
INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH 
K. O. Adeyemi et al., Vol. 12, No. 4, December 2022 

Forecasting Photovoltaic Energy Generation 
Using Multilayer Perceptron Neural Network 

 

K. O. Adeyemi*‡ , V. Eniola** , G. M. Kalu-Uka*** , M. Zarmai* , M. Uthman**** , E. Bala*****  
 

*Department of Mechanical Engineering, University of Abuja, 900105, Nigeria 
 **Research & Consultancy Department, Energy Commission of Nigeria, Abuja 900211, Nigeria 

***Department of Mechanical Engineering, Alex-Ekwueme Federal University, 482136, Nigeria 

****Department of Electrical Engineering, University of Abuja, 900105, Nigeria 

*****Office of the Director-General, Energy Commission of Nigeria, Abuja 900211, Nigeria 
(kafayat.adeyemi@uniabuja.edu.ng, enilav01@yahoo.com, godwin.kaluuka@gmail.com, musa.zarmai@uniabuja.edu.ng, 

muhammad.uthman@uniabuja.edu.ng, elijidere@gmail.com)  

 
‡ Corresponding Author; K. Adeyemi, Department of Mechanical Engineering, University of Abuja, 900105, Nigeria 

Tel: +234 806 715 6254, kafayat.adeyemi@uniabuja.edu.ng 

 
Received: 10.08.2022 Accepted: 13.10.2022 

 
Abstract – Solar power grid integration has increased tremendously in the global electricity market. However, further increase 
in solar power grid integration has been restricted by the intermittent nature of solar energy supply. For this reason, researchers 
have developed different mathematical models which could predict the available solar energy radiation and the actual solar 
photovoltaic energy generated at a given location. Hence, the present study proposes a novel (enhanced multilayer perceptron 
neural network, MLPNN) model for predicting the daily solar energy generated by a 1.1869 MW PV power plant. The stability 
of the MLPNN model was compared with results obtained from the multiple nonlinear regression (MNR) model and the 
generalized regression neural network (GRNN) model. The results showed that the enhanced MLPNN model outpaced the 
MNR and the GRNN models by presenting the lowest normalized root mean square error (nRMSE), the lowest minimum 
absolute percentage error (MAPE), and the best coefficient of determination (RSQ) for both the rainy [6.09, 5.93, 93.53]% and 
the dry [6.12, 4.16, 90.77]% seasons, respectively. 
 

Keywords Photovoltaic, energy forecasting, artificial neural network, multilayer perceptron neural network, data processing. 

Nomenclature 
AC 
ANNs 
APE 
BPNN 
BR 
CSO 
DC 
DPA 
FFNN 
GDM 
GRNN 
LSTM 
LUD 
MAPE 

 
Alternating Current 
Artificial Neural Networks 
Absolute Percentage Error 
Back Propagation Neural Network 
Bayesian Regularization 
Competitive Swarm Optimization 
Direct Current 
Data Preprocessing Algorithm 
Feed-Forward Neural Network 
Gradient Descent with Momentum 
Generalized Regression Neural Network 
Long-Short Term Memory 
Lower Usuma Dam 
Mean Average Percentage Error 

MLPNN 
MNR 
nRMSE 
PCS 
PV 
RBFNN 
RSQ 
NARX 
 

Multilayer Perceptron Neural Network 
Multiple Nonlinear Regression 
normalized Root Mean Square Error 
Power Conditioning System 
Photovoltaic 
Radial Basis Function Neural Network 
Coefficient of Determination 
Nonlinear Autoregression with Exogenous 
Variable 

