 

by integrating DGs into radial DSs. A multi-objective 

function is formulated to analyse the performance of the 

system. The results are analysed using particle swarm 

optimization and butterfly optimization techniques [6]. This 

paper aims to address for a 24-hour load pattern, where there 

is a daily active power loss as well as a recurrent voltage 

variance. It also presents a backward-forward load flow 

model. The random charging of EVs can cause various issues 

when compared to the grid's regular operation. This issue 

might be solved through the DGs for its proper placement 

and sizing. This article aims to improve the planning and 

selection of charging stations for EVs by proposing an 

enhancement model [7]. The presence of charging stations 

increases the system's losses due to the lack of charging 

infrastructure. The objectives of the paper include reducing 

the losses associated with the integration of DGs, so as to 

increase the number of charging stations to enhance Green 

Transportation. This paper tackled the issue of optimizing the 

size and positioning of FCS and DGs in a proposed approach 

with the proportion of EVs as a limitation in each zone [8]. 

The proposed problem is a mixed integer non-linear 

algorithm known as the MINLP. It is formulated to address 

the loss of an EV consumer, the loss of network power and 

the expense of development of a DS. This paper [9] presents 

a study on the power grid, the capacity of charging stations 

and the volatility of electricity prices using a couple of 

simple models, one of which is a two-point estimate method. 

It then compares the coefficient of contribution for various 

DG units and EVs to maximize their benefit. The NSBSA 

algorithm was used to optimize the participation rate of 

charge stations and wind generation units in the DS. The 

purpose of this study is to improve the credibility of the 

findings by integrating the Hybrid Vehicle Charging Station 

(VCS) and the Renewable DGs (RDG) simultaneously. The 

objective of this paper [10] is to reduce the Energy Not-

Sufficient (ENS) to the end users. It has been established that 

the optimal place for both charging station and RDG is 

identified. A hybrid algorithm-based method known as 

HNelder-Mead Cuckoo Search is proposed to minimize the 

ENS by taking the advantages of both RDG and VCS. The 

availability of charging stations depends on the location of 

the charging station. The voltage deviation and energy loss of 

the network are also affected by the location of charging 

stations. This paper [11] presents the solution to the problem 

of determining the optimal location of charging stations by 

using Harris Hawks optimization methods and differential 

evolution. It has been successfully implemented using 

Monte-Carlo simulation. The simultaneous allocation of 

solar DG and EVCS is a complex problem that can be solved 

using soft-computing techniques. This paper aims to 

integrate solar power, wind power, and rechargeable batteries 

transforming it into a DC microgrid-based on EVCS. The 

objective is to provide enough, energy which is used to 

charge the automobiles during overcast. Connection to the 

power grid can also be used to export power when the 

system's generation exceeds its demand [12]. Second–life 

lithium–ion batteries are proposed to be included in the 

system as an energy storage device and backup energy 

source in the case of a grid outage. This paper [13] presents a 

well-balanced mix of three different types of EV chargers for 

minimizing the electricity consumption and improving the 

efficiency of the charging process. The study also considers 

the effects of solar power on the EVs load. The proposed 

method is based on the particle swarm optimization (PSO) 
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technique to find a solution to the stochastic constrained 

