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Abstract- In this paper, a combined approach based on voltage stability index (VSI) and Marine predators 

algorithm (MPA) is proposed to solve the problem of distributed generators (DGs), Shunt Capacitors (SCs) and 

Electric Vehicles (EVs) allocation in the distribution system (DS). Further, the objective of this method is to 

minimize power loss (PLoss) and enhance the voltage profile of the DS. Also, the developed method is tested on 

practical 83 bus Taiwan DS. The static and dynamic load variations are considered to study the performance. 

EV charging and discharging patterns are considered to check the performance of DS. Different cases such as 

single DG, multiple DGs, and the combination of DGs plus SCs,  DGs plus EVs are considered to check the 

method’s effectiveness. Finally, the results related to grid vehicle (G2V),  vehicle to grid (V2G), conventional 

charging and optimized charging are projected. The suggested MPA with DA, GOA and WOA methods are 

thoroughly compared under various DS operating circumstances. The obtained results verified that proper 

placement of DGs and effective charging strategies for EVs reduce the PLoss to a considerable extent. 

Keywords: Distributed Generations (DGs), Electric Vehicles (EVs), Marine Predators Algorithm (MPA), 

Power Loss, Voltage profile, Shunt Capacitors (SCs)  

1. Introduction 

In recent years the utilization of electrical 

power increased drastically. In another way, the 

power generation through conventional power 

plants decreased because of the non-availability of 

the fuel resources. Also, the usage of electric 

vehicles (EVs) throughout the globe is increasing 

positively. This creates a further burden on the 

distribution system (DS). To address this problem, 

it is vital to use distributed energy resources 

(DERs) optimally. Installing locally distributed 

generators (DGs) close to the customer and adding 

shunt capacitors (SCs) to the system can increase 

network capacity, save operational costs, minimise 

losses, and enhance voltage profile and stability 

[1]. Power engineers use SCs for reactive power 

adjustment in DS. DGs mostly depend on 

renewable generation resources (RER) such as 

sunlight (Solar), air (Wind), geothermal systems, 

and biofuels. Still, it also considers energy sources 

like combustion engines, combined heat and power 

(CHP) and diesel engines on a limited scale. But, it 

is vital to place DGs in optimal locations to shrink 

power loss (PLoss) and ameliorate voltage profile. 

Incorrect placement of DG causes more PLoss and 

voltage drop [2]. 

The demand to integrate  DGs, SCs and EVs in 

radial DS has grown in recent years due to their 

scientific, commercial, ecological, and economical 

aspects, including increased power grid efficiency, 

reduced PLoss, and improved voltage profile,. 

However, if the integration of DGs, SCs, and EVs 

is not planned improperly, tech problems arise, 

such as overvoltage, instability, and system 

imbalance [3]. Further, the total demand 

throughout the globe increased drastically. Also, 

EV charging and discharging patterns further 

degrade DS performance. It is vital to incorporate 
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DGs, SCs and EVs considering proper charging 

and load patterns to solve the above-mentioned 
issue[4].

Table 1. Different techniques summary of with and without optimal placement of DGs, SCs and EVs in DS 

Refer

ence  

Objective Optimisatio

n Method 

Test System Year 

DGs To DS 

[6] Reducing active power loss, cost and GHG 

emission, increasing reliability and voltage  

TLBO 17-bus 2018 

[7] Minimizing PLoss, increasing VSI  CNF IEEE 30 bus 2018 

[8] Decreasing power loss and fuel cost ABC, GSA IEEE 9 bus 2019 

[9] Power loss reduction, VSI maximization ASFLA IEEE 33 & 69-bus 2019 

[10] Shrinking power loss and energy losses. 

Revamping voltage profile  

SS-CFLCP 25-city grid in 

Tennessee 

2020 

[11] Revamping voltage stability and resilience, 

minimising voltage deviation and power loss 

PFA IEEE 33, 69 bus 2021 

[12] Decreasing power loss, improving Voltage 

stability and voltage profile 

CMPSO 33-bus, 274-bus 2022 

SCs To DS 

[13] Decreasing energy losses and enhancing voltage 

profile 

GA, EA, 

PSO 

IEEE 123 feeder 2018 

[14] Reducing real PLoss  and annual energy losses 

Agumenting voltage profile and stability 

GA IEEE 33  2019 

[15] Reducing PLoss & voltage fluctuation, increasing 

voltage stability and profile 

PSO IEEE 33 and 

Brazil-136 Bus 

2020 

[16] Decreasing PLoss & enhancing voltage profile MSFLA 95 & 136-buses 2021 

[17] Alleviated PLoss & Augmenting voltage profile SHARD, 

SOE 

33 & 59-buses 2022 

EVs TO DS 

[18] Reducing loss and operational cost TOPSIS, 

GWO 

38-bus 2018 

[19] Active power loss reduction GWOA, GA 69-bus 2019 

[20] Minimizing PLoss & voltage deviation GA IEEE 33-bus 2020 

[21] Decreasing power loss PLM method IEEE 33 2021 

[22] Reducing cost  SOC Based 

CCM 

RBTS 2-Bus 2021 

[23] Improving voltage profile, energy BVBSOA IEEE 69, IEEE 

119-bus 

2022 

DGs + SCs To DS 

[24] Voltage and load fluctuation, minimizing power 

loss 

GA-PSO IEEE 33 2018 

[25] Improving reliability and voltage profile HOM IEEE 33, IEEE 69 2019 

[26] Reducing daily power loss PSO-OPF, 

IPM 

Bus 2,3, 4, 5, 6,7, 

9, 10 

2020 

[27] Reducing power loss, enhancing voltage 

stability and voltage stability 

EGOA IEEE 33 2021 

[28] The increasing ability of the system, decreasing 

power loss, maintenance cost 

RO, KDE IEEE 33, 25-bus 2022 

The authors solved the placement of DG 

problem and investigated numerous test systems. In 

majority published papers, decreasing the PLoss 

alone is the only objective function studied. The 

authors contemplated integrating reactive power 

generating sources into the DS[6-12]. Few 

researchers have investigated the simultaneous 

integration of DGs and SCs into DS. Compared to 

their single distribution, the combination of DGs 

and SCs proved more efficacious [13-17]. The 

increased operating performance of the DS in the 

existence of EVs is not the prime motive of the 

operations being discussed. In [18-23] authors 

solved the impact of EVs on the DS studied. 

