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Abstract- The optimal reactive power dispatch (ORPD) is a vital problem widely discussed in power system engineering, where 
ORPD is located as one of the optimal power flow (OPF) sub-difficulties which is a complex and nonlinear problem. The main 
motivation of this work is to study the secure and reliable functioning of electrical systems which has grown hard due to increased 
strained operating circumstances. As a result, there are more real and reactive power losses in the transmission network and a 
voltage fluctuation problem at the load bus because the development of generating and transmission systems has not kept pace 
with the increase in load. For optimal operation, the voltage at the load bus should be constant. Voltage fluctuation is linked to 
the power system's reactive power constraints. As a result, controlling the system's reactive power is critical. Additionally, the 
modern power system networks should be including renewable energy sources (RESs) to achieve benefits for both the utilities 
and the customers, i.e., technical, economic, and environmental including saving world fuel, saving transmission, and distribution 
costs, and reducing wholesale electricity prices. However, it rise network reservations due to haphazard behavior, accordingly 
that optimal power flow is not elongated approachable, and the probabilistic optimal reactive power dispatch (PORPD) necessity 
remains studied. This paper explains solving for a PORPD problem using the Taguchi orthogonal array technique (TOAT) or 
Taguchi method (TM) based on orthogonal arrays (OAs) for modeling and correlation between uncertainties of the RESs and 
using a new optimization algorithm to increase processing speed and accuracy. A new metaheuristic algorithm named the 
Dandelion optimizer (DO) has been proposed for the first time to solve the ORPD problem on the standard IEEE 30 bus and 
defined the optimal combination of dispatchable and non-dispatchable sources to make the most of several techno-economic and 
societal paybacks at the same time. Reactive power losses in power systems can be reduced by optimizing reactive power outputs 
from sources, transformer tap settings, and other compensating devices. The optimization of real and reactive powers and the 
installation of RES at appropriate buses can minimize the losses and improve the voltage profile. Power loss minimization, voltage 
regulation, improvement in system reliability and readability, improved power quality, relieving transmission and distribution 
networks, and increased overall energy efficiency are among the major technical benefits of ORPD in presence of RES. The 
simulation outcomes employing the new proposed algorithm through the IEEE 30-bus test system and compared its performance 
with the results from other algorithms such as the Genetic algorithm (GA), Killer Whale Algorithm (KWA), Prairie dog 
optimization algorithm (PDO) and Whale optimization algorithm (WOA), prove that the DO optimizer is the most superior among 
all and lead to minimizing voltage deviation and power losses through high speed and minimum calculation time. Finally, the 
results prove that the proposed algorithm can be applied to a wide range of real-world optimization problems successfully. 
 
Keywords Optimal Reactive Power Dispatch (ORPD), Distributed Generation (DG), Probabilistic Optimal Power Flow (POPF), 

Taguchi Method (TM), Orthogonal Arrays (OA), Dandelion Optimizer (DO). 

1. Introduction 

     The electric power system is humanity's largest structure, 
divided into three major sections: generation, transmission, 
and distribution [1]. The generation section is a power plant 
that uses generators to generate both active powers in addition  

 

reactive. The active power is determined through the speed of 
the turbines in addition amount of fossil fuel used, whereas the 
reactive power is determined by the exciter circuit current of 
the synchronous generator [2]. Reactive power is critical in 
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any section of the power system because if it is not present, 
the power system's operation and stability will suffer [3]. In 
distribution systems, any load type, such as R or R-L, R-C, or  
another type that has an inductor and works with  magnetic 
fields, such as inductive machines, requires reactive power to 
spin [4]. When loads use reactive power, the power factor (PF) 
changes, which influences network losses, so power factor 
correction (PFC) is necessary to improve PF to close a unity 
value that represents the perfect and ideal state, where in this 
condition reactive power not used, and network losses are 
reduced and this compensation or reactive power injection 
based on capacitors [5],[6]. With a large power system 
containing many loads, transformers, generators, and other 
equipment, it remains critical to control the reactive power, 
therefore using the optimal power flow (OPF) to control 
reactive power is required. OPF mentions scheming in a cost-
effective also stable operation, which is reached by correctly 
tuning the system's control variables and introducing 
elucidation that accomplishes the smallest objective function 
such as minimization of reactive power while taking system 
constraints [7].  Where OPF is acritical and nonlinear complex 
optimization problematic for evaluating the dependability and 
security of power schemes, several optimization techniques 
developed to solve the OPF topics. Avoiding obstacles and 
drawbacks for conventional methods, metaheuristic methods 
are used such as genetic algorithm [8], ant colony algorithm 
[9], particle swarm optimization PSO algorithm [10], ICA 
algorithm [11], in addition, monkey algorithm [12]. 

As the world population grows, the availability of fossil 
fuels decreases, posing a problem for power plants that generate 
electricity. These power plants pollute the air and cause other 
environmental issues [13]. In recent decades, the use of 
distributed generation (DGs) in electricity generation has grown 
[14]. Because DGs inputs are such as sunlight in photovoltaic 
(PV) cells and wind turbines (WT), DGs can settle down 
anywhere in the network that needs power, and their random 
and probabilistic nature increases the power system or 
distribution network uncertainty [15]. So, with the proliferation 
of DGs in power systems and even distribution networks, they 
change grids into smart grids that need OPF, which is a very 
important tool, so first uncertainty must be converted to a 
specific value and in smart grids, we cannot use the OPF, so we 
use probabilistic OPF [16, 17]. Due to the circumstances of 
DGs, the use of a meta -heuristic optimization scheme is better 
compared to other traditional methods because of their 
advantages including  high speed and accurate calculation and 
many iterations don’t trap in local optimum answer finally 
reaches the global solutions [18]. However, it is difficult to 
calculate many iterations and many mathematical processes 
using classic optimization algorithms or techniques such as 
Lagrange [19, 20] or Kuhn-Tucker conditions [21, 22], second-
order cone relaxation [23], General reduced gradient method 
[24] and others, that we may eventually be trapped in local 
optimum solutions [25]. Probabilistic assessment methods are 
used for converting the DGs uncertainties such as Latin 
hypercube [26], point estimate method [27], scenario-based 

method [28], and Monte Carlo simulation (MCS) method which 
represents the basic technique for any probabilistic assessment 
method [29].  

The literature review is reviewed below and present the 
application of different methods and optimization techniques in 
different ORPD problem with and without these DGs 
uncertainties conditions. Where in [30], combining the PSO 
algorithm with the genetic algorithm (GA) and Genetic PSO 
algorithm is formed, and the Hybridization of the Genetic PSO 
Algorithm with the Symbiotic Organisms Search (SOS) 
Algorithm has been finished to get the proposed (HGPSOS) 
algorithm used to solve the RPD problematic and applied in 
IEEE 30, bus testing scheme, wherever smallest power loss, 
smallest voltage aberration, and improvement voltage stability 
has reached.T. T. Nguyen et al. in [31] solving ORPD problem 
with upgraded societal spider optimization (ISSO) algorithm 
and realizing dissimilar objectives, the improvement in the 
proposed method is confirmed by solving benchmark 
optimization functions, IEEE 30-bus system and IEEE 118-bus 
system and considering three independent objectives including 
power loss and voltage deviation minimization, and voltage 
stabilization enhancement. 

In [32] authors implement the water wave optimization 
(WWO) algorithm on IEEE 30-bus to confirm the viability and 
feasibility of the WWO algorithm to treat the ORPD problem 
and results shows that it has better general behavior to decrease 
the real power losses. Zelan Li et al. [33] authors using an 
innovative improved antlion optimization algorithm (IALO) for 
resolving the ORPD problem and optimizing three single 
objective functions of three different IEEE  with 30, 57, and 118 
buses including total power loss and voltage deviation 
minimization and the index of Voltage stability (L-index) 
enhancement through significantly best optimal solutions. Lian 
In [34] proposed an adaptive multi-objective optimization 
artificial immune algorithm (AMOAIA)for reactive power 
optimization and tested it on an IEEE-30 bus, results prove that 
it can sensibly allocate reactive power based on ensuring the 
stability boundary of a convinced maximum static voltage 
stability index, while the power losses could be a reduction, in 
which could have improved voltage level.  