issue. This paper [14] aims to boost fast-charging station 

profitability by reducing the excess energy consumption 

associated with them. It also includes a renewable energy 

storage system. The profitability of electric car charging 

stations is computed using a Monte Carlo approach and a 

genetic algorithm. The latter achieves its goal by taking into 

account the DGs and the demand. After that, a genetic 

algorithm (GA) is used to optimize configuration and 

management of an electric vehicle fast-charging station. It 

finds for the best option on increasing profits as measured by 

net present value (NPV). This study [17] presents a 

charging/discharging methodology for microgrids with 

electric vehicles. Micro Grid uses multi-objective 

optimization to reduce operational costs and grid 

vulnerability while improving the usage of solar (PV) power 

and EVs as energy storage systems (ESSs). The base load 

and PV power generation are evaluated and combined for 

energy monitoring in our strategy to maximize the utility of 

EV discharged power. The charging amount of energy 

required for EVs at home and in public places was modelled 

using Monte Carlo Simulation (MCS) on real data in this 

article [18]. The findings revealed that instead of charging at 

home, lower peak demand in public locations can meet the 

charging need. For a current-fed resonate compensated 

network with power sharing and voltage doubler [19], this 

study compares the efficiency of a modified wireless power 

transfer (WPT) system with a current-fed dual-active half-

bridge converter configuration to a complete bridge 

converter. The numerous approaches for wireless charging an 

EV battery are thoroughly reviewed in this study [20]. Static 

EV charging and dynamic EV charging are two different 

strategies for delivering electricity in wireless mode to 

charge the EV battery. This study also covers the design and 

comparable circuit analysis of a static wireless EV battery 

charging system. By interconnecting the utility grid with the 

battery charging system, the proposed method [21,22] allows 

for uninterruptible charging of a solar (PV) fed plug-in 

electric vehicle (EV) battery charging system, regardless of 

solar irradiation conditions. The system includes a 

bidirectional cycloconverter (BDCC) to use the power 

system as a source or sink during various operation modes, 

which are dependent on solar power supply. To validate the 

efficacy, the proposed system was simulated using PSIM 

simulation software and an experimental prototype was 

developed and analysed for various modes of operation. The 

stability of a smart grid is investigated in this work [24] 

employing co-simulations in the baseline scenario with no 

defects and the scenarios with errors in the inclusion or 

exclusion of DGs. The power control using the SOC-based 

coordinated charging approach was presented in this work 

[25] on the existing power grid, allowing flexible charging of 

EVs utilizing actual data-driven charging profiles. The 

current research focuses [26] on integrating renewable 

energy sources into the smart grid to enable optimal energy 

management. This paper identifies the advantages and 

drawbacks of integrating clean energy supplies, as well as the 

various control systems that enable this. The data utilised in 

this study [27] is based on real EV charging sessions in the 

Perth and Kinross region during a one-day period. The begin 

and end timings of charging for electric vehicles are included 

in this dataset. A total of 5000 transportation dataset for 

Monte Carlo Simulation (MCS) were generated using this 

data at 15-minute intervals. 

3. Problem Formulation 

Increased EV penetration produces huge power loss in 

the DS. The main purpose is to minimize the true power 

losses shown in equation (1) and improve the voltage profile, 

by the integration of DG with the grid by considering the EV 

as an additional load to the existing system.  First optimal 

location of EVCS and DGs are determined using LSF 

method and the sizing of DGs are maintained within the 

boundary constraints. Also, a 24-hour load setting of an EV 

is determined and the losses are obtained from equation (2). 

Finally optimal scheduling of intermittent load for a 24-hour 

profile is done using AOA. 

Min PL=                                                       (1) 

Where   PL is the Power loss, I is the current, R is the 

Resistance, N is the number of buses.             

 Min PL=                                                     (2) 

 Voltage limits 

                                                      (3) 

 Power equation 

PG  +                             (4) 

Where PG is the Grid Power Supply,  is the Distributed 

Power Generation,  is the Base Power load,  is the 

EV Load Power,  is the real Power Loss. 

EVs Power charging, discharging limits 

                                                 (5) 

                                       (6) 

EV SoC limits 

                                   (7) 

 Boundary limits of DG 

                                                 (8) 

   

 Here limits are in kW 

 

4. Loss Sensitivity Factor (LSF) Method 

 

The addition of EVCS as an actual system load, increases 

the system's total losses. Being one of the most key metrics 

in loss minimization, proper planning on incorporating the 

placement and size of DGs is beneficial to make the grid 

system more efficient. The deployment of DGs will connect 

the grid system's current and future technological issues, in 

addition to eliminating losses and meeting demand growth. 

For an IEEE 33-bus system, the positioning of the electric 

vehicle charging stations must be determined., the optimal 

placement and operation of DGs is tested and assessed. The 

weak bus placement approach using Loss Sensitivity Factor 

is deployed for the best siting location of DG. 

