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Abstract- Transmission Expansion Planning (TEP) is an optimization study aimed at determining new transmission lines to be 

added to the transmission network in order to expansion or reinforcement of the network within the scope of different purpose 

functions in parallel with the increase in demand and generation. In this study, the objective function of the TEP problem is 

determined as minimizing the investment costs of the lines to be added to the network and the loss of load cost. This article 

proposes Forensic Based Investigation Optimization (FBIO) which is a new and efficient meta-heuristic method in solving of 

the TEP problem for the first time. In the literature, there are many studies used individual optimization methods, but comparisons 

of different methods are lacking. Therefore, this article presents a comprehensive comparative study of recent published 5 

different methods. The proposed FBIO method is applied for 4 different scenarios on IEEE 24-bus test system which is one of 

the most used test system using the DC model. Obtained results are compared with the results which get using 5 different methods 

in literature. In addition that the reliability of the power network is a substantial issue for utilities since the stronger transmission 

system means the better social welfare. Hence, Transmission System Operators have to ensure the sustainable energy to 

consumers at any point of the grid. Accordingly, N-1 criteria of the transmission system which is extremely important for safety 

should be considered in the expansion planning studies. Therefore, in this study, the N-1 contingency criterion is implemented 

during optimization process of the TEP problem which means that the obtained results present not only a cost-effective solution, 

but more robust system.Python programming language is applied in modeling and solving the problem. Panda Power, an open 

source Python library, is used in modeling the IEEE 24- bus test system and carrying out power flows. 

Keywords- Transmission expansion planning, meta-heauristic optimization, investment cost, cost of energy not supplied, dc 

model. 

 

1. Introduction 

Power systems, which are very complex and large 

structures covering generation, transmission and distribution 

systems, basically provide access to electrical energy for end 

users in the position of consumers [1]. Partial or full 

unbundling and liberalization in the electricity market in the 

last 30 years has caused the generation and distribution side to 

be operated by multiple private companies on a competitive 

basis according to market conditions. However, most 

transmission systems continue to be operated by a 

government-controlled monopoly institution/company. 

Unbundling and liberalization in the power systems have 

led to the separate execution of Generation Expansion 

Planning (GEP), Transmission Expansion Planning (TEP) and 

Distribution System Planning (DSP) studies, which are carried 

out centrally and integratedly by a single authority or 

institution [2-4]. This separation has brought with it much 

more uncertainty and problem than the solution [5, 6].  In the 

new environment, GEP and DSP are carried out in line with 

the decisions taken by private sector investors within the 
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framework of their own evaluations, while TEP is continued 

to be made in line with the decisions taken by the state-

controlled institution/company [7].  

TEP can be expressed as the expansion and/or 

strengthening of the transmission system with minimum cost 

in order to meet the electrical energy demand reliably and 

economically while maintaining the system stability and 

reliability for future planning periods [8–10]. TEP is the study 

of determining when, where and how many new transmission 

lines should be installed [11-14]  . 

In the new environment created by the competitive 

market, one of the most important objectives of the TEP is to 

ensure that the transmission system is open to all electricity 

market players without discrimination and to increase 

competition among these players [15]. TEP also has different 

purposes such as reducing system congestions, minimizing 

risks, minimizing environmental effects, minimizing costs, 

maximizing total social welfare [16, 17]. Looking at the 

objective set of the TEP, it is seen that the TEP is interested in 

the economic side of the system as well as the technical side. 

In the recent years, within the framework of net zero 

emission targets in the world, the share of renewable energy 

in the system is increasing significantly. In parallel with the 

increase in the share of renewable energy in the system, 

requirement of the planning and establishment of new and 

larger capacity transmission lines from regions in which 

generated electricity from intermittent wind and solar energy 

to consumption regions has increased as well. TEP has been 

getting more important in the environment of the growing 

interest to renewable energy particularly intermittent wind and 

solar energy [19]–[24]. 

TEP is made by considering the current system status, 

future load and generation scenarios, capacities of 

transmission lines and system conditions. Planning studies are 

carried out for periods of 5-10 years or longer. TEP is 

classified as static and dynamic according to planning time 

[25]. Static TEP is concerned with where and how many a new 

transmission line will be added to the system for only one time 

slot during the planning period, with minimum cost [26]. 

Unlike static TEP, in dynamic TEP, the planning period is 

divided into multiple time intervals and the planning study is 

carried out for each time interval [27].   