In [35] the Rao-3 optimization algorithm is used to explain 
the inhibited non-linear ORPD problem given uncertainties 
owing to the variation continuously and the normal termination 
of wind speed and solar irradiation employing load demand 
variation. The proposed algorithms are authenticated via three 
standard IEEE trials with 30, 57, and 118-buses, the results 
providing the success of the proposed single-multi objective 
algorithms in explaining the deterministic and stochastic 
ORPD. 

In [36] the heat transfer optimization (HTO) algorithm and 
simulated coronary circulation system (SCCS) optimization 
algorithm has been projected to explain the ORPD, anywhere 
with and without L-index (voltage stability), HTO and SCCS 
algorithm’s cogency are proved in IEEE 30 bus and get Power 
loss minimalized, voltage deviation also decreased, and voltage 
stability index improved. Hamza Yapici author in [37] 
proposed an improved version of the pathfinder algorithm 
(PFA) for solving the ORPD and minimizing the power losses. 
Mathematical analyses are done on (57-118) bus IEEE standard 
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testing power systems. To illustrate, the enhancement of the 
modified pathfinder algorithm (mPFA), roughly known 
methods are applied for comparison. Statistical tests are done to 
assess the consistency and status of the planned technique. 
Authors in [38] proposed an optimization algorithm named 
chaotic turbulent flow of water-based optimization (CTFWO) 
algorithm as a tool to solve the (ORPD) by minimizing the 
voltage and total power loss in dual IEEE, a (30- 57) bus 
systems. The Probabilistic Load Flow (PLF) problem with 
uncertainties considering the network load changes is solved 
using the optimal nonlinear complementary problem method 
[39].  

Two- Point Estimation Method (2PEM) is used to solve 
Monte Carlo simulation (MCS) problems, which has a low 
computational load and requires only the initial statistical 
torques of the Random Variables (RVs) to analyze the 
problems, and the improved (2PEM) is used as a new evaluation 
method for modeling uncertainties by considering correlation 
as presented in [40]. To consider the correlation between WT 
and PV in the distribution network Taguchi Method (TM) is 
introduced in [41], where the PLF problem has been studied 
using (TM) for the IEEE standard 34-bus test system in which 
the three-phase voltages are unbalanced by considering the 
correlation between the input (RVs)  and the results by 3PEM 
and 2PEM and MCS are compared and it is concluded that the 
response of the Taguchi Method (TM) for two levels and three 
levels of (RVs)  are equal to the results of 2PEM and 3PEM, 
respectively, and that objective function is to reduce the overall 
cost.  

In [42], in the IEEE 30-bus test network, based on 
Orthogonal Arrays (OAs)-using TM the POPF is analyzed by 
considering the correlation of uncertainties caused by input 
RVs. Where TM calculates and adjusts the optimal values of 
the input RVs, then the control variables of the POPF problem 
are adjusted to optimal values based on the optimal values of 
RVs using optimization GA to achieve the objective function 
and reduce system power losses, where Optimization ensures 
that the amount of losses is not stuck in the local optimal 
domain and is located in the global optimal domain and the 
global optimal is absolute and also the optimal output response 
is more reliable, because the losses are the least amount. 

 In [43], a novel two-stage optimization outline including 
A modified (TM), in mixture with a node precedence list, is 
proposed to calculate the optimal-mix integration of 
dispatchable (DG), and the planned approach is applied to two 
standard distribution schemes of 33 and 118 buses and results 
meaningfully advance the robustness and worldwide searching 
capability of TM. 

In [44], based on the IEEE 13 nodes system a relative 
analysis is completed among three statistical techniques 
(Taguchi’s Orthogonal Array Testing method (TOAT), Monte 
Carlo, and Two-Point method) by mixing the uncertainty of 
primary sources generation of renewable in power systems, and 
results from the previous survey suggestively advance the 
robustness and worldwide searching capability of Taguchi 
Method (TM). 
To summarize, the main contributions of this research are: 
• Taguchi method based on orthogonal arrays has been 

used for modeling the uncertainty of RESs and loads. 

• A new metaheuristic algorithm named Dandelion 
optimizer (DO) algorithm has been proposed for the 
first time to solve a real-world optimization problem 
such as the ORPD problem. 

• In DA, dandelion populations are designed with a Levy 
mutation, which can help to avoid falling into the local 
minima. 

• This research assesses the work in two directions in 
addition to optimal RESs allocation. The first part 
examines the influence of the uncertainty of RESs and 
loads by using TM, while the second part discusses the 
optimal siting of all control variables for handling the 
ORPD problem. 

• The efficacy of the outcomes of this approach has also 
been demonstrated in terms of lowering real and 
reactive power losses and meliorative voltage deviation 
considering distinct restrictions.  

• The performance of the methodology proposed has 
been Verified using the typical test system IEEE 30 bus 
to detect its superiority for handling the problems and 
compared to other published approaches. 

• The search efficiency, accuracy, and convergence 
speed of DO are validated and compared against well-
established GA, KWA, PDO, and WOA algorithms. 
The proposed DA has a much faster speed than the GA, 
the KWA, the PDO, and the WOA. 

This paper's organization is as presented: sector 2 
presents the problem formulation of the ORPD. Sector 3 
presents the uncertainty modeling for load demand, wind 
speed, and solar Irradiation. The (TOAT) method, and (DO) 
proposed algorithm are discussed in sectors 4,5 respectively. 
Also, sector 6 covers the simulation results. In this sector, 
analysis and comparison are done in contradiction of the 
nominated metaheuristic algorithms. Sector 7 presents the 
final discussion and conclusion. 

 
2. Problem Formulation 

The objective function of OPRD is to minimize network 
active power losses (𝐹𝐹1), minimize network reactive power 
losses (𝐹𝐹2).and minimize network voltage deviations (𝐹𝐹3) The 
problem is also formulated as an optimization problem in 
which the objective functions are expressed as (1), (2),and (3):  
𝐹𝐹1 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃𝐿𝐿 = ∑ 𝐺𝐺𝑖𝑖𝑖𝑖�𝑉𝑉2𝑖𝑖 + 𝑉𝑉2𝑖𝑖 − 2 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝒊𝒊𝒊𝒊�𝑛𝑛𝑛𝑛

𝑖𝑖=1          (1) 
𝐹𝐹2 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄𝐿𝐿 = ∑ 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑛𝑛

𝑛𝑛𝑛𝑛
𝑛𝑛=1 = 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆                         (2)                                                                      

𝐹𝐹3 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑉𝑉𝑉𝑉 = ∑ |𝑉𝑉𝑖𝑖 − 1|  𝑁𝑁𝑁𝑁𝑁𝑁
𝑖𝑖=1                                                 (3)   