In the literature, authors solved DGs, SC and 

EVs integration problems in DS to minimize PLoss 

and enhance the voltage profile. Further, [24-28] 

authors solved DGs and EVs problem by 

considering EV charging stations and other 

charging-related issues, organising best charging 

and discharging schedules when distributing energy 

supplies, etc. But, simultaneous allocation of DGs, 
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SCs and EVs with considering charging and 

discharging patterns of EVs needs more attention 

and provides more positive results. In this paper, 

the authors solved DG and EV allocation problems 

using a combined voltage stability index (VSI) 

approach and marine predator algorithm (MPA). 

Further, the developed method’s effectiveness is 

studied on practical 83 bus Taiwan DS. Different 

case studies are considered to check the efficacy of 

the proposed approach.  

The content of the article is organised as follows: 

The mathematical problem formulation objective 

and its constraints are discussed in section 2. 

Integrated solutions for optimal installation and 

sizing of DGs, SCs and EVs in section 3. In section 

4, Results & Discussions are discussed. EV 

charging and discharging patterns are explained in 

section 5. Finally, the conclusion of the article is 

given in section 6. 

2. Mathematical Problem Formulation: 

The primary objective is to minimise the PLoss 

of the DS and the total voltage deviation of all 

buses with the optimal integration of DGs, SCs and 

EVs. The active, reactive PLoss and voltage injection 

at specific bus equations are given below 

𝑃𝑘+1 = 𝑃𝑘 − 𝑃𝐿𝑘+1 − 𝑅𝑘,𝑘+1.
𝑃𝑘

2+𝑄𝑘
2

|𝑉𝑘|2
        (1)                                                                                        

𝑄𝑘+1 = 𝑄𝑘 − 𝑄𝐿𝑘+1 − 𝑋𝑘,𝑘+1.
𝑃𝑘

2+𝑄𝑘
2

|𝑉𝑘|2
       (2) 

|𝑉𝑘+1|
2 =|𝑉𝑘|2 − 2(𝑅𝑘,𝑘+1. 𝑃𝑘 + 𝑋𝑘,𝑘+1. 𝑄𝑘) +

(𝑅𝑘,𝑘+1
2 + 𝑋𝑘,𝑘+1

2 ).
𝑃𝑘

2+ 𝑄𝑘
2

|𝑉𝑘|2
   (3) 

Where at node k → 𝑃𝑘= Real power, 𝑄𝑘= 

Reactive power  

At node k+1 → 𝑃𝐿𝑘+1= Real power load, 

𝑄𝐿𝑘+1= Reactive power load 

The line section between nodes k and k+1 → 

𝑅𝑘,𝑘+1= Resistance, 𝑋𝑘,𝑘+1= Reactance  

kth node voltage magnitude = |𝑉𝑘| 

equation (1) & (2) represents power balance  

Eq’s (3) fulfils sending and receiving end of 

voltage magnitude 

Eq 4 reprsents active PLoss 

𝑚𝑖𝑛∑ 𝑃𝐿𝑜𝑠𝑠(𝑘)24
𝑘=1                      (4) 

Where 

𝑃𝐿𝑜𝑠𝑠(𝑘) = ∑ 𝐼2. 𝑅𝑘
24
𝑘=1       (5)    

Adding all line losses = total PLoss represented by 

below eq 

𝑇𝑜𝑡𝑎𝑙 𝑃𝐿𝑜𝑠𝑠 = ∑ 𝑃𝐿𝑜𝑠𝑠𝑛−1
𝑘=0 (𝑘. 𝑘 + 1)         (6) 

𝑃𝐷𝐺𝑆𝐶
𝐿𝑜𝑠𝑠(𝑘,𝑘+1)

= 𝑅𝑘,𝑘+1. (
𝑃𝐷𝐺𝑆𝐶,𝑘,𝑘+1

2 + 𝑄𝐷𝐺𝑆𝐶,𝑘,𝑘+1
2

|𝑉𝑘|2
)   (7) 

𝑃𝐷𝐺𝑆𝐶
𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝑠𝑠(𝑘,𝑘+1)

= ∑ 𝑃𝐷𝐺𝑆𝐶
𝐿𝑜𝑠𝑠(𝑘,𝑘+1)𝑛𝑏𝑘

𝑘=1           (8) 

𝑦1 = ∆𝑃𝐷𝐺𝑆𝐶
𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝑠𝑠 =  

𝑃𝐷𝐺𝑆𝐶
𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝑠𝑠

𝑃𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝑠𝑠  or 

𝑦1 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑃𝐿𝑜𝑠𝑠)                                  (9) 

𝑦2 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝑉𝑆𝐼) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(
1

𝑉𝑆𝐼
)   (10) 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝑦1 × 𝑤1 × 𝑦2 × 𝑤2     (11) 

2.1 Constraints 

Power balance Constraints 

∑ 𝑃𝐺(𝑘)24
𝑘=1 = ∑ 𝑃𝐷(𝑘) + 𝑃𝑆𝐶(𝑘)24

𝑘=1 + 𝑃𝐿𝑜𝑠𝑠(𝑘) ±
𝑃𝐸𝑉(𝑘)                                     (12) 

Voltage Constraints 

𝑉𝑘,𝑚𝑖𝑛 ≤ |𝑉𝑘| ≤ 𝑉𝑘,𝑚𝑎𝑥                    (13) 