In general, AC and DC based power flow models are used 

in modeling power systems in TEP studies [28]. The AC 

model deals with the linear and non-convex complexity of the 

TEP [29]. The DC model, on the other hand, is the linearized 

and simplified version of the AC model and does not deal with 

power flow parameters such as line losses, reactive power 

flow, voltage variation [30]. DC model is widely used in TEP 

because it offers simpler, easier and faster solutions than AC 

model [24, 25]. 

In TEP, due to the large and complex size of the system, 

its inherently non-convex nature and various uncertainties, it 

is very difficult to find the most appropriate solution to 

problems such as when, where and how many new 

transmission lines will be installed or what the cost will be 

[33].Therefore, TEP emerges as a non-linear, complex integer 

optimization problem that aims to find the optimal values of 

certain objective functions [27-29]. 

Two basic approaches, mathematical and heuristic 

algorithms, are used to solve the TEP problem [37].  There is 

also a third optimization method, also known as the hybrid 

algorithm, which contains the features of these two 

approaches. In the mathematical optimization algorithms, the 

formulas created for the defined TEP problem are solved by 

operating a deterministic process [38]. Due to the non-linear 

and non-convex nature of the transmission system, solving 

problems using mathematical algorithms lead to problems 

such as memory insufficiency, snagging in the local optimal, 

and long solution time [39]. However, the accuracy rate of the 

results obtained with deterministic techniques is high.   In 

general, in the solving of the TEP problems, the mathematical 

optimization algorithms are used such as Linear Programming 

(LP) [40], Nonlinear Programming (NLP), Mixed-Integer 

Linear Programming (MILP) [24, [42], Mixed-Integer 

Nonlinear Programming (MINLP) [43], Benders 

Decomposition (BD) [44]. 

Heuristic algorithms are optimization methods that are not 

derivative based and are easier to use and implement through 

step by step search, but take longer time because they are 

search based [11]. Heuristic algorithms are generally created 

to solve one type of problem, while meta-heuristic  algorithms 

are designed to reliably obtain optimal solutions from 

different types of problems [38, 39]. Genetic Algorithm (GA) 

[40, 41], Simulated Annealing (ST) [49], Game Theory (GT) 

[50], Particle Swarm Optimization (PSO) [51], Tabu Search 

(TS) [52], Ant Colony Optimization (ACO) [53], Greedy 

Randomized Adaptive Search Procedure (GRASP) [54], Grey 

Wolf Optimizer (GWO) [55], Imperialistic Competitive 

Algorithm (ICA) [56], Symbiotic Organisms Search (SOS) 

[57], Gases Brownian Motion Optimization (GMBO) [58], 

Artificial Bee Colony (ABC) [59], Constructive Heuristic 

Algorithm (CHA) [60] and Mosquitoes Behavior Based 

(MOX) [61] are among the meta-heuristic  algorithms used in 

TEP. 

When the studies in the literature are examined, it is seen 

that especially meta-heuristic methods are widely used in the 

TEP problems, which include different objective functions. In 

general, the objective function of the TEP problem is designed 

to determine the most economically viable lines, the system 

security (N-1 constraint condition) criterion, which has an 

important place in the planning studies, has been ignored in 

[39, 41, 43, 55, 56]. In general, the methods used to solve the 

TEP problems are tested and verified on more than one 

scenario, the optimization methods used in [57–60] are 

applied on only one scenario. 

The differences and contributions of this study from the 

studies on TEP in the literature can be listed as follows: 

• In the literature, it is seen that meta-heuristic methods 

are widely used in TEP studies. However, studies 

comparing the results obtained by applying the same 

scenario studies on similar test systems are 

insufficient. In this study, Forensic Based 

Investigation Optimization (FBIO) [68] technique 

has been proposed for the first time to solve the TEP 
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problem. The proposed method has been applied for 

4 different scenarios on the IEEE 24-bus test system. 

The obtained results are compared with the results 

get by applying meta-heuristic  methods SOS [57], 

GMBO [58], ABC [59], CHA [60], MOX [61] used 

previously in the literature on the same scenarios and 

test system. It has been determined that FBIO gives 

better results than the other 5 meta-heuristic methods 

in terms of the total costs of the new transmission 

lines to be established for the planning period.  

• The FBIO algorithm has been applied on various 

scenarios with different objective functions. 

• The situation that no consumer is affected as a result 

of 1 of N equipment in the system being out of 

service is explained as the N-1 rule. The fact that the 

N-1 criterion, which is frequently used in static 

system security analyzes in the literature, is not taken 

into account, causes the network models created 

within the scope of TEP studies not to show the 

expected resistance.  For this reason, system security 

(N-1) has been taken into account for the scenarios 

where we carry out different planning activities 

within the scope of our study. 