1.  Introduction 
 

Regardless that energy consumption per capita is a good 
measure of the production capacity of a country [1], the 
production of energy from fossil fuel has remained the major 
cause of climate change and other environmental challenges 
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in the 21st century [2-4]. For this reason, there is the urgent 
need to explore and examine the different ways of utilizing 
the available renewable energy resources such as the solar 
power [5-7]. One of the effective technologies for solar 
energy conversion is the solar power grid integration [8]. The 
integration of solar electric power to the national grid has 
become the new normal for many national power electricity 
production companies due to the declining costs, enhanced 
efficiency, and favourable intergovernmental protocols on 
the utilization of solar power systems [9]. However, the 
deployment of grid-integrated solar photovoltaic (PV) power 
plants is largely restricted by the stochastic nature of the 
solar energy that reaches the earth surface [5, 7, 9-11]. Thus, 
several mathematical models have been used to predict the 
amount of solar energy radiation at a particular location, with 
the view to designing efficient solar energy generation 
systems. The forecasting of PV energy production is required 
to decentralize the existing energy markets, with different 
power bidding scenarios [12-14]. Accurate forecast of 
available solar energy can also inform the decision of when 
to charge or discharge a battery at certain time of the day 
which can lead to more efficient sizing of battery capacity, 
the need for less PV generation capacity, and can even 
reduce the amount of nonrenewable back-up generation 
required in grid-tied systems [15]. 

One of the best machine learning models used to forecast 
the energy generation of PV power plants is the artificial 
neural network (ANN). The advantage of the ANN is due to 
its ability to handle the nonlinearity of meteorological 
variables [11, 12]. The accuracy of ANN-based models is 
influenced by the size of the available data and/or the 
preprocessing techniques [10, 12]. The energy generation of 
a large-scale PPP has been forecasted by Nguyen et al. [11], 
based on the long-short term memory neural network 
(LSTM) which considers the variations in weather 
conditions. The authors further demonstrated the capability 
of the LSTMNN model by comparing its performance with 
the performance of a few other existing baseline models. 
Zhong et al. [15] and Mizuno et al. [16] also highlighted the 
effect of weather conditions on solar power generation, by 
investigating the impact of uncertainties in meteorological 
data on the accuracy of a numerical weather prediction 
(NWP) model. Scabbia et al. [17] however noted that the 
extent to which exogenous variables (such as temperature, 
humidity, atmospheric pressure, wind speed, etc) can affect a 
solar forecasting model is largely dependent on the accurate 
pairing of the exogenous variables and the type of algorithm 
used in optimizing the forecasting model.  Consequently, 
Pizza et al. [12] predicted the electricity demand with 8–24 
hour head start, by employing a low-cost nonlinear 
autoregressive neural network with exogenous variables 
(NARX). Similarly, Basurto et al. [3] predicted solar energy 
generation using a hybrid intelligent technique with the 

objective of optimizing solar grid integration range. The 
proposed model was compared with other approaches based 
on one-year data and the results indicated an acceptable error 
value. Serttas et al. [18] also developed a novel hybrid 
method for predicting solar power generation using the 
Mycielski signal processing technique and the probabilistic 
Markov chain. Based on this method, Serttas and his team 
were able to predict the solar power generation at Kocatep 
University in Turkey, with a 0.87 coefficient of 
determination value. Zaaoumi et al. [1] also articulated the 
use of analytical models and ANN for solar thermal energy 
generation forecasting. The results showed that the ANN 
outperformed the benchmark analytical model by presenting 
the lowest absolute percentage error (APE). Yang et al. [9] 
developed a radial basis function neural network (RBFNN) 
for a short-term forecasting solar energy production, based 
on a competitive swarm optimization (CSO) technique. 
Zhong et al. [19] and Liu et al. [20] used the generalized 
regression neural network (GRNN) model to forecast PV 
power production by considering the correlation coefficients 
of different meteorological variables. However, while Zhong 
et al observed that their result outpaced the benchmark back 
propagation neural network (BPNN), Liu and his team used a 
cross-validation method to optimize the value of the network 
spread. Moreso, a hybrid framework, which integrated the 
multilayer perceptron neural network (MLPNN) with 
clustering technique, was utilized by Azimi et al. [5] to 
forecast the solar radiation at with a one-hour head start. 
Colak et al. [21] however developed a novel hybrid approach 
for predicting daily PV power production by integrating grey 
wolf, ant lion, and whale optimization algorithms with 
multilayer perception models. Bayindir et al. [22] used the 
Naïve Bayes classifier to predict to predict the daily PV 
energy generation in Van, Turkey, using daily average 
temperature, daily total sunshine duration and daily total 
global solar radiation as the input parameters. Ahshan et al. 
[23] analyzed the performance of a solar PV system for 
campus sports complex, and found out that PV power 
generation capacity was significantly affected by the 
variation in atmospheric temperature. 