DG Size Constraints 

𝑃𝑘,𝑚𝑖𝑛
𝐷𝐺 ≤ 𝑃𝑘

𝐷𝐺 ≤ 𝑃𝑘,𝑚𝑎𝑥
𝐷𝐺                     (14) 

Where, 

(𝑃𝑘,𝑚𝑖𝑛
𝐷𝐺 = 0.1∑ 𝑃𝑚

𝐷𝐺 , 𝑃𝑘,𝑚𝑎𝑥
𝐷𝐺 =𝑛

𝑘=2

0.8∑ 𝑃𝑘
𝐷𝐺𝑛

𝑘=2 )  

SC Size Constraints: 

∑ 𝑄𝑐𝑙  ≤ 1.0 ∑ 𝑄𝑐
𝐿𝑛

𝑘=1
𝑛𝑐
𝑘=1                             (15) 

Qcl = JQ0     J = 1, 2 …..nc  

Q0 = minimum SC size, J = integer number 

Different constraints integrated with EVs are 

EVs Battery storage Constraints: 

EVs kth hour state of charge is 

𝑆𝑜𝐶𝑚𝑖𝑛,𝑘  ≤  𝑆𝑜𝐶𝑘
𝐸𝑉  ≤  𝑆𝑜𝐶𝑚𝑎𝑥,𝑘                (16) 

Charging /Discharging EV Constraints:  

EV power charging/discharging must be within 

below equation limits 

𝑃𝑐ℎ,𝑘  ≤  𝑃𝑐ℎ,𝑘 
𝑚𝑎𝑥                   (17) 

𝑃𝑑𝑖𝑠𝑐ℎ,𝑘  ≤  𝑃𝑑𝑖𝑠𝑐ℎ,𝑘
𝑚𝑎𝑥       (18) 

Where, 𝑃𝑐ℎ,𝑘, 𝑃𝑑𝑖𝑠𝑐ℎ,𝑘  = EV battery kth hour 

charging & discharging power 

3. Integrated Solutions for Optimal Installation 

and Sizing of DGs, SCs and EVs 

3.1 Different types of EVs Charging methods: 

EV owners will charge their vehicles as soon 

as they arrive home. In this paper, this strategy is 

referred to as the conventional charging method 

(CCM). Demand is used to prioritise EV charging 

and discharging. This procedure is known as the 

optimal charging method (OCM). EV consumers 

are concerned about system load in the OCM 

method. EV charging is not permitted at peak 

demand. The scheduling approach considers the 
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peak-to-average ratio (PAR) of the workload 

demand. The primary goal of EV scheduling is to 

reduce the PAR, which is expressed as follows. 

𝑃𝐴𝑅 =  
𝑃𝑑,𝑝𝑒𝑎𝑘

𝑃𝑑,𝑚𝑒𝑎𝑛
                  (19) 

Where 𝑃𝑑,𝑚𝑒𝑎𝑛 = average system demand, 

𝑃𝑑,𝑝𝑒𝑎𝑘 = peak system demand 

The charging or discharging is determined by 

the power ratio (PR), which is indicated as follows. 

Here are two important points must follow, EVs are 

permitted to charge if the PAR is less than 1; else, 

it will check again in an hour. The number of EVs 

allocated must not be negative. 

𝑃𝑅 = 
𝑃𝐷(𝑛)

𝑃𝑑,𝑚𝑒𝑎𝑛
     (20) 

∑ 𝐸𝑉𝑝𝑖𝑡 ≤ 𝐸𝑉𝑇
𝑁
𝑡=1                  (21) 

3.2 Finding a Suitable Location with VSI to Place 

DGs, SCs and EVs in DS: 

[5]developed VSI first, following VSI 

identified the optimal installation of DGs, SCs and 

EVs in DS. All buses are assessed based on the 

analytical VSI value, and a bus is considered strong 

if the VSI value is near one. Any bus is considered 

weak if the predicted value is near zero (0). This 

approach selects the stronger buses for EV 

deployment, while the weaken buses are considered 

for renewable DGs and SCs allocation. This way, 

the best location for deploying renewable DGs, 

SCs and EVs is to examine. 

𝑉𝑆𝐼 = |𝑉𝑘|4 − 4[𝑃𝑘+1.𝑒𝑓𝑓𝑋𝑘 − 𝑄𝑘+1.𝑒𝑓𝑓𝑅𝑘]
2
−

4[𝑃𝑘+1.𝑒𝑓𝑓𝑅𝑘 + 𝑄𝑘+1.𝑒𝑓𝑓𝑋𝑘]|𝑉𝑘|
2                (22) 

3.3 Marine Predators Algorithm (MPA): 

MPA is a meta-heuristic optimisation 

technique known as the natural behaviour of 

marine predators. It follows an ideal strategy 

between prey and predator. Predators can use an 

adaptive encounters ratio policy, and prey can use 

this approach to implement an optimal foraging 

strategy. In MPA, the prey-to-predator speed ratio 

is critical. Levy’s flight is used to represent prey 

and predator movement. In various behaviours, 

marine predators take advantage of their excellent 

spatial memory and cognitive abilities., including 

food retrieval and memorising sites where they 

frequently locate food [29-30]. 

𝑋0 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)   (23) 

𝑋𝑚𝑖𝑛 = Lower variable, 𝑋𝑚𝑎𝑥= Upper 

Variable, rand is a uniformly distributed random 

vector with a value ranging from 0 to 1. 
 