Where 𝑆𝑆𝑆𝑆𝑆𝑆 is the network apparent power, 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑛𝑛  is the 
total branch reactive power and 𝑚𝑚𝑛𝑛 is the total number of 
network branches or transmission lines, and the load bus 
number is  𝑁𝑁𝑃𝑃𝑄𝑄. The minimization of these objective 
functions is bound by various constraints [31-34]. Equations 
(4) and (5) show equal limits in the network, in these 
constraints 𝑃𝑃𝐺𝐺𝑖𝑖  and 𝑄𝑄𝐺𝐺𝑖𝑖  are the amount of active and reactive 
power produced in the slack bus, respectively. 𝑃𝑃𝐷𝐷𝑖𝑖 and 𝑄𝑄𝐷𝐷𝑖𝑖 are 
also the active and reactive demands of the buses. The 
denominator 𝑉𝑉𝑖𝑖 indicates the voltage of the bus i as well as the 
𝜃𝜃𝒊𝒊𝒊𝒊 𝑚𝑚𝑐𝑐 amount of angle difference between the buses i and the 
j. And 𝑚𝑚𝑛𝑛-1 indicates all buses except slack bus. Gij and Bij 
are also the mutual conduction and suspension between buses 
i, j. Equations (6), (7), and (8) express unequal constraints 
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including the active power (𝑃𝑃𝐺𝐺𝑖𝑖), reactive power (𝑄𝑄𝐺𝐺𝑖𝑖), and 
voltage constraints of generators (𝑉𝑉𝐺𝐺𝑖𝑖), in these unequal 
constraints NG represents the number of generators, 
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃𝐺𝐺𝑖𝑖

𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑃𝑃𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚are the minimum and maximum 
active output power of bus i, 𝑄𝑄𝐺𝐺𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑄𝑄𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚are the 
minimum and maximum reactive output power of bus i, 
𝑉𝑉𝐺𝐺𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑉𝑉𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  are the minimum and maximum voltage 
allowed range at bus i. The taps of the transformers are also 
limited in their minimum and maximum range as follows (9). 
Where NT is the number of transformers, 𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑆𝑆𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 are 
taps ratio of transformers settings with the minimum and 
maximum bounds. The constraints of shunt capacitor bank 
compensators are also as follows in equation (10). In this 
regard, NC is the number of compensators, 𝑄𝑄𝐶𝐶𝑖𝑖  of reactive 
power generated, 𝑄𝑄𝐶𝐶𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑄𝑄𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and 
maximum allowable reactive power compensation. In 
addition to these restrictions, according to equation (11), the 
constraints of load voltage (𝑉𝑉𝐿𝐿𝑖𝑖) must be kept within tolerable 
limits with minimum and maximum values 
𝑉𝑉𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑖𝑖𝑚𝑚𝑎𝑎 𝑉𝑉𝐿𝐿𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚[45 − 46]. 
 
𝑃𝑃𝐺𝐺𝑖𝑖 = 𝑃𝑃𝐷𝐷𝑖𝑖 + |𝑉𝑉𝑖𝑖|∑ �𝑉𝑉𝑖𝑖�(𝐺𝐺𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑖𝑖𝑐𝑐𝑚𝑚𝑚𝑚𝜃𝜃𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛

𝑖𝑖=1             (4) 
𝑄𝑄𝐺𝐺𝑖𝑖 = 𝑄𝑄𝐷𝐷𝑖𝑖 + |𝑉𝑉𝑖𝑖|∑ �𝑉𝑉𝑖𝑖�(𝐺𝐺𝑖𝑖𝑖𝑖 sin 𝜃𝜃𝑖𝑖𝑖𝑖 − 𝐵𝐵𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛

𝑖𝑖=1            (5) 
𝑃𝑃𝐺𝐺𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑃𝑃𝐺𝐺𝑖𝑖 ≤ 𝑃𝑃𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚          , i=1,2,..,NG                         (6)  
𝑄𝑄𝐺𝐺𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑄𝑄𝐺𝐺𝑖𝑖 ≤ 𝑄𝑄𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚       , i=1,2,..,NG                          (7)   
𝑉𝑉𝐺𝐺𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑉𝑉𝐺𝐺𝑖𝑖 ≤ 𝑉𝑉𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚        , i=1,2,..,NG                          (8) 
 𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑆𝑆𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚             , i=1,2,..,NT                           (9) 
𝑄𝑄𝐶𝐶𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑄𝑄𝐶𝐶𝑖𝑖 ≤ 𝑄𝑄𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚     , i=1,2,..,NC                          (10) 
𝑉𝑉𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑉𝑉𝐿𝐿𝑖𝑖 ≤ 𝑉𝑉𝐿𝐿𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚      , 𝑚𝑚 = 1,2, . . ,𝑁𝑁𝑃𝑃𝑄𝑄                     (11) 

 
3. Uncertainty modelling 

      In probabilistic planning, it is important to state an 
appropriate statistical model for RVs. Therefore, the 
Continuous Probability Function (PDF) is for modeling the 
uncertainty of the system, which contains doubt in the 
demand of load, the production of solar PV, and wind power 
production. The PDF is extra separated into subdivisions to 
contract the dissimilar situations of loading, PV, and wind 
speed [35]: 
 

3.1 Load demand modeling 
 

The doubt about the model of load demand via the PDF 
is clear as follows [35]: 

 
𝑓𝑓𝑑𝑑(𝑃𝑃𝑑𝑑) = 1

σ𝑑𝑑√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒 �− (𝑁𝑁𝑑𝑑−μ𝑑𝑑)2

2σ𝑑𝑑2
�                                      (12) 

 
where μ𝑑𝑑 and σ𝑑𝑑  specified the mean and the standard 

deviation parameters with values (μ𝑑𝑑 = 70 and σ𝑑𝑑 = 10). 
while, Pd denotes the probability density of the typical 
distribution load, one-to-one. Load demand probability and 
probable load situation could be reached by employing the 
next: 
𝜏𝜏𝑑𝑑,𝑖𝑖 = ∫ 𝑓𝑓𝑑𝑑(𝑃𝑃𝑑𝑑).𝑎𝑎𝑃𝑃𝑑𝑑

𝑷𝑷𝒅𝒅,𝒊𝒊
𝒎𝒎𝒎𝒎𝒎𝒎

𝑷𝑷𝒅𝒅,𝒊𝒊
𝒎𝒎𝒊𝒊𝒎𝒎                                                 (13) 

𝑃𝑃𝑑𝑑,𝑖𝑖 = 1
𝜏𝜏𝑑𝑑,𝑖𝑖

∫ 𝑃𝑃𝑑𝑑 ∗ 𝑓𝑓𝑑𝑑(𝑃𝑃𝑑𝑑).𝑎𝑎𝑃𝑃𝑑𝑑
𝑷𝑷𝒅𝒅,𝒊𝒊

𝒎𝒎𝒎𝒎𝒎𝒎

𝑷𝑷𝒅𝒅,𝒊𝒊
𝒎𝒎𝒊𝒊𝒎𝒎                                   (14) 

where 𝑃𝑃𝑑𝑑,𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑑𝑑,𝑖𝑖

𝑚𝑚𝑖𝑖𝑛𝑛  represent the border limits of    

interval i. 
 

3.2 Wind speed modeling 
 

To model a wind farm, first, the wind speed must be 
modeled. The wind speed has a random behavior. Proper 
modeling should be done to obtain the output wind plant. The 
Weibull Probability Distribution Function (PDF) is careful 
here to model the doubt of the wind speed (m/sec); the 
expression is clear as follows [35],[47-49]: 

 
𝑓𝑓𝑣𝑣(𝑣𝑣) = ( 𝛽𝛽

𝛼𝛼
  )( 𝑣𝑣

𝛼𝛼
 )𝛽𝛽−1𝑒𝑒𝑒𝑒𝑒𝑒 �−( 𝑣𝑣

𝛼𝛼
 )𝛽𝛽�   , 0 ≤ 𝑣𝑣 < ∞               (15)   

 
wherever, α, β are the Weibull PDF mounting and 

shaping parameters. As a function of wind speed, the output 
of wind turbine power can be single-minded as follows: 
 

𝑃𝑃𝑤𝑤(𝑣𝑣𝑤𝑤) = �

0                   , 𝑓𝑓𝑐𝑐𝑒𝑒 𝑣𝑣𝑤𝑤 <  𝑣𝑣𝑤𝑤𝑖𝑖  𝑖𝑖𝑚𝑚𝑎𝑎 𝑣𝑣𝑤𝑤 > 𝑣𝑣𝑤𝑤𝐿𝐿  
𝑃𝑃𝑤𝑤𝑤𝑤 � 𝑣𝑣𝑤𝑤−𝑣𝑣𝑤𝑤𝑖𝑖