Considering that several authors have used different 
models and architectures of the artificial neural network 
(ANN) to predict the amount of solar radiation reaching the 
earth surface [4,6,24-32], the demand response of electrical 
loads [13] and the performance of PV installations under 
varying operating conditions [7,24]; there is no doubt that the 
ANN will remain an emerging technique for forecasting solar 
energy generation and optimizing the performance of solar 
energy installations. Hence, the objective of the present study 
is to forecast PV energy generation by embedding a data 
preprocessing algorithm (DPA) into the multilayer 
perceptron neural network (MLPNN). Secondly, the study 
demonstrates that the nonlinear mapping capability of the 
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DPA-MLPNN model is better than the results which could 
be obtained from some existing baseline models. Above all, 
this paper is the first study on grid-tied PV energy generation 
in Nigeria. 
 
2.    Conceptualization 
 

2.1. The PV Power Plant 
 

The lower Usuma dam (LUD) PV power plant is 
located at Ushafa community (Lat. 7°25′16′′ E and Long. 
9°01′12′′N) in Bwari Area Council, Abuja-Nigeria. The PV 
power plant project was fully funded by the Japan 
International Cooperation Agency (JICA) through the 
Nigerian Federal Ministry of Power. The PV modules were 
manufactured by Mitsubishi Electric Corporation, Japan; and 
the modules were installed in tandem with the national grid. 
Besides supplying power to the national grid, the PV power 
plant also powers the pumps which drive the water treatment 
processes at the lower Usuma dam. The power conditioning 
systems (PCSs) attached to the PV power plant were 
however instrumental to the acquisition of relevant data. The 
construction of the PV system was commenced in November 
2015, and the project was executed in two phases. The first 
phase of the project (with a capacity of 979.4 kWp) was 
commissioned in August 2016, while the second (with a 
capacity of 207.5 kWp) was commissioned in January 2017. 
However, the total capacity of the solar PV installation is 
1.1869 MWp. 
 
2.2. The Forecasting Models 
 

The forecasting capabilities of three models were 
considered in this study. The first two models are already-
existing regression-based models (the MNR and the GRNN), 
while the third model (the DPA-MLPNN) is the proposed 
model. For short-time prediction, solar irradiance and 
module temperature are the key variables to accurately 
forecast PV power output due to cloud cover. Module 
temperature is considered due to its significant effect on 
voltage which consequently affects power output. PV power 
output model is as expressed by Eq. 1. 

 
                            (1) 

 
where , , , , , and  represent the PV power 
output (W), module efficiency (%), module area (m2), solar 
irradiance (W/m2), temperature coefficient of power (%/K), 
and module temperature (⁰C), respectively.  is strongly 
related to ambient temperature . A good number of 
studies have established the relationships. Related references 
are presented in [23]. It is on the basis of the relationship that 
the authors developed a custom MNR expressed by Eq. 2, to 
account for the effect of temperature on the PV energy 

generation. The MNR model could forecast solar energy 
generation at a given location, based on the solar irradiation 
and ambient temperature data. The mathematical expression 
of the MNR model is therefore shown in Eqn. 1. 
 