𝐸𝑙𝑖𝑡𝑒 =  

[
 
 
 
 
𝑋1,1

𝐼  𝑋1,2
𝐼  …

𝑋2,1
𝐼  𝑋2,2

𝐼  …

⋮       ⋮ …

𝑋1,𝑑
𝐼

𝑋2,𝑑
𝐼

⋮
⋮       ⋮ …
𝑋𝑛,1

𝐼  𝑋𝑛,2
𝐼  …

⋮
𝑋𝑛,𝑑

𝐼 ]
 
 
 
 

  (24) 

𝑃𝑟𝑒𝑦 =  

[
 
 
 
 
𝑋1,1 𝑋1,2  …

𝑋2,1 𝑋2,2  …

⋮      ⋮ …

𝑋1,𝑑

𝑋2,𝑑

⋮
⋮      ⋮ …
𝑋𝑛,1 𝑋𝑛,2  …

⋮
𝑋𝑛,𝑑]

 
 
 
 

  (25) 

𝑋⃗𝐼= Predator top vector, n= No.of times Elite 

matrix, d = No. of dimensions 

MPA Initialization Process: 

The MPA procedure comprises three 

significant steps dependent on the flow rate, which 

are shown below 

Phase 1 (𝑉 ≥ 10): 

When there is a large flow rate, the predator is 

going quicker than the prey. This circumstance 

occurs during the earliest optimisation stages when 

exploration is essential. 

While 𝐼𝑡𝑒𝑟 <
1

3
𝑀𝑎𝑥_𝐼𝑡𝑒𝑟  

𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  𝑅𝐵

⃗⃗⃗⃗⃗⃗  ⊗ (𝐸𝑙𝑖𝑡𝑒𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑅𝐵

⃗⃗⃗⃗⃗⃗  ⊗ 𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )

  i = 1,…...n 

𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  𝑃𝑟𝑒𝑦𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑃. 𝑅⃗⃗  ⊗ 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗      (26) 

Where, Iter = Current Iteration, Max_Iter = 

Maximum No.of Iterations, ⊗ = Multiplication 

P = 0.5, 𝑅⃗⃗ = 0 to 1Ranges, 𝑅𝐵
⃗⃗⃗⃗⃗⃗  = Brownian 

motion-based normal distributed vector 

Phase 2(𝑉 = 1): 

The predator and prey travel at the same speed, 

which is known as a unit velocity ratio. It’s as 

though they’re both on the hunt for their prey. This 

segment happens during the optimisation process’ 

intermediate phase when the exploration is 

attempting to be transiently changed to exploitation 

[29-30]. 

While 
1

3
 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 < 𝐼𝑡𝑒𝑟 <

2

3
 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 

1st half population 

𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  𝑅𝐿

⃗⃗ ⃗⃗⃗  ⊗ (𝐸𝑙𝑖𝑡𝑒𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ −  𝑅𝐿

⃗⃗ ⃗⃗⃗ ⊗ 𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )  i 

= 1,….n/2 

𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  𝑃𝑟𝑒𝑦𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑃. 𝑅⃗⃗  ⊗ 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗       (27) 

Where, 𝑅𝐿
⃗⃗ ⃗⃗⃗ = random vector, it depends mainly 

on Levy distribution 

2nd half population 

𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  𝑅𝐵

⃗⃗⃗⃗⃗⃗  ⊗ (𝑅𝐵
⃗⃗⃗⃗⃗⃗  ⊗ 𝐸𝑙𝑖𝑡𝑒𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ −  𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )

  i = n/2,….,n 
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𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  𝐸𝑙𝑖𝑡𝑒𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑃. 𝐶𝐹 ⊗ 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (28)  

While 𝐶𝐹 = (1 −
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
)
(2

𝐼𝑡𝑒𝑟

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
)
 

Where CF = adaptive parameter, it controls the 

predator step size 

 𝑅𝐵
⃗⃗⃗⃗⃗⃗  ⊗ 𝐸𝑙𝑖𝑡𝑒𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = Brownian behaviour of 

predator move 

Phase 3 (𝑉 = 0.1): 

When there is a low-velocity ratio, the predator 

goes quicker than the prey. This situation occurs 

near the optimisation process’s end, typically 

attributed to high exploitation capacity. 

While 𝐼𝑡𝑒𝑟 >
2

3
𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 

𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  𝑅𝐿

⃗⃗ ⃗⃗⃗  ⊗ (𝑅𝐿
⃗⃗ ⃗⃗⃗  ⊗ 𝐸𝑙𝑖𝑡𝑒𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ −  𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )  i = 

1,….n 

𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  𝐸𝑙𝑖𝑡𝑒𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑃. 𝐶𝐹 ⊗ 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (29) 

FAD Impact and Eddy Formation: 

Environmental factors such as eddy formation 

or the impact of Fish Aggregating Devices (FADs) 

also influence behavioural changes in marine 

predators [26]. 

𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =

{
𝑃𝑟𝑒𝑦𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝐶𝐹[𝑋⃗𝑚𝑖𝑛 + 𝑅⃗⃗  ⊗ (𝑋⃗𝑚𝑎𝑥 − 𝑋⃗𝑚𝑖𝑛)] ⊗ 𝑈⃗⃗⃗    𝑖𝑓 𝑟 ≤ 𝐹𝐴𝐷𝑠

𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ + [𝐹𝐴𝐷(1 − 𝑟) + 𝑟](𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗
𝑟1 − 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗

𝑟2)      𝑖𝑓 𝑟 > 𝐹𝐴𝐷𝑠
 (30) 

FAD = 0.2, 𝑈⃗⃗⃗ =Binary vector [0, 1], r = 

random vector [0,1], r1, r2 = prey matrix 

𝑋⃗𝑚𝑎𝑥 , 𝑋⃗𝑚𝑖𝑛 = dimensions of upper and lower 

bounds, Fig (1) represent MPA pseudocode. 