True power loss in the kth line can be found from the 

following expression 
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                                     (9) 

Where Rk is the resistance of the kth line; V(j) is the voltage 

across the jth bus; P(j) is the net real power supplied and Q(j) 

is the net reactive power supplied. 

 

                                                       (10) 

After determining the true power losses, The Loss sensitivity 

factor was calculated from load flow for all the buses using 

equation (10).                                                

For the base case of the system, the Newton Raphson power 

flow model is employed to evaluate the losses and voltage 

magnitude of each bus. 

4.1. Optimal Location of EVCS 

 

For optimal EVCS placement, an IEEE 33 bus system 

was examined, as well as the bus system's layout in all 33 

radials is given by Number of lines: 32, Slack bus number: 1, 

Base Voltage: 12.66 kV, MVA: 100 MVA, The total Real 

Power: 3.715MW and Reactive Power: 2.295Mvar. 

 

In an IEEE 33 bus system for the positioning of EVCS, 

Loss sensitivity factor approach is considered. The buses 

with the nominal voltage greater than or equal to 

1.01(nominal voltage severity factor) are identified as the 

strong bus and chosen as proper location for the operation of 

EVCS. The priority order of the buses is generated using the 

Loss Sensitivity Factor approach. To assess the severity of 

the IEEE 33 bus system in the real time, the three possible 

cases of weak bus (17), moderate bus (30) and strong bus 

(10,14) are considered. The four buses 10,14,17 and 30 are 

identified for the positioning of an EV Charging Station. Due 

to the effect of an additional EV demand to the existing base 

load in the system, there is a substantial increase of the losses 

in the DS and the voltage profile is reduced. The based load 

for a standard IEEE 33 bus system is 3715kW and the real 

power loss is 0.202MW. Due to the placement of EVCS in 

the DS with an addition of EV load to the four buses 

(10,14,17 and 30) shown in Table 1 for the existing base load 

the overall load was increased to 4735kW and the losses was 

increased to 0.374MW with the increment of 85.1% of the 

losses compared with the real power losses for the base load 

of an IEEE 33 bus system shown in Fig.1. 

 

Table 1. EV Load placement of IEEE 33 bus system. 

Bus 

Numbe

r 

Base 

Load(k

W) 

EV 

Loa

d(k

W) 

Total  

Load 

(kW) 

Losses (MW) 

10 60 300 360 0.015114015 

14 120 150 270 0.002875179 

17 60 250 310 0.001731052 

30 200 320 520 0.006057493 

 

  Fig.1. Power Loss of IEEE 33 bus system with EV Load. 

 

4.2.  Optimal Placement of Distributed Generator 

The buses with the nominal voltage less than 

1.01(nominal voltage severity factor) are identified as the 

weak bus and chosen as potential sites for the installation of 

DG, the bus voltages and losses are considered while 

creating a priority list using Loss sensitivity factor. DG is 

assigned to one of the system's weakest buses in prior. 

        Vnom[i] =                                                   (11) 

 

Where V(i) is the base voltage at the ith bus. 

 

Table 2. Optimal locations of DG. 

Critical 

factor 

(C) 

Bus Numbers 

Optimal 

location 

of DG 

0.95 

5,6,7,8,9,10,11,12,13,14,15,1

6,17,18,26,27,28,29,30,31,32,

33 

5 

0.93 

6,7,8,9,10,11,12,13,14,15,16,

17,18,26,27,28,29,30,31,32,3

3 

- 

0.91 
7,8,9,10,11,12,13,14,15,16,17

,18,26,27,28,29,30,31,32,33 
- 

0.9 
8,9,10,11,12,13,14,15,16,17,1

8,28,29,30,31,32,33 
8,28 

0.89 
9,10,11,12,13,14,15,16,17,18,

19,29,30,31,32,33 
- 
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0.88 
10,11,12,13,14,15,16,17,18,1

9,30,31,32,33 
11,32 

0.87 13,14,15,16,17,18 15 

0.86 14,15,16,17,18 - 

0.85 17,18 18 

 

Based on the LSF and nominal voltage severity factor 

approach, seven buses (5,8, 11,15,18,28 and 32) are chosen 

for the optimal positioning of DGs in IEEE 33 bus system to 

enhance the voltage levels while reducing system losses. The 

sizing of the DG’s is within the constraints of equation 5 and 

the sizing of seven DG’s are obtained from [15]. 