  (2) 
 
where, , , ,  and  are the forecasted energy 
(in MWh), solar irradiation (in kWh/m2.d), ambient 
temperature (in ), the model intercept (in MWh) and the 

model coefficient (in m2.d/ ), respectively. 
Whereas the MNR is a pure regression-based model, the 

GRNN is a neural network model which has some blend of 
regression analysis. The GRNN model was nonetheless 
proposed by Specht in 1991, as a derivative of the radial 
basis function neural network (RBFNN) model. The GRNN 
is comprised of an input vector, a pattern layer, a summation 
and an output layer. The input vectors are transmitted 
directly to the pattern layer via the input layer. The 
respective numbers of the neurons in the input layer and the 
output layer are equal to the size of the input vectors and the 
output vectors [20]. 

The proposed MLPNN model is a variant of the feed-
forward neural network (FFNN) model which has many 
layers and nodes [1, 11]. The network has weights attributed 
to the connected nodes and the responses are produced by 
computing the activation from the sum of inputs [3]. The 
MLPNN has one or more hidden layers in addition to the 
output layer, and contains some input layers that connect the 
input vector to other network layers. Architecturally, the 
MLPNN model links every node in a given layer to each 
node in the preceding and succeeding layer [27]. As a result, 
the MLPNN model is able to supervise the training process 
(and also map nonlinear time-series data) by using back 
propagation to determine the input/output relationship [1]. 
The neurons comprise of a cluster of nexuses or synapses, 
which are assigned their individual weight  (as shown in 

Fig. 1). Each weight is multiplied by its own input  before 

summing up all weighted inputs and the external bias , to 

obtain the output summation . Afterwards, an activation 

function (•) is applied to , in order to reduce the output 

signal  to a finite value. Mathematically, the sequences of 

the operation are as expressed by Eq. 2, where (–), (–), 

and (–) are the number of neurons, synapses, and input, 
respectively.  

 

 
(3) 
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Fig. 1. Nonlinear model of a neuron [33] 

 
3.  Methodology 
 

3.1. Data Acquisition and Preprocessing 
 

The data for this study was obtained from the power 
conditioning systems at the lower Usuma dam PV power 
plant. The data was recorded at 24-hour time-steps between 1 
January 2021 and 31 December 2021. Afterwards, the data 
was preprocessed in order to identify and adjust the missing 
and irrational data points which occurred due to equipment 
breakdowns and human bias. 

In this study, the input data was defined as the scalar 
product of  and , while the target output was defined 

as . However, the input data and the target output were 

standardized and tested in order to optimize all the 
parameters in the GRNN and the MLPNN models. The 
standardization process was required to ensure that the means 
and variances of the input and target data were equal to 0 and 
1, respectively. The DPA for the MLPNN was developed by 
filtering the preprocessed data in order to extricate the data 
which are irrelevant to the forecast model. This was done by 
replacing all the missing or absurd data points with the 
average of the corresponding day in the preceding and 
succeeding year. All the missing data points in a given month 

 which had no equivalent succeeding or preceding data 
point was replaced with the average value of the equivalent 

cells of the consecutive preceding (i.e., -2 and -1) or 

succeeding month ( +1 and +2), depending on which 
applies. The resulting data was later amalgamated according 
to the two climatic seasons in Nigeria, which correspond to 
the rainy season (April – October) and the dry season 
(November – March). The MLPNN model was defined by 
specifying the standardized training input and target, the 
number of neurons in each of the two hidden layers used, the 
activation functions for the hidden layers and output layer, 
the training algorithm, and the learning function. 
 
3.2. Data Training and Quota Testing 
 

At the end of the preprocessing stage, the data was 
shuffled via a random permutation process. After shuffling 
the data, the outcome was split into training input and target 
output. The training input and target output were later 
standardized in order to ensure that their means and 
variances are equal to 0 and 1, respectively. 