𝑣𝑣𝑤𝑤𝑟𝑟−𝑣𝑣𝑤𝑤𝑖𝑖
  �    , 𝑓𝑓𝑐𝑐𝑒𝑒  𝑣𝑣𝑤𝑤𝑖𝑖 ≤  𝑣𝑣𝑤𝑤 ≤ 𝑣𝑣𝑤𝑤𝑤𝑤      

𝑃𝑃𝑤𝑤𝑤𝑤                          , 𝑓𝑓𝑐𝑐𝑒𝑒  𝑣𝑣𝑤𝑤𝑤𝑤 ≤  𝑣𝑣𝑤𝑤 ≤ 𝑣𝑣𝑤𝑤𝐿𝐿      
(16)  

 
where, 𝑃𝑃𝑤𝑤𝑤𝑤  is the wind turbine-rated output power with a 

value of (𝑃𝑃𝑤𝑤𝑤𝑤 = 3𝑊𝑊), 𝑣𝑣𝑤𝑤𝑖𝑖 , 𝑣𝑣𝑤𝑤𝐿𝐿 and 𝑣𝑣𝑤𝑤𝑤𝑤  are the wind turbine 
cut-in, cut-out, and rated speeds, with values of ( 3m/s, 25m/s, 
and 16m/s) respectively. The probability of wind speed is 
calculated using the following equations: 
 
𝜏𝜏𝑤𝑤𝑖𝑖𝑛𝑛𝑑𝑑,𝑘𝑘 = ∫ 𝑓𝑓𝑣𝑣(𝑣𝑣).𝑎𝑎𝑣𝑣𝒗𝒗𝒌𝒌𝒎𝒎𝒊𝒊𝒎𝒎

𝒗𝒗𝒌𝒌𝒎𝒎𝒊𝒊𝒎𝒎
                                                     (17) 

 
where, 𝑣𝑣𝑘𝑘𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑣𝑣𝑘𝑘𝑚𝑚𝑖𝑖𝑛𝑛 denote the initial and final points of 
wind speed’s interlude at 𝑘𝑘𝑡𝑡ℎ scenario, 𝜏𝜏𝑤𝑤,𝑘𝑘 is the probability 
of the wind speed being in scenario k. 
 

3.3 Solar Irradiance modeling 
 

Design of the solar irradiation doubt can be reached 
employing the lognormal PDF as follows [35]: 

 

𝑓𝑓𝐺𝐺(𝑃𝑃𝑑𝑑) =
1

Gσ𝐿𝐿√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒 �−

(𝑛𝑛𝑚𝑚𝐺𝐺 − μ𝐿𝐿)2

2σ𝐿𝐿2
�   for 𝐺𝐺 > 0           (18) 

 
where μ𝐿𝐿 and σ𝐿𝐿 indicated the mean and standard 

deviation parameters of the random variables, with values 
(μ𝐿𝐿 = 5.5 and σ𝐿𝐿 = 0.5).  respectively. 
 
The PV arrangement production power as a function of 
irradiation can be designed via the next equations: 
 

𝑃𝑃𝐿𝐿(𝐺𝐺) = �
𝑃𝑃𝐿𝐿𝑤𝑤 � 𝐺𝐺2

𝐺𝐺𝑠𝑠𝑠𝑠𝑑𝑑×𝑋𝑋𝑐𝑐
  � 𝑓𝑓𝑐𝑐𝑒𝑒  0 < 𝐺𝐺 ≤ 𝑋𝑋𝑐𝑐

𝑃𝑃𝐿𝐿𝑤𝑤 � 𝐺𝐺
𝐺𝐺𝑠𝑠𝑠𝑠𝑑𝑑

  �               𝑓𝑓𝑐𝑐𝑒𝑒  𝐺𝐺 ≥ 𝑋𝑋𝑐𝑐
                       (19)   

  
where, 𝐺𝐺𝐿𝐿𝑡𝑡𝑑𝑑 is the standard solar irradiation 1000 W/m2 

while 𝑋𝑋𝑐𝑐  means a certain irradiation point set as 120 W/m2. 
𝑃𝑃𝐿𝐿𝑤𝑤 , is the PV arrangement output power. Calculating the solar 
irradiation probability might be achieved: 
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𝜏𝜏𝑆𝑆𝐿𝐿𝑛𝑛𝑚𝑚𝑤𝑤,𝑚𝑚 = ∫ 𝑓𝑓𝐺𝐺(𝐺𝐺).𝑎𝑎𝐺𝐺𝑮𝑮𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑮𝑮𝒎𝒎𝒎𝒎𝒊𝒊𝒎𝒎                                                (20) 
 
where 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑖𝑖𝑚𝑚𝑎𝑎 𝐺𝐺𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛   are solar irradiance limits of a 
state 𝑚𝑚. 

3.4 Combined load generation modeling 
 

The matching probabilities designed for load demand, 
wind speed models, and solar irradiance can be attained by 
combining the model of three functions and multiplying their 
probabilities in (13),(17), and(20), the related expression is 
given as follow: 

 
𝜏𝜏𝑆𝑆 = 𝜏𝜏𝑑𝑑,𝑖𝑖 × 𝜏𝜏𝑤𝑤𝑖𝑖𝑛𝑛𝑑𝑑 ,𝑘𝑘 × 𝜏𝜏𝑆𝑆𝐿𝐿𝑛𝑛𝑚𝑚𝑤𝑤,𝑚𝑚                                                (21) 
 

3.5 correlation between DGs uncertainties   
 

In power systems like other systems, the system RVs may 
be dependent on input uncertainties. If there is a dependency, 
this dependence may have a positive or negative effect from 
one variable to another. In general, the issue of correlation in 
RVs is expressed and determined by the covariance matrix or 
correlation coefficient matrix. Correlation coefficients are 
presented according to (22) [42]: 

 
𝜌𝜌𝑚𝑚,𝑦𝑦 = � 𝑐𝑐𝐿𝐿𝑣𝑣(𝑚𝑚,𝑦𝑦)

σ𝑥𝑥σ𝑦𝑦
  � = � 𝐸𝐸�(𝑚𝑚−μ𝑥𝑥)(𝑦𝑦−μ𝑦𝑦)�

σ𝑥𝑥σ𝑦𝑦
 �                            (22) 

 
The correlation coefficient (𝜌𝜌) can be –1, +1, or between 

them, or zero. If it is +1, it concerns the perfect linear relation 
and if it is –1, it concerns the complete linear relation, and in 
other relations, the values between the interval [-1, 1] indicate 
the correlation degree. 

 
4. Taguchi’s Orthogonal Array Testing Method  

The TM is a statistical method advanced by Dr. Genichi 
Taguchi to decrease the difference in industry progression 
over a strong strategy of research to improve product quality 
[43-44],[50]. The Robust Optimization (RO) or parameter 
optimization difficulties with an agreed computable objective 
function are founded on the determination of differences 
bound for inexact parameters, consequently, the doubts are 
controlled by a predetermined parameter which is called the 
uncertainty budget that shows the boundaries. With the TM 
method, dissimilar stages are careful with individual doubt 
parameters or random variables (RVs). Concerning these 
stages, dissimilar situations or experimentations of the 
problem are careful. For (RO) the TM of experimental design 
employs orthogonal arrangements (OAs) to tune the input 
parameters over dissimilar stages and quickly optimize these 
fluctuating factors to become the optimal outcome or the 
objective function in a minimum number of experiments [51-
53]. The basic TM is broadly divided into two essential steps, 
i.e., Orthogonal Array (OA) construction, and response 
analysis. 