 

Table 3. Operating range and sizing of DG. 

Bus 

Number 

Type 

of 

DG 

Operating 

Range (Pmin 

& Pmax) 

Power 

Generation(kW) 

5 DG1 200 & 600 400 

8 DG2 200 & 500 350 

11 DG3 200 & 500 300 

15 DG4 100 & 400 250 

18 DG5 100 & 1000 200 

28 DG6 200 & 600 500 

32 DG7 100 & 800 400 

 

The real power loss for a standard IEEE 33 bus system is 

0.202MW, With the integration of DGs to the DS, the losses  

were reduced to 0.141MW with decrease of 43.2% shown in 

Fig.2. 

 

 
Fig.2. Power Loss of integrated DGs in distribution system. 

 

After the placement of EVs and DGs in distribution 

system, the optimal commitment of DGs with the 

intermittent load demand on 24hrs horizon was carried out 

by Dynamic Programming procedure. The optimal 

scheduling and sizing of DG for 24-hour load profile is done 

by Arithmetic Optimization Algorithm.   

 

4.3.  Arithmetic Optimization Algorithm 

 

An Arithmetic Optimization Algorithm (AOA), a new 

meta-heuristic technique based on the distribution behavior 

of the major arithmetic operators in mathematics is proposed 

and was used for an optimal power scheduling of an IEEE 33 

bus distribution system. To execute optimization operations   

across a wide range of search areas, AOA is theoretically 

developed and implemented. The optimization technique in 

AOA commences with a group of randomly generated 

candidate solutions, and the best candidate solution in each 

iteration is chosen the best-obtained solution or 

approximately the best solution. To illustrate the importance 

of exploration and exploitation shown in Fig.3, the parameter 

Math Optimizer Accelerated (MOA) coefficient s raised in a 

linear manner from 0.2 to 0.9. When r1 > MOA, candidate 

solutions attempt to diverge from the near-optimal solution, 

and when r1< MOA, they attempt to converge [23]. On the 

test functions, the AOA exceeded other algorithms in terms 

of global search experience and convergence speed. This 

indicates that the AOA has a better rate of convergence and a 

much more effective search capability with the operating 

flowchart shown in Fig.4. 

 

Fig.3. The Search stages of AOA. 
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START

Calculate the fitness values and determine the best solution

Intialize the AOA parameters and the candidate solution

tc=tc+1

Update MOA and MOP

If r1 > MOA

If r2> 0.5 If r3> 0.5

Apply the multiplication 

operator (M)

Apply the division 

operator (D)
Apply the subtraction 

operator (S)

Apply the addition 

operator (A)

Save the best solution

If tc=tM

Return the best solution

END

Set iteration tc=1

Yes No

Yes NoYesNo

Yes

No

 

Fig.4. Operating flowchart of AOA 

The following Fig.5 shows the best fitness function for 

optimal power allocation of Distributed Generation with EV, 

which was carried out for the maximum active load of 4735 

kW using AOA algorithm. 

 

Fig.5. Fitness function of EV load for 4735 kW load setting 

using AOA algorithm. 

 

 

 

5. Results and Discussion 

The increased adoption of electric vehicles has a 

detrimental influence on the electrical infrastructure. When a 

substantial percentage of EVs are connected to the grid at the 

same time, there are more Network Power Losses and large 

voltage deviations at far-flung buses from the sources. To 

enhance the voltage levels of the bus and reduce the losses, 

the integration of DGs with the EVCS in distribution 

network is necessary. The placement of EVCS was located at 

4 buses (10,14,17&30) and the optimal location of DGs are 

identified at 7 buses (5,8,11,15,18,28&32) for IEEE 33 bus 

system. With the simultaneous deployment of EVs and DGs 

for an IEEE 33 bus system, the true power losses and voltage 

levels are to be examined for the system. 