• Programs such as Matlab, Cplex, Gams are widely 

used in modeling and solving the problem 

determined in TEP studies. In this study, the Python 

programming language, which is less used in TEP 

and is thought to be widely used in the future, is used. 

Panda Power which is an open source Python library 

is used in modeling the IEEE 24- bus test system and 

carrying out power flows. 

The main motivation behind this study is to provide 

transmission system planners with the most appropriate 

solutions in determining the necessary lines for the system in 

future planning periods. The remaining of this article is 

organized as follows: In section 2, the mathematical 

formulation of the TEP problem is presented. Section 3 

includes applied algorithm to solve the TEP problem. Section 

4 shows analyses results and comparisons. Finally, section 5 

presents comments, conclusions and future works.  

2. Mathematical Model of TEP  

In this study, the static TEP problem is solved by using 

the DC model for the planning period. In the problem, the 

investment costs of the new transmission lines to be added for 

the planning period and loss of load (LOL) cost that cannot be 

provided are formulated as the total cost. In addition, the 

problem is formulated according to whether the generation 

plants are resizing or not, and the N-1 security criterion is 

taken into account for each case. 

Notations used in the model:  

𝐶𝑇: total cost 

𝐶𝐼: investment cost 

𝐶𝐿: LOL cost 

𝐶𝑖𝑗: cost of line added from bus i to bus j 

𝑎𝑖: penalty cost at bus i 

𝑟𝑖: dummy generation at bus i 

f: active power flows through the lines 

g: active power generations 

�̅�: maximum generation capacity 

r: loss of load 

d: loads 

�̅�: maximum loads 

𝑓𝑖𝑗 : active power flow between buses i and j 

𝑓𝑖𝑗
𝑐
: active power flow between buses i and j in the single 

outage of line c 

𝑓�̅�𝑗 : maximum active power flow between buses i and j 

𝐵𝑖𝑗: line susceptance ij 

𝑛𝑖𝑗
0 : initial number of lines from bus i to bus j 

𝑛𝑖𝑗: number of new lines added from bus i to bus j 

�̅�𝑖𝑗: maximum number of new lines which can be added from 

i to j 

𝜃𝑖𝑗: voltage phase angle difference between bus i and bus j 

Ω: set of all candidate lines 

Ω𝑐𝑡𝑙: set of congested lines
 

2.1. Objective Function 

In general, the objective function in TEP is expressed as 

minimizing the cost of new transmission lines to be added to 

the system in order to meet the electrical energy demand for 

the planning periods. 

The mathematical model of the objective function can be 

formulated as [50-53, 62]: 

Min CT = ∑ Cijnijij                (1) 

Equation (1) expresses the objective function of the 

problem. The objective is to figure out the best right of ways 

in order to supply the load of the consumers for the planned 

time horizon without any violation the constraints including 

power system necessities. 

2.2. Constraints 

While formulating the TEP problem determined in this 

study, power balance, power flow, thermal limits of 

transmission lines, generation limits of generation plants and 

system security criteria are modeled as constraints. 

2.2.1. Equality Constraints 

Power balance equation for active power is often used to 

represent one of the equality constraints in TEP problem, 

ensuring that the load demand is met while compensating for 

power losses. The other constraint mostly considered in the 

mathematical model of the TEP is the power flow equation in 

transmission lines between buses. These equations can be 

shown as follows [4, 62-67]: 

f + g + r = d             (2) 

fij − Bij(nij
0 + nij)θij = 0            (3) 

The loss of load term in the Eq. (3) is utilized to ensure 

the power balance with obeying the constraints while 
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implementing the generation resizing aiming to reduce the 

cost of the expansion planning. However, since the loss of load 

is also costly for the utility and leads to decreasing the social 

welfare, it should be removed as much as possible by finding 

a suitable right of way. Therefore, the loss of load cost is 

attached to the objective function as a penalty in the 

constraints handling section. 

2.2.2. Inequality Constraints 

Inequality limits cover the generation limit at each bus 

(4), loss of load limit for each consumer (5) and right-of-way 

expansion limit for each branch (6). It also includes power 

flow thermal limit for each branch both base case (7) and 

contingency case (8). 