 

Fig. 1. Pseudo code MPA [29] 

 

 

Fig. 2. All the MPA optimisation phases [29] 

3.4 Steps for calculating optimal sizes of DGs, and 

SCs with MPA 

Step 1: Read the DS data (Line and Bus data) 

Step 2: Run the base-case load flow 

Step3: calculated DGs, SCs and EVs locations by 

VSI tech 

Step 4: suitable sites of DGs, SCs, & EVs found 

with VSI must be given as input to MPA 

Step 5: Optimize MPA and Initialize search agents 

(prey) for i=1,….n  

Step 6: determined the fitness value 

Step 7: constructed the elite & prey matrices 

Step 8: Phase 1 (𝑉 ≥ 10): While 𝐼𝑡𝑒𝑟 <
1

3
𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 

Step 9: update prey position based on eq. 26 

Step 10: Phase 2(𝑉 = 1): While 
1

3
 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 <

𝐼𝑡𝑒𝑟 <
2

3
 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 

Step 11: Prey based on the first half of the 

population updated with eq. 27 

Step 12: Prey updates depending on population 2nd 

half eq.28 

Step 13: Prey position is updated depending on eq. 

29 

Step 14: Apply FADs effect and update status 

using eq.30 

Step 15: This is the final step, evaluate the 

objective function of PLoss and places such as 

suitable DGs and SCs sizes. 
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4. Results and Discussion:  

Fig. 3. Practical 83 Taiwan test system [31] 

In this work, analyzed different case studies to 

optimize DGs, SCs and EVs in DS. The simulation 

was performed on a practical 83 Taiwan real test 

system. Fig.3 represents the 83 test system. The 

system configurations are as follows: Voltage:11.4 

kV, real and reactive power demands are 28.35 

MW & 20.70 MVAr [1], bus data and line data 

taken from this [31]. The impact of the 

simultaneous allocation of DGs and SCs in DS and 

the effect of EV charging on DS are analyzed with 

different operating conditions. The combination of 

VSI and MPA is presented to minimize PLoss and 

augment voltage profile, and the stability of DS is 

discussed in detail in this section.  The load 

demand curve for analysis is given in Fig.4. 

 

Fig. 4. Power demand curve variation for a 

typical day 

Base Case (Without Considering DGs and SCs): 

In this case, without considering DGs & SCs, 

base case PLoss = 531.9945kW, Vmin = 0.9277 p.u, 

VSImin = 0.7086 p.u. The same mentioned in table 

2. 

Case 1: With a Single DG Allocation: 

With the VSI method identified, 6 is the 

suitable location to place a single DG. The same 

information was passed to MPA and found DG size 

was 2.7903MW, PLoss = 453.1625kW, Vmin = 

0.9472 p.u, VSImin= 0.7533 p.u.  With the 

compared base case, 14.8181% of PLoss was 

reduced.  

Case 2: With Considering Single DG + Single 

SC: 

As per VSI, 6, 8 buses are the best location to 

insert single DG + single SC. The same message is 

given to the MPA method; it determines the ranges 

of DGs and SCs in DS. The MPA size of DGs and 

SCs is 3.1464MW, and 2.2124MVAr, respectively. 

PLoss = 406.1333 kW, Vmin = 0.9472 p.u VSImin= 

0.7533 p.u compared to the base case and case 1, 

case 2 performs better in all aspects. 

Case 3: With Two DGs, Without SCs: 

Multiple DGs without SCs considered in this 

case and found that 6 and 79 are the locations to 

insert 2 DGs as per VSI analysis. According to 

MPA, DG1 and DG 2 sizes are 3.0579 MW and 

3.6439 MW. PLoss = 404.5866kW, Vmin = 0.9482 

p.u, VSImin= 0.7533 p.u. 

Case 4: With Considering Two DGs + Two SCs: 

Following VSI, 6 and 79 are the best sitting to 

allocate muti DGs and SCs in DS. The message 

given to MPA finds the capacity of the muti DGs 

and DS. DG1, DG2, SC1 and SC2 capacities are 

3.0425MW, 3.622 MW, 2.2079 MVAr, and 2.6161 

MVAr, respectively. Compared to the above cases 

with 2 DGs + 2 SCs, 35.7708% of PLoss decreased. 

Case 5: With Three DGs Allocation, Without 

SCs: 

According to the VSI method, 6, 71, and 79 are 

the optimal sites to include 3 DGs. The information 

sent to the MPA identifies the size of the 3 DGs. 

The data is contained in table 2. PLoss = 

366.422kW, Vmin = 0.9558 p.u, VSImin= 0.8266 p.u. 

Case 6: With Considering Three DGs + Three 

SCs: 

As per the VSI method, 6, 71, and 79 are 

suitable sites to place three DGs + three SCs. The 

details are given to MPA, which finds the size of 

DGs and SCs. Compared to the above cases of 

three DGs + three SCs, 47.1702% of PLoss.  

Case 7: With Four DGs Allocation, Without 

SCs: 

By the VSI, 6, 71, 79, and 83 is the best 

location for four DGs. The info is transferred to 

MPA and which determines the capacities of four 

DGs given in table 2. Further, PLoss decremented, 

Vmin, VSImin revamped compared to other cases. 

Case8: Considering Four DGs + Four SCs: 

The optimal locations of the multi (Four DGs + 

Four SCs) were found with the VSI technique. By 

the VSI, 6, 33, 71, and 79 are suitable areas for 

multi DGs and SCs. The same message was 
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forward to MPA, identifying ranges of multi DGs 

and SCs. PLoss minimized, Vmin, VSImin augmented 

in this case compared to other cases. 

Case 9: Without SCs, with Five DGs 

Allocations: 

PLoss reduced, Vmin, VSImin increased compared 

to other cases. According to the VSI technique, 6, 

19, 34, 71, and 79 are the apt locations to install 

five DGs. The same was communicated to MPA, 

which finds the size of five DGs tabulated in table 

2. 