4.1 Orthogonal Arrays 

An (OA) denoted by the letter L is a fractional factorial 
matrix whose rows represent factor levels in each run and its 
columns represent a specific factor whose levels change in 

each experiment. All traditional factorial designs and fraction 
arrays are orthogonal [42]. Based on OAs, TOAT is an 
effective method for converting the uncertainties to 
deterministic values; in this method, with a minimum number 
of experiments OAs determine the minimum number of 
uncertain values. In general, the (OA) with dimension Leyu 
refers to u uncertain parameters, each parameter has y levels 
for an e experiments arrangement. L423 is the smallest OA, 
which refers to executing 4 experiments with three 2-level 
parameters, such as shown in Table 1. The word factor in the 
TOAT refers to a random variable (RV), while the amount 
given by the probability distribution is indicated by the word 
level [54]. 

 
Table 1. The Taguchi Orthogonal array L423 

 

In general, the relationship between input and output 
RVs in a distribution network according to (23): 

 
𝑌𝑌𝑖𝑖𝑛𝑛 = 𝑓𝑓(𝑋𝑋𝐿𝐿𝑜𝑜𝑡𝑡)                                                                   (23) 

 
The input and output factors (RVs) vectors are 𝑌𝑌𝑖𝑖𝑛𝑛 and 

𝑋𝑋𝐿𝐿𝑜𝑜𝑡𝑡, respectively, and 𝑓𝑓 is a nonlinear relation that 
establishes the relationship between 𝑋𝑋𝐿𝐿𝑜𝑜𝑡𝑡 and 𝑌𝑌𝑖𝑖𝑛𝑛.  

 
The POPF of a distribution system including PV and WT 

DGs is investigated and analyzed by TM based on OA, each 
experiment refers to a load flow, and on the other hand, 
because the distribution networks are three-phase, for each 
phase, if we have many factors (RVs) for a three-phase 
distribution network, their number will increase, so the 
number of tests and the number of load flow will increase and 
as a result, the final answer will be obtained after a long time 
and many calculations. OAs can be used to dramatically 
reduce the number of experiments to get the answer instead 
of all the tests so that these OAs get the same answer by 
performing a very small number of tests in less time and 
calculations than all experiments can be achieved [42]. 

4.2 TM Response Analysis With Popf 

Three steps can be taken using TOAT to get certain 
parameters from uncertain ones, these steps are: 
 

4.2.1 First Step: Determining the levels number of 
each factor (RV) 

Determination of the levels number for each factor is the 
primary stage using the TOAT for solving a probabilistic 
power flow. Using TOAT, minimal calculations can be 
achieved using 2-level parameters, while using 3-level 
parameters leads to long time computation [42],[54]. 

Number of 
experiments 

Level of each factor (variable) 

Factor 1  
( RV1) 

Factor 2 
( RV2) 

Factor 3 
( RV3) 

1 1 1 1 

2 1 2 2 
3 2 1 2 
4 2 2 1 
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4.1.2 Second step: Factors levels (RVs) 

Determination  
Determination of the levels of the factors is the second 

step using the TOAT. Two levels of a random variable (RV) 
can be made using a probabilistic Gaussian distribution 
function. In this case, the normal distribution or Gaussian 
probabilistic distribution function can model the load demand 
because it is a symmetric continuous distribution, and the two 
levels of the demand load (2-level experiments) are assumed 
as µ + σ and µ − σ, in that order. The wind speed is modeled 
using the Weibull continuous distribution function. The µ and 
σ describe the mean and standard deviation values of the 
Gaussian probabilistic distribution function [54]. 

 
4.1.3 Step three: Design of optimal experiment  
An approximate solution to the probabilistic power flow 

with the best performance index is obtained in this step. In 
TM, the final optimal answer was reached using an optimal 
experiment based on the optimal levels of RVs instead of all 
experiments based on OAs. Three steps lead to an optimal 
experiment, as follows [42], [54]: 
1) For each experiment, a performance index is defined in 

this step as follows: 

𝑌𝑌𝑖𝑖 = ∑ �𝑓𝑓𝑖𝑖𝐿𝐿 − 𝑓𝑓𝐿𝐿
∗�𝑁𝑁𝐿𝐿

𝐿𝐿=1  , j=1,2,3,….,N                                   (24) 
wherever N denotes the number of the experiment, NL 

represents the branches number, 𝒇𝒇𝑳𝑳
∗ represents the nominal 

power movement at line L. 𝒇𝒇𝒊𝒊𝑳𝑳 indicates the power flow at 
line L attained from the calculations of the power flow 
concerning experiment j. 
2) In the next step, calculations of the average effects of the 

factors stages on performance indicators are made. For 
the sample, in Table 1 the average effects of the levels of 
the factors, for four experiments, are definite as the set 
of Equations (25), in which the average effects of 
dissimilar levels of factors on the performance indicators 
are defined as: 

⎩
⎪
⎨

⎪
⎧�̅�𝐴1 = (𝒀𝒀𝟏𝟏+𝒀𝒀𝟐𝟐)

2
,

𝐵𝐵�1 = (𝒀𝒀𝟐𝟐+𝒀𝒀𝟒𝟒)
2

𝐶𝐶1̅ = (𝒀𝒀𝟐𝟐+𝒀𝒀𝟑𝟑)
2

,

,

  �̅�𝐴2 = (𝒀𝒀𝟑𝟑+𝒀𝒀𝟒𝟒)
2

𝐵𝐵�2 = (𝒀𝒀𝟏𝟏+𝒀𝒀𝟑𝟑)
2

𝐶𝐶2̅ = (𝒀𝒀𝟏𝟏+𝒀𝒀𝟒𝟒)
2 ⎭

⎪
⎬

⎪
⎫

                                       (25) 

3) The focal effect of a separate factor on the performance 
indicators 𝒀𝒀𝒊𝒊 is obtained in this step, by subtracting the 
second-level effect from the first-level effect using the 
set of Equations (26) as follows: 

�
𝛥𝛥𝐴𝐴 = (�̅�𝐴2 −  �̅�𝐴1),
𝛥𝛥𝐵𝐵 = (𝐵𝐵�2 −  𝐵𝐵�1),
𝛥𝛥𝐶𝐶 = (𝐶𝐶2̅ −  𝐶𝐶1̅),

                                                           (26) 

 
In the optimal experiment, the first level of a factor or 

RV is considered if the main effect of this factor is negative, 
and the second level of this factor is considered if the main 
effect is positive. Finally, figure (1) explains the Flowchart of 
the Taguchi method. 

 
Fig. 1. Flowchart of the Taguchi method. 

 
5. Dandelion Optimizer (DO) Overview 

A new swarm intelligence bioinspired optimization 
algorithm that has low computational time and high 
convergence speed are called the Dandelion Optimizer (DO). 
The dandelion algorithm updated the next generation of 
individuals by dynamically regulating the seeding radius of 
dandelions and their autonomous learning. And based on it, a 
variant dandelion algorithm divided the population of 
dandelions into two subgroups: core dandelion and assistant 
dandelion, and these two types of dandelion are applied in 
different ways to sow seeds. The two dandelion populations 
complement each other and coevolve to fully extend the 
search range, which increases the probability of finding the 
optimal location. Two types of seeds are generated to avoid 
falling into local optimal and keep the diversity of seeds, and 
the selection strategy is a mechanism for keeping diversity. 
Therefore, the DA has the capability of avoiding premature 
convergence. The proposed DO algorithm is introduced 
recently and it has three stages presented as follows and 
explained in table (2) [55]: 

1. Rising stage: In this stage, seeds raise spirally 
because of the eddies from above. Seeds also, in his 
stage, may drift locally in communities based on 
weather conditions. 

2. Descending stage: Flying seeds, in this stage, 
descend steadily and adjust their direction constantly 
in the global space. 