0 ≤ g ≤ g̅              (4) 

0 ≤ r ≤ d̅               (5) 

0 ≤ nij ≤ n̅ij  ∀(i, j) Є Ω              (6) 

|fij| ≤ (nij
0 + nij)fi̅j             (7) 

|fij|
c

≤ (nij
0 + nij)fi̅j  ∀(i, j) Є Ω, ∀(c) Є Ωctl          (8) 

2.3. Constraints Handling 

In order to figure out an appropriate solution to the TEP 

problem, the constraints related to power system necessities 

should be obeyed. In the equality constraints, the power 

balance equation includes the loss of load term, which means 

leading to an extra cost for the utility and reducing social 

welfare. Hence, the cost of loss of load should be integrated 

into the objective function so as to acquire a correct solution. 

Moreover, in the inequality constraints, transmission line 

thermal limits in both base case and contingency are 

constraints that need to be addressed in the solution process.  

The punishment and aggregating approach can be used to 

handle the constraint compliance problem. Therefore, the 

objective function of the TEP problem can be reconstituted by 

attaching the associated constraints to the function as a 

penalty. 

Minimize: P =  CI + CL + πb + πc                         (9) 

CL = ∑ airii                    (10) 

πb =  ω1 ∑ max (0, fij − fi̅j)
Ω
i=1                  (11) 

πc =  ω2 ∑ √
∑ max (0,fij

c−f̅ij)2Ω
i=1

Tc

Ωctl
c=1             (12) 

Where P is a penalty function to be optimized, 𝐶𝐿 

symbolizes loss of load cost, 𝜔1 and 𝜔2 are constant penalty 

coefficients, 𝑇𝑐  stands for the number of lines overloading in 

the contingency c, 𝜋𝑏 and 𝜋𝑐 represent punishments with 

regard to the thermal overloading occurred in the base case 

and contingency, respectively. 

3. Proposed Algorithm 

3.1. Forensic-based Investigation Algorithm 

In this study, FBI, which is a new meta-heuristic method 

and used for the first time in TEP studies, is used to solve the 

static TEP problem. The FBI is a human based meta-heuristic 

algorithm in order to find global solutions for continuous 

nonlinear problems with high accuracy and performance 

developed by Chou and Nguyen in 2020 [68]. Although FBI 

is designed to apply to continuous problems, the 

transformation from the continuous to the binary search space 

is implemented so as to solve the TEP problem by using the 

transfer function and position updating rule. In general, each 

meta-heuristic algorithm has its own advantages in terms of 

robustness, performance and search space. Therefore, it is 

necessary to investigate which meta-heuristic algorithm is 

better in effectively solving the TEP problem, which is the 

main purpose of this research.  

FBI optimization is inspired by the forensic process of 

suspect investigation, location and tracking of the detectives 

in criminal cases [70]. There are two basic mechanisms for 

inquiring about the offender, and these processes are 

conducted by the investigation and pursuit team. The 

investigation team tries to figure out the most promising area 

in the search space while the pursuit team aims to obtain the 

exact location of the offender by using the suspected location 

received from the investigation team. In the meta-heuristic 

terminology, it can be mentioned that the exploration phase is 

performed by the investigation team and the exploitation 

phase is conducted by the pursuit team. Each team uses two 

steps, containing their own mathematical expressions, in order 

to catch a criminal and these investigations are implemented 

cyclically during iterations. The flowchart of the 

implementation of FBI to solve TEP problem can be seen in 

Fig. 1. 

The initial step A1 of the investigation team, the 

interpretation of findings step, can be expressed as follows: 

XA1ij
= XAij

+ ((rand − 0.5) ∗ 2) ∗ (XAij
−

XAkj
+ XAhj

2⁄ ) , i = 1,2, … , NP; j = 1,2, … , D                                   

          (1) 

Where NP is the number of population, D is the dimension 

of a position, k and h are randomly selected individuals from 

the population, D is the dimension of a position, NP is the 

number of the population and rand is a random number in the 

range [0,1]. We benefitted from Gaussian Distribution while 

generating random number instead of ((𝑟𝑎𝑛𝑑 − 0.5) ∗ 2) 

term of Eq. (1). 

The individuals k, h and i should be different positions of 

the population. In this step, if the new position achieved with 

Eq. (1) is better than the current solution, it is assigned as the 

new current solution (𝑋𝐴𝑖 = 𝑋𝐴1𝑖), which means that the 

greedy selection procedure is implemented. 

The next step A2 in the investigation team, the direction 

of the inquiry, is conducted according to the following 

expression: 

𝑋𝐴2𝑖𝑗
= 𝑋𝑏𝑒𝑠𝑡 + 𝑋𝐴𝑑𝑗

+ 𝑟𝑎𝑛𝑑 ∗ (𝑋𝐴𝑒𝑗
− 𝑋𝐴𝑓𝑗

),  

𝑖 = 1,2, … , 𝑁𝑃;  𝑗 = 1,2, … , 𝐷             (2) 

Where 
𝑋𝑏𝑒𝑠𝑡 is the

 best location obtained from the initial 

step A1, rand represents the random number in the range [0,1], 

d, e and f are positions chosen randomly from the population 
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and these individuals and the current position i should be 

different from each other. 