Case 10: With Considering five DGs + five SCs: 

The VSI method finds the best sites to allocate 

five DGs + five SCs, as per VSI 6, 19, 34, 71, and 

79 for multi DGs and SCs. The same message was 

communicated to MPA, examining the size of five 

DGs + five SCs tabulated in table 2.  

       Table 2. Optimal allocation of DGs and SCs using MPA 

Different 

Cases 

DG 

Size(MW) 

SC 

Size(MVAr) 

PLoss 

(kW) 

Vmin 

(p.u) 

VSImin 

(p.u) 

% of  Reduced 

PLoss 

Base Case NA NA 531.9945 0.9277 0.7086 NA 

Case 1 2.7903  (6) NA 453.1625 0.9472 0.7533 14.8181 

Case 2 3.1464 (6) 

 

2.2124 (8) 

 

406.1333 0.9472 0.7533 23.6583 

Case 3 3.0579 (6) 

3.6439 (79) 

NA 404.5866 0.9482 0.7553 23.9491 

Case 4 3.0425 (6) 

3.622 (79) 

2.2079 (6) 

2.6161 (79) 

341.6957 0.9482 0.7553 35.7708 

Case 5 3.0578 (6) 

2.5676 (71) 

3.6471(79) 

NA 366.422 0.9558 0.8266 31.1229 

Case 6 3.1135 (6) 

2.5515 (71) 

3.6213 (79) 

2.2542 (6) 

1.9781 (71) 

2.6157 (79) 

281.0511 0.9599 0.8266 47.1702 

Case 7 3.0577 (6) 

2.5672 (71) 

2.4119 (79) 

1.2209 (83) 

NA 361.2495 0.9558 0.8266 32.0952 

Case 8 3.1473 (6) 

3.3721 (33) 

2.700 (71) 

3.8861 (79) 

2.2173 (6) 

3.087 (33) 

2.648 (71) 

3.6404 (79) 

233.649 0.9648 0.8266 56.0805 

Case 9 3.1946 (6) 

3.5429 (33) 

2.6628 (71) 

3.732 (78) 

0.4835 (82) 

NA 331.8868 0.9549 0.825 37.6146 

Case 10 3.6835 (6) 

4.9683 (19) 

3.5254 (34) 

2.3659 (71) 

4.2641 (79) 

2.3986 (6) 

4.1882 (19) 

3.8613 (34) 

3.5757 (71) 

3.2037 (79) 

225.1575 0.9663 0.8266 57.6767 

Case 11 2.2586 (6) 

3.1933 (19) 

2.952 (34) 

2.6092 (53) 

2.5677 (71) 

3.0167 (81) 

NA 269.3452 0.9556 0.8272 49.3706 

Case 12 3.3549 (6) 

4.7731 (19) 

4.4148 (34) 

2.5497 (53) 

2.9541 (71) 

4.4177 (81) 

2.3667 (6) 

2.3857 (19) 

3.6122 (34) 

3.0371 (53) 

2.1475 (71) 

3.3041(81) 

161.9149 0.9673 0.8317 69.5645 
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Case 11: Considering Six DGs Without SCs: 

The optimal placement of six DG locations is 

identified with the VSI method. By VSI, 6, 19, 34, 

53, 71, and 81 are suitable to place six DGs. The 

same message was sent to MPA, which determines 

the size of six DGs. Compared to the above cases, 

49.3706% of PLoss was minimized. Voltage profile 

and voltage stability enhanced. It injects only real 

(kW) into the system. Fig. 7 represents MPA 

converges significantly less time to compared other 

meta-heuristic methods. Table 2 shows the PLoss, 

Vmin, and VSImin of six DGs. 

Case 12: With Considering Six DGs + six SCs: 

Following VSI,  6, 19, 34, 53, 71, and 81 are the 

best site to place six DGs + Six SCs it injects both 

the active (kW) and reactive power (kVAr) into the 

DS. The same information is given to the MPA and 

found in the six DGs and six SCs sizes included in 

table 2. Fig. 8 shows the convergence 

characteristics of the practical 83 test system, 

proving that, compared to other optimization 

methods DA, GOA and WOA, MPA performance 

is outstanding in all aspects.. 69.5645% of PLoss was 

minimized, higher than all other cases. Fig. 5 and 6 

show that Compared to the base case results, 

decreased PLoss, voltage profile, and voltage 

stability augmented with MPA. From all 12 cases, 

the multi (DGs + SCs) efficiency system overall 

performance improved. 

Fig. 5. PLoss of different cases 

Fig. 6. VSI of 83 bus systems with different cases 

4.1 Optimal Capacity of DGs at Different Load 

Levels Without Considering SCs and EVs: 

First, the developed approach is tested for 1 DG, 2 

DGs, 3 DGs, 4 DGs, 5 DGs, and 6 DGs combined 

with SCs 6 DGs + 6 SCs. Table 2 shows the results. 

The results show that 6DGs and 6 DGs +6 SCs 

reduce PLoss, enhance voltage profile, and increase 

VSI. Due to network size and load, the proposed 

DS can only have 6 DGs + 6 SCs. beyond 6 DGs, 

system performance will decrease. Now, the 

proposed approach is tested with half (0.5 per unit), 

full (1.0 p.u.), and heavy (1.1 p.u.) loads. DGs at all 

load levels in proper locations and sizes reduce 

PLoss and enhance voltage profile. Table 3 shows 

various loads’ PLoss, voltage profile, and VSI.  

In addition, the suggested MPA is compared in 

terms of several metrics to other current 

optimisation methods such as the DA, WOA and 

GOA. Table 4 shows the results of simulations of 

all optimisation approaches across 50 trials and 100 

maximum iterations. It can be demonstrated that 

MPA achieves more significant PLoss reduction than 

any other method. Further, the convergence curve 

is shown in Fig 7 and 8. 