3. landing stage: In this stage, seeds land randomly so 
that they grow. A Levy random walk and Brownian 
motion describe the movement of a seed in the 
landing and descending stages. CEC2017 benchmark 
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functions are used for the performance evaluation of 
Dandelion Optimizer, including the stability, 
optimization accuracy, scalability, and convergence, 
through a comparison with nine known nature-
inspired metaheuristic algorithms. 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼 ∗ 𝑣𝑣(𝑒𝑒) ∗ 𝑣𝑣(𝑦𝑦) ∗ 𝑛𝑛𝑚𝑚𝑌𝑌(𝑋𝑋𝐿𝐿 − 𝑋𝑋𝑡𝑡)         (27) 
𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑚𝑚𝑎𝑎() ∗ � 1

𝑇𝑇2
𝑡𝑡2 − 2

𝑇𝑇
𝑡𝑡 + 1�                               (28) 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 ∗ 𝑘𝑘                                                            (29) 
𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 − 𝛼𝛼 ∗ 𝛽𝛽𝑡𝑡 ∗ (𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛,𝑡𝑡 − 𝛼𝛼 ∗ 𝛽𝛽𝑡𝑡 ∗ 𝑋𝑋𝑡𝑡)         (30) 
𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑚𝑚𝑛𝑛𝑖𝑖𝑡𝑡𝑚𝑚 + 𝛼𝛼 ∗ 𝑛𝑛𝑒𝑒𝑙𝑙𝑦𝑦(𝜆𝜆) ∗ (𝑋𝑋𝑚𝑚𝑛𝑛𝑖𝑖𝑡𝑡𝑚𝑚 − 𝑋𝑋𝑡𝑡 ∗ 𝛿𝛿)     (31) 

 
Table 2. Dandelion Optimizer (DO) 

Algorithm Dandelion Optimizer 
Input: the population size pop, the maximum number 
of iterations T, and variable dimension Dim 
Output: the optimal dandelion seed X best and its fitness 
value fbest 

1: Initialize dandelion seed X of DO. 
2: Calculate the fitness value f of each dandelion seed. 
3: Select the optimum dandelion seed Xelite according to 
fitness values 
4: while (t < T) do 
/*Rise stage*/ 
5: if randn() <1.5 do 
6: Generate adaptive parameters using Eq.(28) 
7: Update dandelion seeds using Eq.(27) 
8: else if do 
9: Generate adaptive parameters using Eq.(28) 
10: Update dandelion seeds using Eq.(29) 
11: end if 
/*Decline stage*/ 
12: Update dandelion seeds using Eq.(30) 
/*Land stage*/ 
13: Update dandelion seeds using Eq.(31) 
14:Arrange dandelion seeds from good to bad according 
to fitness 
15: Update Xelite 

16: if f(Xelite) < f(X best t) 
17: X best = Xelite , f best = f elite 

18: end if 
19: end while 
20: Return X best and f best 

 

6. Results and Discussions 

To achieve the (TM) efficiency, the 30- bus IEEE 
standard system has been used. which consists of 6 
generators with one slack bus, 37 branches of 
transmission lines 4  branches of tap changing 
transformers, and 9 reactive power compensators. The 
system has a total power demand of 238.4 MW and 
126.2 MVAR. Buses and lines, for the proposed IEEE 
30-bus system shown in figure (2), have detailed data 
which are defined in [56],[57]. The initial reactive 

power loss of the network without the presence of WTs 
is 22.244 MVAR and the initial active power loss is 
17.59 MW. This system consists of 19 control 
variables including 9 shunt VAR capacitors, 4 settings 
of tap changing transformers and 6 generators with 
limitations values introduces in a table (3). Aditionaly, 
load data of the IEEE30- bus system, wind speed and 
solar irradiation data for 24 hours periods are indicated 
in table (5) and table (5) respectively. 
 

 
Fig. 2. Standard IEEE-30 bus test system 

The TM is implemented in MATLAB and MINITAB 
software. In this case, there are two wind farms on buses 29, 
and 30 and a PV cell on bus 16, which has a nominal capacity 
of 10 MW. To simulate this wind farm and PV cell, data are 
received from the North Dekta site and the Watford area [58]. 
The average wind speed in this area is 8.5 m/s and the standard 
deviation is 5.55. The frequency of one-year wind speeds is 
seen in figure (3), and the right skewness of this information 
is quite clear. The optimal reactive power dispatch obtained 
from the TM test with DO will be equal to 17.5 MW, which is 
the number of system losses from the test instead of 27.5 in 
Ref [42]. And the levels determined by the TM are obtained, 
but the answer that we obtain for the losses of the same system 
from the normal OPRD by the Newton-Raphson load flow 
method is equal to 33 MW, and this indicates that TM adjusts 
the POPF of factor levels in such a way that the least number 
of losses occur in the system and reduces the difference 
between 33 and 17.5, which is equal to 15.5 MW, which is a 
large number of losses. 

Table 3. Limitations of control variables 
Control Variables Min. value Max. value 
𝑉𝑉𝐺𝐺1 (pu) 0.95 1.1 
𝑉𝑉𝐺𝐺2 (pu) 0.95 1.1 
𝑉𝑉𝐺𝐺5 (pu) 0.95 1.1 
𝑉𝑉𝐺𝐺8 (pu) 0.95 1.1 
𝑉𝑉𝐺𝐺11 (pu) 0.95 1.1 
𝑉𝑉𝐺𝐺13 (pu) 0.95 1.1 
𝑆𝑆11 (6-9) 0.9 1.1 
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𝑆𝑆12 (6-10) 0.9 1.1 
𝑆𝑆15 (4-12) 0.9 1.1 
𝑆𝑆36 (28-27) 0.9 1.1 
𝑄𝑄C10 (MVAR) 0 5 
𝑄𝑄C12 (MVAR) 0 5 
𝑄𝑄C15 (MVAR) 0 5 
𝑄𝑄C17 (MVAR) 0 5 
𝑄𝑄C20 (MVAR) 0 5 
𝑄𝑄C21 (MVAR) 0 5 
𝑄𝑄C23 (MVAR) 0 5 
𝑄𝑄C24 (MVAR) 0 5 
𝑄𝑄C29 (MVAR) 0 5 

 
Table 4. Bus load data of the IEEE 30-bus system 

Bus 
NO 

Load  Bus 
NO 

Load  

P (MW) Q 
(MVAr) 

P 
(MW) 

Q 
(MVAr) 

1 0.0 0.0 16 3.5 1.8 

2 21.7 12.7 17 9.0 5.8 

3 2.4 1.2 18 3.2 0.9 

4 67.6 1.6 19 9.5 3.4 

5 94.2 19.0 20 2.2 0.7 

6 0.0 0.0 21 17.5 11.2 

7 22.8 10.9 22 0.0 0.0 

8 30.0 30.0 23 3.2 1.6 

9 0.0 0.00 24 8.7 6.7 

10 5.8 2.0 25 0.0 0.0 

11 0.0 0.0 26 3.5 2.3 

12 11.2 7.5 27 0.0 0.0 

13 0.0 0.0 28 0.0 0.0 

14 6.2 1.6 29 2.4 0.9 

15 8.2 2.5 30 10.6 1.9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 5. Wind Speed and Solar Irradiation Data for 24-Hour 

Period 

 
 

 
Fig. 3. Wind speed frequency diagram. 