The directions of other probable places have an impact on 

the updating of a searching location. However, not all 

directions are modified; to boost the diversity of search areas, 

randomly selected directions in the updated location are 

adjusted. Furthermore, a prospective bias is implemented to 

converge to the promising area by using probability of each 

position thanks to the next equation: 

𝑃𝑟𝑜𝑏(𝑋𝐴𝑖
) = (𝑝𝑤𝑜𝑟𝑠𝑡 − 𝑝𝐴𝑖

)/(𝑝𝑤𝑜𝑟𝑠𝑡 − 𝑝𝑏𝑒𝑠𝑡)   (3) 

Where 𝑝𝑤𝑜𝑟𝑠𝑡 is the worst objective value which means the 

lowest possibility, 𝑝𝑏𝑒𝑠𝑡 symbolizes the best objective value 

(the highest possibility), 𝑝𝐴𝑖
 represents the objective value of 

the current position and 𝑃𝑟𝑜𝑏(𝑋𝐴𝑖
) corresponds to the 

probability of the current position i. Actually, Eq. (3) is known 

as min-max normalization, which each solution can be shown 

in range [0,1]. 

Following the investigation team’s report of the best 

location, all members in the pursuit team must attack the target 

in a cohesive way to seize the criminal. In the initial step B1 

of the pursuit team, each individual seeks the location with the 

best objective value according to the following equation: 

𝑋𝐵1𝑖𝑗
= 𝑟𝑎𝑛𝑑 ∗ 𝑋𝐵𝑖𝑗

+ 𝑟𝑎𝑛𝑑 ∗ (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝐵𝑖𝑗
), 

𝑖 = 1,2, … , 𝑁𝑃;  𝑗 = 1,2, … , 𝐷                                        (4) 

Where 𝑋𝑏𝑒𝑠𝑡 is the best position provided by 

investigation team and rand is random number in the range 

[0,1].  

The police agents report the possibilities (objective 

values) of the new locations to headquarters whenever they 

make a move and the pursuit team is instantly dispatched to 

that place by headquarters. Agent 𝐵𝑖 rushes toward the best 

location, and he is influenced by the other members of his 

team. The other member of the population chosen randomly 

among the entire team is called 𝐵𝑟, and its possibility is 

represented by 𝑝𝐵𝑟
. If 𝑝𝐵𝑟

 is better than 𝑝𝐵𝑖
the new position of 

agent 𝐵𝑖 is updated with regard to Eq. (5); otherwise, it is 

determined by Eq. (6). 

𝑋𝐵2𝑖𝑗
= 𝑋𝐵𝑟𝑗

+ 𝑟𝑎𝑛𝑑 ∗ (𝑋𝐵𝑟𝑗
− 𝑋𝐵𝑖𝑗

) + 𝑟𝑎𝑛𝑑 

 ∗ (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝐵𝑟𝑗
) , 𝑖 = 1,2, … , 𝑁𝑃;  𝑗 = 1,2, … , 𝐷               (5) 

𝑋𝐵2𝑖𝑗
= 𝑋𝐵𝑖𝑗

+ 𝑟𝑎𝑛𝑑 ∗ (𝑋𝐵𝑖𝑗
− 𝑋𝐵𝑟𝑗

) + 𝑟𝑎𝑛𝑑             (6) 

∗ (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝐵𝑖𝑗
) , 𝑖 = 1,2, … , 𝑁𝑃;  𝑗 = 1,2, … , 𝐷         

Where 𝑋𝑏𝑒𝑠𝑡  is the best location achieved from Step B1, rand 

stands for random numbers in the range [0,1], member i and 

randomly chosen rare two members of the pursuit team. 

 

3.2. Binary transformation 

The FBI algorithm is created to solve the problems with 

continuous decision variables, so some modifications to the 

original algorithm are required so as to deal with the TEP 

problem having binary search space. The chance of changing 

the elements of a position vector from 0 to 1 and vice versa is 

defined by a transfer function. Particles are required to move 

in a binary space through transfer function [70]. In this 

research, the hyperbolic tangent transfer function is used in 

order to map the process of search in a continuous search 

space to a binary search space while preserving the original 

mechanism of the FBI algorithm. 