The configuration of the MLPNN model was initiated by 
randomly dividing the standardized training data in the ratio 
90:10 to form the training ratio and validation ratio, 
respectively. Moreso, the values of the network training 
epochs and learning rate were set as 1000 and 0.4 
respectively. The network was trained with Bayesian 
regularization (BR) algorithm, and the weights were updated 
using back propagation technique. In order to forecast the 
values of , the input standardization structure (which was 

established while training the MLPNN model) was applied to 
the out-of-sample data testing input. The out-of-sample 
testing output data was converted to a row vector and then 
employed as the input data to simulate the MLPNN model. 
The simulated output, , was reversed, and later 
standardized using the target standardization structure. 
Details of the configuration of the model and the flowchart 
for forecasting the solar energy generation of the PV power 
plant are shown in Figs. 2 and 3

. 

 
Fig. 2. Configuration of the MLPNN Model 
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Fig. 3. Flowchart for forecasting the solar energy generation of the PV power plant at Ushafa, Abuja 

 
3.3 Performance and Evaluation of the Models 
 

The performance of the MLPNN model was evaluated by 
comparing the  with the  (which was initially expressed 
as the testing target). The comparison was based on three 
metrics: the normalized root mean square error (nRMSE), the 
mean absolute percentage error (MAPE) and the coefficient 
of determination (RSQ), as given in Eqns. 4, 5 and 6, 
respectively. 

 

 
(4) 

 

 
(5) 

 

 
(6) 

 
where (MWh) and (MWh) are the actual and forecasted 

energy, (MWh) and (MWh)  are the minimum 

and maximum (MWh), (MWh) and (MWh) are the 

average (MWh) and (MWh), and (–) is the number of 
observations, respectively. The nRMSE shows the ratio of 
the standard deviation of the forecast errors to the range of 
the forecasted value, while the MAPE quantifies the 
accuracy of the forecast model by computing the average 
absolute percentage error. The RSQ however shows the 
degree of correlation between two factors. The value of the 
RSQ ranges from 0 to 1. The best model was adjudged to be 
the model with the lowest RMSE, the lowest MAPE and the 
highest RSQ value. 
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4. Results and Discussion 
 

The performance of the MLPNN model is compared with 
the results obtained from the NMR and the GRNN models. 
The configuration of the computer system used for the 
analysis is given as: Intel(R) Core (TM) i3-3110M CPU @ 
2.4 GHz, 4 GB RAM, and 64-bit OS version. The 
distribution of (kWh/m2.d) and ( ) at the PV power 

plant location for both seasons are shown in Figs. 4a and 4b. 
The figures show that the average daily ambient temperature 
correlates with the average daily solar irradiation at Ushafa, 
Abuja. The anomaly which was observed in Fig. 4b (between 
day 140 and 155) could be attributed the sudden, 
convectional rainfall which occurred in the dry season. The 
statistical description of the forecast data is as shown in 
Table 1. 

 

 
Fig. 4. Distribution of solar irradiation, Is and ambient temperature Tamb at Ushafa, Abuja for (a) rainy and (b) dry seasons 

 
 

Table 1. Descriptive statistics of the forecast data 

Statistics  
(kWh/m2.d) ( ) (MWh) 

Rainy Dry Rainy Dry Rainy Dry 
Minimum 0.00 0.00 8.05 14.43 0.00 0.00 
Maximum 6.70 6.87 33.95 35.21 6.45 6.41 
Average 3.95 4.91 24.76 26.66 3.84 4.39 
Standard deviation 1.45 1.19 3.07 3.31 1.35 1.09 

 
 
4.1. Standardization of Training and Target Data 
 

The training input and target data used to develop the 
MLPNN were standardized based on the FFNN technique. 
The details of the optimum input parameters and the 
optimum activation functions for training the MLPNN model 
are presented in Tables 2 and 3. The training and testing 
targets for the rainy and dry seasons are also shown in Fig. 5. 
 