Fig.7. Convergence curve with 6DGs 

Fig.8. Convergence curve (6DGs+6SCs.
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Table 3. Simulation result with different load conditions 

Different 

Loads 

DG Sizes 

(MW) 

Base Case 

PLoss (kW) 

With DGs 

PLoss (kW) 

Vmin 

(p.u) 

VSImin 

(p.u) 

Half 

Load 

(0.5) 

1.6837    

2.5745    

2.2930    

1.8619    

1.6452    

1.5368 

127.2119 73.2732 0.9787 0.9141 

Full 

Load 

(1.0) 

3.1766    

3.5680    

2.9319    

2.8107    

2.5979    

2.9823 

531.9945 269.3452 0.9556 0.8272 

Heavy 

Load 

(1.1) 

3.4897    

3.8800    

3.3705    

2.9318    

2.8519    

3.3299 

649.8343 330.2084 0.95 0.8075 

                      Table 4. Comparison of MPA with other algorithms 

Optimisation 

methods 

PLoss (kW) Vmin (p.u) VSImin 

(p.u) 

% of reduced 

PLoss 

Base Case 531.9945 0.9277 0.7086 NA 

6 DGs DA 334.6975 0.9457 0.7553 37.0862 

GOA 298.3518 0.9486 0.8192 43.9182 

WOA 275.4243 0.9501 0.8216 48.2279 

MPA 269.3452 0.9556 0.8272 49.3706 

6 DGs+ 

6SCs 

DA 221.359 0.9482 0.7553 58.3907 

GOA 169.915 0.9492 0.8194 68.0607 

WOA 173.9416 0.9537 0.8219 67.3038 

MPA 161.9149 0.9673 0.8317 69.5645 

4.2 Dynamic performance analysis of practical 83 

Taiwan real test system with 6 DGs: 

Because the load fluctuates from hour to hour, it’s 

critical to examine the system’s dynamic changes. 

Figure 4 depicts a typical 24-hour load curve. 

Using the combined technique of VSI and MPA, 

the analysis described in 12 cases is expanded for a 

typical 24-hour simulation in this section. The load 

flow is simulated with dynamic changes in system 

demand, and the VSI approach is used to decide the 

best placements of DGs and SCs for all hours. In 

general, DGs and SCs will be immovable resources 

in any system. As a result, the determined place 

should be unique for all dynamic changes in system 

demand. The optimal sites for all dynamic load 

changes have been determined as 6, 19, 34, 53, 71, 

and 81. Table 5 shows the ideal DG sizes for the 

dynamic instances, whereas Table 6 shows the 

PLoss, Vmin, and VSImin determined using MPA. Vmin 

and VSImin are clearly within permitted limits for 

the whole 24-hour period. Fig.9 shows PLoss 

reduction, and Fig.10 and 11 show voltage profile 

and stability improvement compared to the base 

case. 

 

Fig. 9. Dyanmic PLoss Comparison with Base Case

 

         Table 5. dynamic variation of 6 DG Sizes 
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Hours DG1 (MW) DG2 (MW) DG3(MW) DG4 (MW) DG5 (MW) DG6 (MW) 

1 2.0971 2.6283 2.6304 2.4971 1.8764 2.8702 

2 1.5986 4.9334 2.9550 2.4631 1.9483 2.1902 

3 2.1323 4.6577 2.6879 2.4961 2.2704 3.7751 

4 2.0930 3.8788 1.8828 2.3519 1.7717 1.9207 

5 1.7763 3.2622 2.2078 1.6188 1.5590 1.8294 

6 1.9164 2.6300 2.3162 1.9284 1.8267 1.8357 

7 2.8500 2.9453 2.9710 3.5507 3.2213 2.9069 

8 2.6382 3.9740 3.3265 2.3749 2.2623 2.5102 

9 3.0158 3.1554 2.9096 2.4288 2.4785 2.8862 

10 3.1169 3.8757 3.1326 3.0866 2.8540 2.6798 

11 2.9809 3.1537 3.3801 2.7205 2.4552 3.1765 

12 3.0021 3.0194 2.7914 2.4673 2.4277 2.7966 

13 2.9726 2.9842 2.8270 2.4755 2.4229 2.7680 

14 3.0371 3.0554 2.8245 2.4967 2.4566 2.8291 

15 2.9830 3.4627 2.8300 2.5103 2.3330 2.7547 

16 3.0401 3.5820 2.6878 2.6987 2.3330 2.7419 

17 3.1174 3.1348 2.8985 2.5620 2.5207 2.9034 

18 3.1754 3.1936 2.9520 2.6096 2.5677 2.9565 

19 3.1745 3.2566 2.9728 2.6239 2.5935 2.9639 

20 3.0368 3.0553 2.8246 2.4961 2.4566 2.8287 

21 2.8738 3.6794 3.1969 2.2638 2.3659 2.8840 

22 2.6598 4.1867 3.2481 2.7569 2.2413 2.9688 

23 2.3019 2.3358 2.1559 1.9022 1.8581 2.1389 

24 2.2056 1.9197 2.6934 2.1339 1.8854 2.4075 

 

     Table 6. PLoss, Vmin, and VSImin for dynamic load variations 

Hours Base Case 

PLoss (kW) 

6-DGs 

PLoss (kW) 

Vmin 

(p.u) 

VSImin 

(p.u) 