 

Fig. 1. Flow chart of the proposed algorithm. 

𝑇𝐹(𝑥) = |tanh (𝑥)|                                                   (7) 

The alteration of an element should be implemented with 

respect to the comparison between the output of the transfer 

function and randomly generated number in the range [0,1]. 

At this point, a position updating rule is conducted according 

to the following expression: 

𝑋𝐵𝑖𝑗 = {
(𝑋𝐵𝑖𝑗)−1 , 𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑇𝐹(𝑋𝑖𝑗)

𝑋𝑖𝑗             , 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 𝑇𝐹(𝑋𝑖𝑗)
 

Where 𝑋𝐵𝑖𝑗  represents the binary position of the element 

j of the individual i, 𝑋𝑖𝑗  is the position with continuous 
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solutions 
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variable obtained from FBI algorithm, rand is the random 

number in the range [0,1] and TF is the transfer function. 

When the values of continuous search space are low, this 

position updating rule encourages agents to stay in their 

existing locations, whereas when the values are high, it 

provides agents to switch to their complement positions (0 or 

1). 

 

Fig. 2. Binary structure of an individual. 

Binary code of an individual includes the information of 

which and how many candidates will be integrated into the 

grid in order to relieve the transmission system in the future 

perspective. In this direction, the binary structure of an agent 

is shown in Fig. 2. In this study, the maximum allowable 

amount of candidate lines to be added into the network is 

chosen 3. Each two binary codes of an individual symbolize 

one candidate line and decimal equivalent of them 

demonstrate how many related candidate lines will be 

constructed to the power network. To illustrate, the binary 

codes of the candidate line-1 are given as “11” and decimal 

equivalent of this binary codes is “3” (20 ∗ 1 + 21 ∗ 1), 

which means that candidate line-1 will be built in three times 

in the transmission expansion process. The pseudocode of the 

entire algorithm can be seen in Fig. 3. 

 

 

 

Fig. 3. Pseudocode of the proposed method. 

 

 

 

[1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0]

3 added

11

2021

Candidate 
Line-1

Candidate 
Line-3

Candidate 
Line-5

Candidate 
Line-7

1 added 2 added not added

01

2021

10

2021

00

2021

1: Input: Objective function, Number of iteration and                                                      

population size, Upper and Lower Bounds; 
2: Initialization: Create and evaluate the population 

3: while iter < MaxIter do; 

4:         Investigation period: 

5:         Step A1: 

5.1:                 for 𝑖 = 1 to Pop Size do; 

5.2:                        for 𝑗 = 1 to Dimension do; 

5.3:                Generate new location by using Eq. (2) 

5.4:                        end for; 

5.5:                      Convert the location into binary position by 

using transfer function 

5.6:                end for; 

5.7:                Determine the fitness of the new population 
5.8:                Implement greedy selection 

5.9:        if 𝑝𝑏𝑒𝑠𝑡 ≠ 𝑝𝑤𝑜𝑟𝑠𝑡 do; 

6:                Step A2: 

6.1:        Calculate probability prob(pop) by using Eq. (3) 

6.2:              for 𝑖 = 1 to Pop Size do; 

6.3:                                     if rand > prob(pop[i]) do; 

6.4:                      for 𝑗 = 1 to Dimension do; 

6.5:                                      if rand > rand do; 
6.6:                       Generate new location by using Eq. (5) 

6.7:                               end if; 

6.8:                        end for; 

6.9:                end if; 

6.10:               Convert the location into binary position by 

using transfer function 

6.11:    end for; 

6.12:        Determine the fitness of the new population 
6.13:   Implement greedy selection 

7:     Pursuit period; 

8:    Step B1; 

8.1:         for 𝑖 = 1 to Pop Size do; 

8.2                  for 𝑗 = 1 to Dimension do; 

8.3:                Generate new location by using Eq. (6) 

8.4:                  end for; 

8.5:            Convert the location into binary position by using 
transfer function 

8.6:         end for; 

8.7:         Determine the fitness of the new population 

8.8:         Implement greedy selection 

9:     Step B2; 

9.1:         for 𝑖 = 1 to Pop Size do; 

9.2:        r = choose randomly an individual from 

population 
9.3:        if fitness of r better than fitness of p[i] do; 

9.4:                for 𝑗 = 1 to Dimension do; 

9.5:        Generate new location by using Eq. (7) 

9.6:               end for; 

9.7:        else do; 

9.8:  for 𝑗 = 1 to Dimension do; 

9.9:        Generate new location by using Eq. (8) 

9.10:  end for; 
9.11:        Convert the location into binary position by using 

transfer function 

7.12: end for; 