4.2. MNR, MLPNN, and GRNN Performance 
 

The MNR, MLPNN, and GRNN models were used to 
forecast the daily solar photovoltaic power generation   at 

the lower Usuma dam. The result obtained from analysis of 
the MNR model is presented in Table 4. The table shows 

that, for the two seasons of the year, the RSQ values of the 
MNR input,  and the MNR output,  are strongly 

positive (above 80%). The p-values (p≤0.5) of the correlation 
between  and  for both seasons also showed that 

the results are statistically significant, and the null hypothesis 
can be rejected. This result was further confirmed by the fact 
that the values of  are greater than zero. The performance 
of the MNR, MLPNN and GRNN models was however 
compared based on their nRMSE, MAPE and RSQ values 
for the two seasons of the year. 
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Table 2. Optimum input parameters for the MLPNN model 
S/N Parameter Specification 
1. Number of nodes in hidden layer #1 5 
2. Number of nodes in hidden layer #2 10 
3. Training algorithm BR 
4. Learning function GDM 

 
Table 3. Optimum activation functions for the MLPNN model 

Layer Activation function Equation Profile 

Hidden 
layer #1 

TANSIG  

-1

0

1

  

G(x)

(x)

 

Hidden 
layer #2 

LOGSIG 
  

-1

0

1

 

 

G(x)

(x)

 

Output 
layer 

PURELIN   

-1

0

1
  

G(x)

(x)

 
 
 
 

 
Fig. 5. Training and testing targets for (a) the rainy season and (b) the dry season 
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Table 4. Input-output p-value, RSQ and MNR model beta 
Season p-value(–) RSQ(%) Beta 

 0.05  80 ( MWh) (m2.d/ ) 
Rainy     0.7159 0.0307 
Dry     0.7641 0.0273 
 
 
4.2.1 Analysis of the Rainy Season Performance 
 

The performance of the MNR, GRNN and MLPNN models 
was analyzed based on the data obtained during the raining 
season. Fig. 6(a) shows the distribution of the average daily 
solar generation for the rainy season, based on the 
predictions of the three models. According to the figure, the 
highest average daily solar energy generation at Ushafa is 
approximately 6.0 MWh. The figure also shows that the 
actual average solar energy generation is almost completely 
overlapped by the MLPNN model. This suggests that the 
result of the MLPNN model is more stable than the results 
obtained from the MNR and the GRNN models. Fig. 6(a) 
also shows that the under-forecast of MNR model is obvious 
after 75 days of the rainy season. The poor performance of 

the MNR and the GRNN models could be due to the inability 
of regression-based models to model nonlinear time-series 
data. The performance stability of the MLPNN model is 
confirmed by the APE plots shown in Fig. 6(b). Detailed 
analyses of the stability of the MNR, GRNN and MLPNN 
models are shown in Fig. 7(a). The results show that the 
MLPNN model recorded the best RSQ value and the lowest 
nRMSE and MAPE values. The RSQ value of the MLPNN 
model out-paced the RSQ values of the MNR and the GRNN 
models by 22.54% and 3.30%, respectively. The 
performance of the three models was further analyzed (as 
shown in Fig. 7(b)) to determine the degree to which the 
actual solar energy generation  can be predicted by the 

forecasted solar energy generation  (which are obtained 
from the MNR, MLPNN and GRNN models). The results of 
the analyses also confirm that the MLPNN model has the 
best fit. This is because the MLPNN model practically 
traversed the 1:1 line (which is the ideal line that represents 
the perfect model whose forecast values are equal to the 
actual values). 
 