 

5.1. Optimal Positioning of EV& DG 

The based load for a standard IEEE 33 bus system is 

3715kW and the real power loss is 0.202MW. Due to the 

placement of EV load on the 33-bus system, the overall load 

was increased to 4735kW and the losses was increased to 

0.374MW which is increased to 85.1% compared to base 

case. With the integration of DGs to the system, the losses 

were reduced to 0.141MW which was reduced to 43.2% 

compared to base case.  

 

 

Fig.6. Optimal placement of EVs and DGs for an IEEE 33 

bus system. 

With the coordinated deployment of EVs and DGs in IEEE 

33 bus system shown in Fig.6, even though there is an 

overall increase in the load of 4735kW, due to the integration 

of DGs in the DS the losses were reduced to 0.163MW with 

a decrement of 56.4%. The following Fig. 7 shows the 

variation of real power losses of EV and DG for the possible 

cases showing that the combination of EVs and DGs for a 

DS the losses were reduced. 
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Fig.7. Power Losses in IEEE 33 Bus system with possible 

cases. 

With the simultaneous integration of EVs and DGs in the 

distribution system, the voltage profile is improved 

compared to the case of base load with EV in the system 

shown in Fig.8. 

 

Fig.8. Voltage levels in IEEE 33 Bus system with possible 

cases. 

5.2.  Optimal Scheduling of DG for 24- hour Load Profile 

With the simultaneous integration of EVs and DGs in the 

distribution system, the optimal scheduling of DG is carried 

for 24-hour load profile. The day is divided into 24 time slots 

of one hour each to solve the optimization issue. The forecast 

data is collected from the load profile setting [16] on hourly 

basis. The following table.4 gives the data regarding load and 

loss profile of 24 hour on possible cases. The following Fig.9 

shows the variation of 24-hour load profile for the possible 

cases of without EV load and DG, with EV load and with EV 

load and DG, where the load is increased due to the addition 

of EV load to the existing base load.  

 

Table 4. Load and Loss profile of 24- hour load setting for possible cases

 With Out EV &DG With EV With EV & DG 

Time in hr Load (kW) Loss (MW) Load (kW) Loss (MW) Load (kW) Loss (MW) 

1 2451.9 0.168379 3125.1 0.295589 3125.1 0.137761 

2 2303.3 0.158174 2935.7 0.277674 2935.7 0.129411 

3 2229 0.153072 2841 0.268717 2841 0.125237 

4 2154.7 0.147969 2746.3 0.25976 2746.3 0.121062 

5 2154.7 0.147969 2746.3 0.25976 2746.3 0.121062 

6 2229 0.153072 2841 0.268717 2841 0.125237 

7 2786.25 0.19134 3551.25 0.335896 3551.25 0.156546 

8 3232.05 0.221954 4119.45 0.38964 4119.45 0.181593 

9 3492.1 0.239812 4450.9 0.42099 4450.9 0.196204 

10 3529.25 0.242364 4498.25 0.425469 4498.25 0.198292 

11 3492.1 0.239812 4450.9 0.42099 4450.9 0.196204 
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12 3454.95 0.237261 4403.55 0.416511 4403.55 0.194117 

13 3417.8 0.23471 4356.2 0.412033 4356.2 0.19203 

14 3529.25 0.242364 4498.25 0.425469 4498.25 0.198292 

15 3454.95 0.237261 4403.55 0.416511 4403.55 0.194117 

16 3380.65 0.232159 4308.85 0.407554 4308.85 0.189943 

17 3566.4 0.244915 4545.6 0.429947 4545.6 0.200379 

18 3677.85 0.252568 4687.65 0.443383 4687.65 0.206641 

19 3715 0.25512 4735 0.447862 4735 0.208728 

20 3529.25 0.242364 4498.25 0.425469 4498.25 0.198292 

21 3343.5 0.229608 4261.5 0.403076 4261.5 0.187855 

22 3157.75 0.216852 4024.75 0.380682 4024.75 0.177419 

23 2711.95 0.186237 3456.55 0.326939 3456.55 0.152372 

24 2340.45 0.160725 2983.05 0.282153 2983.05 0.131499 

 

Fig.9. Load profile for 24-hour load setting with possible 

cases. 