9.13: Determine the fitness of the new population 
9.14: Implement greedy selection 

10: end while; 
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4. Results and Discussion 

This section presents implementation of the FBIO 

algorithm described in the previous section. TEP problem is 

solved for four case studies applying FBIO on the IEEE 24-

bus test system using DC model. In order to evaluate the 

effectiveness of the FBIO algorithm, the results obtained with 

FBIO are compared with the published results with the other 

five meta-heuristic based algorithms (SOS, GMBO, ABC, 

CHA, MOX) in the literature. The proposed algorithm is 

implemented using the Python program. The optimum 

investment cost results are obtained using the proposed FBIO 

algorithm with a population of 50 individuals and 500 

iterations. FBIO is run 30 times for each case study.  

4.1. Case Studies 

As test system, the IEEE 24-bus test system is used. On 

the base topology, the system consists of 24 buses and 38 

existing lines. The system is assumed to be expanded with 

three times generation and load values in the planning period. 

In parallel with the increasing demand and generation in the 

system, it is necessary to establish new lines in order to 

prevent congestions and keep the system in balance. In this 

study as possible candidate lines, 38 existing lines and 7 new 

corridors, created 45 rights of way in total. The system data is 

available [26]. Maximum lines per right of way is three in the 

system. 

The TEP problem is analyzed for four different case 

studies: Case Study 1A(without generation resizing), Case 

Study 1B(N-1 constraint condition), Case Study 2A(with 

generation resizing) and Case Study 2B(N-1 constraint 

condition). 

Case Study 1A: 

In this case study, TEP is solved without generation 

resizing consideration. The obtained optimal results by FBIO 

and the other algorithms are provided in Table 1. As shown 

Table 1, the proposed FBIO algorithm with cost of 370 M$ is 

one of the best solution in terms of the total cost. 

Table 1. Comparison results for without generation resizing 

Added lines 

From To SOS [50] GMBO [51] ABC [52] CHA [53] MOX [54] FBIO 

1 5 1 1 1 1 1 1 

3 24 1 1 1 1 1 1 

6 10 1 1 1 1 1 1 

7 8 2 2 2 2 2 2 

14 16 1 1 1 1 1 1 

15 21 - - - 1 - - 

15 24 1 1 1 1 1 1 

16 17 2 2 2 2 2 2 

16 19 1 1 1 1 1 1 

17 18 1 1 2 1 2 1 

Total added lines 11 11 12 12 12 11 

Total cost (M$) 370 370 390 438 390 370 

Case Study 1B: 

In this study case, as parallel with case 1a to evaluate the 

system security, N-1 contingency analysis is performed for all 

existing and added lines. Table 2 shows the 39 new lines  

 

are needed to keep security for the system. Total optimal cost 

of the results is 1,771 M$. As compared with the case 1a results, 

consideration of the system security has resulted in more 

investment cost. 

Table 2. N-1 contingency results for case study 1b and 2b 

From To Case study 1b Case study 2b From To Case study 1b Case study 2b 

1 2 - 1 15 24 2 2 

1 5 - 2 16 17 3 3 

2 4 1 - 16 19 2 2 

2 6 1 1 17 18 2 2 

4 9 - 1 17 22 2 1 

5 10 1 - 18 21 2 - 

6 10 3 2 19 20 1 - 
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7 8 3 3 20 23 - 2 

11 14 2 1 10 11 2 3 

12 13 1 1 9 12 - 1 

14 16 2 2 10 12 1 - 

15 16 2 1 3 24 2 2 

15 21 2 1 1 8 2 - 

Total added lines Case study 1b 39 Case study 2b 34 

Total cost (M$) 1771.00 1390.01 

Case Study 2A: 

In this study case, TEP is solved with generation resizing 

consideration. In generation resizing, generation values are 

allowed to change between the maximum and minimum 

limits of the generators. In order to reduce the  

 

number of new lines to be added and the investment costs 

accordingly, the generation plants located close to the load 

operated at maximum limit. As shown in Table 3, optimal cost 

is obtained 152 M$ using the proposed FBIO algorithm. FBIO 

is one of the best fitted algorithms while comparing with the 

other algorithms. 