  

 
Fig. 6.   Comparison of the different models for forecasting the rainy season performance of PV power plant at Ushafa-Abuja,    

based on (a) the solar energy generation and (b) the absolute percentage error 
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Fig. 7.   Comparison of the different models for forecasting the rainy season performance of PV power plant at Ushafa-Abuja, 

based on (a) the nRMSE, MAPE and RSQ values and (b) the fitness of the models to the actual solar energy generated 
 
 
4.2.2 Analysis of the Dry Season Performance 
 

The performance of the MNR, GRNN and MLPNN 
models was also analyzed based on the solar energy 
generation data obtained during the dry season. While Fig. 
8(a) shows the distribution of the average daily solar energy 
generation which was predicted by the three models, Fig. 
8(b) shows the APE plot for the performance stability of the 
models. As expected, Fig. 8(a) confirms that the maximum 
average daily solar energy generation at Ushafa is 
approximately 6.0 MWh. The figure also shows that the 
actual average solar energy generation is closely traced by 
the MLPNN model. According to Fig. 8(a), the MNR model 
shows too many under-forecasts while the GRNN model 
shows under-forecasts before 64 days and over-forecasts 
after 64 days. The approximate percentage error in the results 
obtained from the three models is shown in Fig. 8(b). The 
figure shows that the error in the MLPNN model is lower 
that the error in the MNR and GRNN models. The nRMSE, 
MAPE and RSQ values of the three models are also shown in 
Fig. 9(a). The results in Fig. 9(a) however shows that the 
MLPNN model has the best RSQ value and the lowest 
nRMSE and MAPE values. The figure also shows that the 
RSQ value of the MLPNN model is greater than the MNR 
and GRNN values by 25.08% and 4.45%, respectively. The 

extent to which the actual solar energy generation  can be 

described by the forecasted solar energy generation  was 
analyzed, and the results are shown in Fig. 9(b) indicate that 
the MLPNN is best fit for the 1:1 line. 
To corroborate the stability of the proposed technique, its 
nRMSE, MAPE and RSQ were compared with other 
benchmark models for the two seasons considered. The most 
suitable approach, in terms of the performance metrics 
defined, should give the minimum nRMSE, minimum 
MAPE, and maximum RSQ. In the rainy season, the 
proposed MLPNN presented the lowest nRMSE, lowest 
MAPE and highest RSQ of 6.09%, 5.93% and 93.53%. 
respectively (Fig. 10). As expected, the raining season’s 
performance results of the proposed model also gave the best 
metrics whose values are respectively 6.12%, 4.16% and 
90.77% in the same order (Fig. 12). Regardless of the season, 
the results of comparison indicated that MLPNN is suitable 
for the forecasting of PV energy with temporal resolution of 
one day. The near-optimum performance of the MLPNN 
model could however be attributed to the weakness in the 
statistical determination of the input variables, and the 
uncertainty of the readings obtained from both the weather 
station and the power conditioning systems [34]. 
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Fig. 8.   Comparison of the different models for forecasting the dry season performance of PV power plant at Ushafa-Abuja, 

based on (a) the solar energy generation and (b) the absolute percentage error   
 

  

 
Fig. 9.   Comparison of the different models for forecasting the dry season performance of PV power plant at Ushafa-Abuja, 

based on (a) the nRMSE, MAPE and RSQ values and (b) the fitness of the models to the actual solar energy generated 
 
Conclusion 
 

This study presents a 24-hour lead-time forecast of the 
energy generation (MWh) of a 1.2 MW PV power plant 

located at lower Usuma dam in Ushafa, Abuja-Nigeria; using 
a DPA-enhanced MLPNN model. The performance of the 
model was validated based on the results obtained from 
already-existing models: the MNR and the GRNN models. 
The results of the analysis showed that the MLPNN model 
outpaced the benchmark methods by presenting the lowest 
nRMSE, the lowest MAPE, and the best RSQ for both the 
rainy [6.09%, 5.93%, 93.53%] and the dry [6.12%, 4.16%, 

90.77%] seasons, respectively. Regardless of the season, the 
results of comparison indicated that MLPNN is suitable for 
the forecasting of PV energy with temporal resolution of 
one-day. The MLPNN is therefore considered a good 
technique for forecasting the energy generation of the PV 
power plant. In the subsequent studies, the authors shall 
study the stability of the DPA-enhanced MLPNN model to 
handle a very large population of solar energy data. 
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