1 225.4259 125.1067 0.9706 0.8833 

2 198.2772 137.6305 0.9697 0.8801 

3 187.2944 145.6995 0.9748 0.8978 

4 173.5694 105.6399 0.976 0.9015 

5 173.5694 96.4475 0.9737 0.8951 

6 184.758 98.9951 0.9735 0.8943 

7 292.5018 177.0059 0.9699 0.8734 

8 392.1795 207.6245 0.9604 0.8453 

9 473.7037 242.055 0.9574 0.8341 

10 485.2784 252.5902 0.9574 0.8339 

11 482.1065 248.2071 0.9566 0.8312 

12 473.7037 241.8868 0.9573 0.8338 

13 466.4172 238.2345 0.9576 0.8347 

14 485.2784 247.7133 0.9568 0.8319 

15 456.1146 233.8518 0.9584 0.8376 

16 466.4172 234.5738 0.9588 0.8391 

17 512.153 261.2289 0.9556 0.8276 

18 531.9945 271.1965 0.9548 0.8245 

19 531.9945 271.2152 0.9548 0.8245 

20 485.2784 247.7133 0.9568 0.832 

21 437.8848 226.8318 0.9589 0.8394 

22 359.9057 196.7103 0.963 0.8548 

23 272.7216 140.1724 0.9677 0.8721 

24 200.9094 109.6494 0.9739 0.8943 
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Fig.10. Voltage profile comparison for 24hrs 

Fig. 11. VSI for 24hrs 

5. EV charging Different approaches: 

Due to dynamic load variations and rising EV 

adoption, network conditions weaken. Schedule 

EVs depend on loading circumstances. This article 

examines a very well-market-available vehicle 

Chevy volt EVs. Table 7 lists EV’s specifications. 

➢ 60 office-going EVs leave at 8:00 a.m. & 

arrive at 5:00 p.m. 

➢ All EVs must continue their journey with 

a fully charged battery and cannot be 

recharged mid-trip. Depending on the 

distance travelled/supplied to the system, 

EV charging takes a significant period of 

time. 

➢ The technology will offer two-way 

connectivity between EVs and the system 

power grid. This inference enables 

integrated EV and DG scheduling. Thus, 

data is transferred quickly between 

channels. 

5.1 Conventional Charging Method (CCM): 

As per VSI 5, 42, and 78, buses are the best places 

to charge EVs. The EVs are recharged immediately 

after receiving their planned journey without 

concern for network load demand in this technique. 

The PLoss is calculated every hour, and the results 

are displayed in Table 8 for 24 hours. During the 

18th, 19th, and 20th hours, the EVs are recharged in 

G2V mode. The voltage profile is affected during 

the 18-20 hour period due to the increased demand 

on the network, which affects the system’s PLoss. 

Compared to base case 24hrs PLoss Only EV 

condition PLoss = 8959.4372kW increased with EVs 

+ DGs PLoss = 4750.2916kW. compared to the base 

case and only condition, DGs + EVs case 

46.9207% PLoss decreased. 

5.2 Optimized charging method (OCM): 

The EVs will be recharged at off-peak hours 

defined by the OCM technique. The OCM 

technique, when combined with MPA-based DGs 

placement, produces better outcomes than the 

CCM. Table 8 compares PLoss without EVs and 

EVs + DGs. Compared to base case 24hrs PLoss 

Only EV condition PLoss = 8955.131kW increased 

with EVs + DGs PLoss = 4745.489kW. compared to 

the base case and only EV, DGs + EVs 46.9744% 

PLoss decreased. This method reduces more PLoss 

than CCM. 

5.3 Grid to Vehicle + Vehicle to Grid (G 2 V + V 2 

G) Method: 

Using this technique (G2V Plus V2G), EVs may 

recharge and transmit electricity back to the grid. 

The sophisticated method determines when it is 

optimum to charge the EVs by considering system 

demand. The EVs will supply electricity to the grid 

interface between the 18th  & 19th hrs in V2G mode. 

After that, during the 4th and 5th  hours, EVs are 

recharged in G2V mode. Compared to the base 

case (24 hrs), CCM and OCM approaches, the G 2 

V + V 2 G method decreases PLoss more, the same 

information tabulated in table 8 and shown in 

Fig.12.  

Fig.12. Different EV Charging methods PLoss 

Comparision with Base Case 

Table 7. Specification of EVs 

Specification of EVs Ranges 

Battery of EV 16 kWh 

No. of EVs  60 

SoCmin 0.2 

SoCmax 0.9 

The average distance each EV travelled 30km 
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Average electricity use per km 0.175kWh/km 

Table 8. Comparisons of different EV Charging 

methods PLoss for dynamic load variations  

Different Cases PLoss (kW) 

Base Case  8949.4372 

Conventional 

Method 

Only EVs 8959.461 

With EVs + DGs 

(G 2 V) 

4750.2916 

Optimized 

Method 

Only EVs  8955.131 

With EVs + DGs 

(G 2 V) 

4745.489 

G2V + V2G Method 4740.095 

6. Conclusion: 

This paper proposes an integrated approach (VSI 

and MPA) to solve the allocation of DGs, SCs and 

combined DGs and SCs problems in DS. Further, 

different load levels are considered, solving the 

objective function PLoss. Dynamic load variation 

was considered, determining the sizes of these 

sources and calculating the objective function. To 

test the efficacy of the proposed system, 83 bus 

practical Taiwan DS is considered. Further, various 

cases are considered, such as single DGs, multiple 

DGs and SCs, and the obtained results are 

represented. From the results, the exact placement 

of multiple DGs and multiple SCs reduces the PLoss 

from 531.99 k W (base case) to 161.91 kW (6 DGs 

and 6 SCs), with a good improvement of voltage 

profile and VSI. The performance of the MPA 

algorithm is tested and compared with GOA, DA 

and WOA algorithms. Compared to other 

algorithms, the MPA algorithm reduces the PLoss to 

the maximum extent. 

Furthermore, office-going EVs are considered and 

added to the DS and verified the performance. Two 

charging methods, such as conventional and 

optimized charging approaches, are taken into 

account and determine the objective function. 
Compared to the CCM and the OCM approaches, 

G2V plus V2G method performed well. This 

effective charging method reduces the losses and 

improves the voltage profile and VSI. Finally, an 

optimal combination of DGs and EVs in the DS 

improves the overall performance of better loss 

reduction and enhanced voltage profile and VSI of 

the system. 
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