Table 3. Comparison results for with generation resizing 

Added lines Algorithms 

From To SOS [50] GMBO [51] ABC [52] CHA [53] MOX [54] FBIO 

6 10 1 1 1 1 - 1 

7 8 2 2 2 2 - 2 

10 12 1 1 1 1 - 1 

14 16 1 1 1 1 - 1 

16 17 - - - 1 - - 

20 23 - - - 1 - - 

Total added lines 5 5 5 7 - 5 

Total cost (M$) 152 152 152 218 - 152 

Case Study 2B: 

In this case study, in parallel with consideration of the 

generation resizing case, N-1 security analysis is performed 

for all existing and added lines. As shown in Table 2, to keep 

security of the system totally 34 new lines are needed. For 

new lines, total optimum investment cost is 1,390.01 M$. As 

compared with the case 1 b results, total investment cost of 

the case 2b is less because of consideration of the generation 

resizing. Comparison of obtained statistical results which are 

standard deviation, variance, mean, maximum and minimum 

values of the objective function from all case studies can be 

seen in Table 4.  

Table 4. Comparison of obtained statistics from all case studies 

Statistics Case study 1a Case study 1b Case study 2a Case study 2b 

Standard Deviation 67.51 167.46 2.91 134.18 

Variance 4556.88 28043.35 8.44 18003.63 

Mean 449.21 2089.40 152.95 1701.19 

Max 583.07 2404.00 164.01 2007.69 

Min 370.00 1771.00 152.00 1390.01 

 

In order to analysis the performance of FBIO, curves 

regarding with average convergence, diversity measurement 

and exploration and exploitation are obtained for all case 

studies. 
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In Figure 4, for all case studies the average convergence 

curves obtained using FBIO is shown. In this study maximum 

number of iterations is to 500. Figure 4 shows FBIO has good 

convergence performance although when applied more 

complex case study N-1. Generation resizing case studies 

have needed less iterations to converge to get the optimum 

value. 

 

a) Case study 1a           b) Case study 1b 

 

c) Case study 2a      d) Case study 2b 

Fig. 4. Average convergence curves for all case studies. 

In Figure 5, the population diversity measurement 

results for all case studies can be seen. 

    

a) Case study 1a                            b) Case study 1b 
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c) Case study 2a         d) Case study 2b 

Fig. 5. Diversity measurement for all case studies. 

    

a) Case study 1a                     b) Case study 1b 

 

c) Case study 2a               d) Case study 2b 

Fig. 6. Exploration and Exploitation characteristics for all cases. 

It can be seen the exploration and exploitation capability 

results of the proposed FBIO algorithm for all case studies 

in Fig. 6. The reader who is unsure about how to depict 

the diversity, exploration, and exploitation capabilities of 

a meta-heuristic algorithm should consult the insightful 

study provided by Hussain et al. [64]. It can be said from 

these figures that FBIO algorithm is highly exploitative 

while solving cases without N-1 security, however, when 

it comes to considering contingency cases, the algorithm 

maintains more effectively its diversity and construct 

better balance between exploitation and exploration. This 

difference occurs because of the difficulty of the problem. 
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In this direction, the problem without N-1 criteria is easier 

to solve for FBIO, which leads to obtain promising areas 

at first iterations and algorithm lost its population 

diversity. Nonetheless, the consideration of N-1 criteria 

complicates the problem, which brings about to continue 

the searching process of promising areas to acquire the 

optimal solution. Therefore, the algorithm runs both 

exploration and exploitation phases in order to avoid the 

loss of diversity. Consequently, it can be inferred from the 

solutions obtained that FBIO investigates the search space 

the exploitative way in the most of the iterations. 

 

5. Conclusion 

In this study, the FBIO algorithm, which is a meta-heuristic 

optimization method, is proposed to solve a TEP problem 

aiming to minimize the investment costs and the loss of 

load cost. This article proposes Forensic Based 

Investigation Optimization (FBIO) which is a new and 

efficient meta-heuristic method in solving of the TEP 

problem for the first time. With the proposed method, 

optimum new transmission lines to be added to the system 

for the planning period have been determined. In order to 

evaluate the efficiency of the proposed method, FBIO has 

been applied for 4 different case studies on the IEEE 24-

bus test system using DC model. Obtained results for 

with/without generation resizing cases have been 

compared with the results which obtained using 5 

different methods in literature. The results showed that 

FBIO is one of the meta-heuristic optimization methods 

that gives the best results in solving the TEP problem. In 

addition to benchmarking, TEP problem has been solved 

for 2 case studies with N-1 constraint condition.   

In future studies, it is aimed to realize transmission system 

planning for 5 and 10 year planning periods on the basis 

of different generation and load scenarios on the Turkish 

transmission network and/or static equivalent model using 

FBIO method. In modeling the problem, the 

intermittent/variable nature of renewable energy sources 

and the stochastic structure of the transmission network 

will be included. 
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