 

 
Fig.10. Loss profile for 24-hour load setting with possible 

cases. 

Table 5: Optimal scheduling and sizing of DG for 24- hour load profile using AOA. 

Time in 

hr 

Slack 

bus 

DG1 

(5) 

DG2 

 (8) 

DG3 

 (11) 

DG4 

 (15) 

DG5 

 (18) 

DG6 

(28) 

DG7 

 (32) 

Total 

Load(kW) 

1 525 600 500 500 400 0 600 0 3125 

2 736 600 500 0 400 0 600 100 2936 

3 578 600 0 500 400 301 462 0 2841 

4 946 600 0 500 400 0 200 100 2746 

5 946 600 0 500 400 0 200 100 2746 

6 271 600 0 472 343 555 600 0 2841 

7 920 600 458 458 400 114 600 0 3551 

8 2088 0 0 500 400 0 600 532 4119 

9 2500 0 258 0 400 693 600 0 4451 
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10 2500 0 498 500 400 0 600 0 4498 

11 2500 0 258 0 400 693 600 0 4451 

12 1904 0 500 0 400 1000 600 0 4404 

13 2500 0 500 0 400 0 600 356 4356 

14 2500 0 498 500 400 0 600 0 4498 

15 1904 0 500 0 400 1000 600 0 4404 

16 2500 0 500 0 400 0 600 309 4309 

17 2500 0 0 492 400 454 600 100 4546 

18 2588 600 0 500 400 0 600 0 4688 

19 2800 0 500 0 400 100 600 335 4735 

20 2500 0 498 500 400 0 600 0 4498 

21 1762 0 0 500 400 1000 600 0 4262 

22 2800 0 0 0 400 100 600 124 4025 

23 949 600 410 207 336 0 600 353 3457 

24 80 600 500 0 400 0 600 800 2983 

 

The Fig.10 shows the variation of 24-hour loss profile for the 

possible cases, where the losses are increased due to the 

presence of EV load to the existing base load. With the 

integration of EVs and DGs to the grid connected system 

shows that the losses are reduced on 24-hour horizon. The 

optimal scheduling of DGs integrated with the grid 

connected system on 24-hour load demand in a day, for 

every one hour is given in table.5 and its variation with  

 

respect to time is shown in Fig.11. The maximum load was 

observed in the 19th hour, for a 24-hour load profile shows 

that the integrated grid connected system would reduce the 

effect on the DS, due to the intermittent variations in the load 

demand. 

 

 

Fig.11. Optimal scheduling of DGs for 24-hour load profile using AOA 

6. Conclusion and Future Scope 

The increase in the penetration of electric vehicles has a 

significant effect on the power grid. When a massive 

proportion of EVCSs are coupled to the electrical grid, 

system voltage swings and power losses at distant buses from 

sources will rise. In this study a simultaneous integration of 

EVCS and DG for a standard IEEE 33 bus system was 

considered. Using LSF approach the simulation results 

shown that by considering the EV load to the existing base 

load in the system, the losses were raised to 0.374MW and 

reduction in the voltage profile. With the integration of DG 

to the EV connected grid system the losses were reduced to 

0.164MW, with an improvement of the voltage profile and 

also for a 24-hour load profile the load and loss estimation 

was carried out, the simulation results are showing that the 

losses were reduced due to the integration of DG to the EV 

connected grid system. Finally, the optimal scheduling of the 

total load on a 24-hour load setting was done by AOA, 

showing that by the integration of DG to the grid connected 

system including with the effect of EV load, reducing the 

burden on the system, making the stable and reliable 

operation of the DS. The future scope is extended by 
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considering the same EV to act as a load and DG with 

consideration of charging and discharging behaviour based 

on the off and peak load times in the system. To extend the 

work on Vehicle to Grid technology as one of the DG to the 

existing DGs to further reduce the losses in the system. 
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