 
6.1 Case 1: Real Power Losses Saving 

Real power loss lessen was the deemed target here. The 
DO algorithm was used to accomplish the best solution, Table 
6 gives the results. The DO algorithm is useful for establishing 
the perfect settings of the control variable, which diminishes 
the losses of the system. As a result, when the DO algorithm 
is used, real power losses are dramatically lowered from a 
value of 27.5 MW to 17.5 MW. In figure 4, real power losses 
utilizing the DO method are steeply converged while taking 
other comparative techniques into account. The optimum 
solution can be achieved using the algorithm within 100 
iterations, which demonstrates the rapid convergence of the 
DO algorithm. The evaluated real power loss is compared to 
that found using before-published population-based 
optimization techniques to evaluate the performance of the 
approach. Table 6 shows how the DO algorithm outperforms 
these prior methods. Particularly, the majority of acquired 
solutions using heuristic optimization algorithms are feasible, 
primarily due to voltage magnitude accepted at all system load 
buses as shown in figure 5. 

Hour 
Wind 
speed 
(m/s) 

Solar 
radiation 

(w/m2) 
Hour 

Wind 
speed 
(m/s) 

Solar 
radiation 

(w/m2) 
1 5.7 0 13 5.9 833 
2 6.5 0 14 4.9 850 
3 7.5 0 15 3.5 680 
4 6.9 0 16 3.4 595 
5 8.6 93.5 17 2.8 255 
6 10.5 212.5 18 3.1 212.5 
7 13.6 255 19 2.3 153 
8 10.4 467.5 20 2.9 68 
9 9.1 637.5 21 3.5 42.5 
10 9.3 680 22 3.8 0 
11 7.7 816 23 3.8 0 
12 7.0 850 24 4.8 0 
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Table 6. Optimal control variables for minimizing active 

power losses for IEEE 30-bus test system  
Control Variables DO GA KWA 

𝑉𝑉𝐺𝐺1 (pu) 1.099999 1.100000 1.10000 
𝑉𝑉𝐺𝐺2 (pu) 1.08096 1.081147 1.08083 
𝑉𝑉𝐺𝐺5 (pu) 1.050073 1.049857 1.04987 
𝑉𝑉𝐺𝐺8 (pu) 1.0581226 1.057884 1.05801 
𝑉𝑉𝐺𝐺11 (pu) 1.09999 1.10000 1.10000 
𝑉𝑉𝐺𝐺13 (pu) 1.099999 1.10000 1.10000 
𝑆𝑆11 (6-9) 1.045711 0.996084 1.038072 
𝑆𝑆12 (6-10) 0.90000 0.966384 0.901334 
𝑆𝑆15 (4-12) 0.994927 1.007813 1.013492 
𝑆𝑆36 (28-27) 0.965835 0.971414 0.967464 
𝑄𝑄C10 (MVAR) 4.999999 3.320597 2.52272 
𝑄𝑄C12 (MVAR) 4.999999 5 4.21918 
𝑄𝑄C15 (MVAR) 5 4.8406 3.59157 
𝑄𝑄C17 (MVAR) 4.99999 4.95720 1.39472 
𝑄𝑄C20 (MVAR) 4.779537 4.10309 4.65710 
𝑄𝑄C21 (MVAR) 4.999999 4.9999 3.73254 
𝑄𝑄C23 (MVAR) 3.57303 3.74637 1.38789 
𝑄𝑄C24 (MVAR) 4.999999 4.9939 2.23654 
𝑄𝑄C29 (MVAR) 2.010295 2.08777 0.98210 

Power Loss (MW) 17.541 17.5459 17.5977 
Voltage Deviation (pu) 2.1908 2.08468 1.93747 
Control Variables DO PDO WOA 

𝑉𝑉𝐺𝐺1 (pu) 1.099999 1.10000 1.0999 
𝑉𝑉𝐺𝐺2 (pu) 1.08096 1.10000 1.08093 
𝑉𝑉𝐺𝐺5 (pu) 1.050073 1.10000 1.04992 
𝑉𝑉𝐺𝐺8 (pu) 1.0581226 1.10000 1.05827 
𝑉𝑉𝐺𝐺11 (pu) 1.09999 1.07152 1.10000 
𝑉𝑉𝐺𝐺13 (pu) 1.099999 1.1000 1.09999 
𝑆𝑆11 (6-9) 1.045711 1.02608 1.0033 
𝑆𝑆12 (6-10) 0.90000 1.10000 0.948889 
𝑆𝑆15 (4-12) 0.994927 1.10000 1.001595 
𝑆𝑆36 (28-27) 0.965835 1.10000 0.969088 
𝑄𝑄C10 (MVAR) 4.999999 4.70967 4.72722 
𝑄𝑄C12 (MVAR) 4.999999 0 4.93047 
𝑄𝑄C15 (MVAR) 5 2.9317 4.65465 
𝑄𝑄C17 (MVAR) 4.99999 4.9949 4.988412 
𝑄𝑄C20 (MVAR) 4.779537 4.9989 4.875829 
𝑄𝑄C21 (MVAR) 4.999999 4.9998 4.995757 
𝑄𝑄C23 (MVAR) 3.57303 4.52031 3.830656 
𝑄𝑄C24 (MVAR) 4.999999 4.78674 4.981892 
𝑄𝑄C29 (MVAR) 2.010295 4.31481 2.292923 

Power Loss (MW) 17.541 18.32097 17.543448 
Voltage Deviation (pu) 2.1908 1.60716 2.161373 

 

 

Fig. 4. The DO and compared algorithms convergence 
characteristics for case 1. 

 
Fig. 5. The standard IEEE-30 bus voltage profile for case 1. 

 
6.2 Case 2: Reactive Power Losses Saving 

Reactive power loss lessen was the deemed target here. 
The DO algorithm was used to accomplish the best solution, 
Table 7 gives the results. The DO algorithm is useful for 
establishing the perfect settings of the control variable, which 
diminishes losses of the system. As a result, when the DO 
algorithm is used, reactive power losses are dramatically 
lowered to 13.5 MVAR. In figure 6, reactive power losses 
utilizing the DO method are steeply converged while taking 
other comparative techniques into account. The optimum 
solution can be achieved using the algorithm within 60 
iterations, which demonstrates the rapid convergence of the 
DO algorithm. The evaluated reactive power loss is compared 
to that found using published population-based optimization 
techniques to evaluate the performance of the approach. Table 
7 shows how the DO algorithm outperforms these prior 
methods. Particularly, the majority of acquired solutions using 
heuristic optimization algorithms are feasible, primarily due 
to voltage magnitude accepted at all system load buses as 
shown in figure 7. 
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Table 7. Optimal control variables for minimizing reactive 
power losses for IEEE 30-bus test system. 

Control Variables DO GA KWA 
𝑉𝑉𝐺𝐺1 (pu) 1.09999 1.09999 1.10000 
𝑉𝑉𝐺𝐺2 (pu) 1.09991 1.09931 1.09998 
𝑉𝑉𝐺𝐺5 (pu) 1.08038 1.07817 1.08042 
𝑉𝑉𝐺𝐺8 (pu) 1.09277 1.09185 1.09260 
𝑉𝑉𝐺𝐺11 (pu) 1.10000 1.09940 1.10000 
𝑉𝑉𝐺𝐺13 (pu) 1.09999 1.09983 1.10000 
𝑆𝑆11 (6-9) 0.99035 0.98955 0.98932 
𝑆𝑆12 (6-10) 0.98809 0.98534 0.98767 
𝑆𝑆15 (4-12) 0.98710 0.98818 0.98657 
𝑆𝑆36 (28-27) 0.98193 0.97676 0.97883 
𝑄𝑄C10 (MVAR) 4.99999 4.85294 4.9999 
𝑄𝑄C12 (MVAR) 4.99999 3.92603 0.91544 
𝑄𝑄C15 (MVAR) 4.99999 3.31971 4.47127 
𝑄𝑄C17 (MVAR) 4.99999 3.58234 2.07193 
𝑄𝑄C20 (MVAR) 5 3.25223 4.93287 
𝑄𝑄C21 (MVAR) 4.99999 4.55178 0.93451 
𝑄𝑄C23 (MVAR) 4.99999 4.93390 3.52795 
𝑄𝑄C24 (MVAR) 4.99999 4.52366 0.21669 
𝑄𝑄C29 (MVAR) 4.99999 2.91758 1.11625 
Reactive Loss 

(MVAR) 13.5127 13.7754 14.4338 

Power Loss (MW) 17.9542 17.9363 18.0441 
Voltage Deviation 

(pu) 1.09999 2.55203 2.37778 

Control Variables DO PDO WOA 
𝑉𝑉𝐺𝐺1 (pu) 1.09999 1.100000 1.099999 
𝑉𝑉𝐺𝐺2 (pu) 1.09991 1.100000 1.099948 
𝑉𝑉𝐺𝐺5 (pu) 1.08038 1.100000 1.080532 
𝑉𝑉𝐺𝐺8 (pu) 1.09277 1.100000 1.092786 
𝑉𝑉𝐺𝐺11 (pu) 1.10000 1.100000 1.099929 
𝑉𝑉𝐺𝐺13 (pu) 1.09999 1.100000 1.100000 
𝑆𝑆11 (6-9) 0.99035 1.100000 0.990286 
𝑆𝑆12 (6-10) 0.98809 1.100000 0.989363 
𝑆𝑆15 (4-12) 0.98710 1.100000 0.987491 
𝑆𝑆36 (28-27) 0.98193 1.100000 0.981429 
𝑄𝑄C10 (MVAR) 4.99999 4.845026 4.990179 
𝑄𝑄C12 (MVAR) 4.99999 4.774687 5 
𝑄𝑄C15 (MVAR) 4.99999 4.953949 4.984691 
𝑄𝑄C17 (MVAR) 4.99999 4.99808 4.987528 
𝑄𝑄C20 (MVAR) 5 4.81635 4.997664 
𝑄𝑄C21 (MVAR) 4.99999 4.89972 5 
𝑄𝑄C23 (MVAR) 4.99999 4.85877 4.996899 
𝑄𝑄C24 (MVAR) 4.99999 4.99411 4.999124 
𝑄𝑄C29 (MVAR) 4.99999 4.74025 5 
Reactive Loss 

(MVAR) 13.5127 20.0528 13.51449 

Power Loss (MW) 17.9542 18.3867 17.95597 
Voltage Deviation 

(pu) 1.09999 1.63176 2.677833 

 

Fig. 6. The DO and compared algorithms convergence 
characteristics for case 2. 

 
Fig. 7. The standard IEEE-30 bus voltage profile for case 2. 

6.3 Case 3: Voltage Deviation Minimization 

The aim function to be improved using the DO algorithm 
in this part is increasing voltage deviation. Figure 8 illustrates 
the pattern of increasing system voltage divergence. The 
findings mentioned in Table 8 point out that the voltage 
deviation index is decreased to 0.13 pu by using the DO 
algorithm. The DO method significantly outperforms other 
population-based optimization strategies in Table 8's 
comparison of solutions obtained using these two methods. 
Particularly, the all of acquired solutions using heuristic 
optimization algorithms are feasible, primarily due to the 
voltage magnitude accepted at all system load buses as shown 
in figure 9. 

Table 8. Optimal control variables for minimizing voltage 
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deviation for IEEE 30-bus test system 

Control Variables DO GA KWA 
𝑉𝑉𝐺𝐺1 (pu) 1.00000 1.00014 1.000017 
𝑉𝑉𝐺𝐺2 (pu) 1.0000 1.0003 1.00052 
𝑉𝑉𝐺𝐺5 (pu) 0.9999 1.000117 1.000104 
𝑉𝑉𝐺𝐺8 (pu) 1.02098 1.014429 1.025153 
𝑉𝑉𝐺𝐺11 (pu) 1.00000 1.00082 1.000014 
𝑉𝑉𝐺𝐺13 (pu) 1.00000 1.01877 1.000664 
𝑆𝑆11 (6-9) 1.01228 0.98861 0.9724426 
𝑆𝑆12 (6-10) 0.90142 0.91200 0.9000709 
𝑆𝑆15 (4-12) 0.96617 0.99929 0.9513557 
𝑆𝑆36 (28-27) 0.9614 0.97444 0.9696701 
𝑄𝑄C10 (MVAR) 5 1.45107 0.7455046 
𝑄𝑄C12 (MVAR) 4.99999 4.86673 4.9252119 
𝑄𝑄C15 (MVAR) 4.99998 4.99045 4.59508 
𝑄𝑄C17 (MVAR) 0.79706 3.35794 1.571298 
𝑄𝑄C20 (MVAR) 4.9998 5 4.999126 
𝑄𝑄C21 (MVAR) 4.9997 4.160617 3.587489 
𝑄𝑄C23 (MVAR) 4.9999 4.997928 1.664685 
𝑄𝑄C24 (MVAR) 5 4.999554 1.327213 
𝑄𝑄C29 (MVAR) 0.2452 2.203964 2.650459 

Power Loss (MW) 23.0167 22.71428 23.3087 
Voltage Deviation 

(pu) 0.13082 0.149252 0.174027 

Control Variables DO PDO WOA 
𝑉𝑉𝐺𝐺1 (pu) 1.00000 1.00000 1.000662 
𝑉𝑉𝐺𝐺2 (pu) 1.0000 1.00000 1.0003178 
𝑉𝑉𝐺𝐺5 (pu) 0.9999 1.00000 1.0002348 
𝑉𝑉𝐺𝐺8 (pu) 1.02098 1.04955 1.0198592 
𝑉𝑉𝐺𝐺11 (pu) 1.00000 0.99999 1.0000317 
𝑉𝑉𝐺𝐺13 (pu) 1.00000 0.99606 1.0002497 
𝑆𝑆11 (6-9) 1.01228 1.02228 1.00442548 
𝑆𝑆12 (6-10) 0.90142 0.90000 0.92452426 
𝑆𝑆15 (4-12) 0.96617 0.943387 0.96106441 
𝑆𝑆36 (28-27) 0.9614 0.987448 0.96465907 
𝑄𝑄C10 (MVAR) 5 4.00088 4.9781617 
𝑄𝑄C12 (MVAR) 4.99999 3.07594 3.7961058 
𝑄𝑄C15 (MVAR) 4.99998 4.99251 4.9528035 
𝑄𝑄C17 (MVAR) 0.79706 2.89759 3.54518 
𝑄𝑄C20 (MVAR) 4.9998 1.60741 5 
𝑄𝑄C21 (MVAR) 4.9997 2.89741 4.97129 
𝑄𝑄C23 (MVAR) 4.9999 2.75707 5 
𝑄𝑄C24 (MVAR) 5 2.200368 5 
𝑄𝑄C29 (MVAR) 0.2452 2.56376 0.7127106 

Power Loss (MW) 23.0167 24.2969 22.91436 
Voltage Deviation 

(pu) 0.13082 0.211148 0.13621378 

 
Fig. 8 The DO and compared algorithms convergence 

characteristics for case 3. 

 
Fig. 9 The standard IEEE-30 bus voltage profile for case 3. 

7. Conclusion 

 In this research, an efficient and novel optimization 
optimizer known as DO is developed for handling ORPD 
optimization issues. Furthermore, four algorithms GA, KWA, 
PDO, and WOA are compared with the DO algorithm for 
addressing a single objective ORPD issue have been proposed 
and evaluated on a modified IEEE 30-bus test system in the 
presence of RESs using the taguchi method which is based on 
orthogonal arrays considering the uncertainty of RES and load 
profile. The supremacy and efficacy of DO have been 
evaluated for optimizing three single-objective functions to 
prove its efficiency and lead to achieving minimization of 
active power, reactive power, and voltage deviation. 
According to the comparison results, the DO gives, in all 
cases, better performance in minimizing the objective 
functions than other algorithms. It can be concluded that the 
DO solved the OPRD in a short period of time, indicating that 
the DO can be succeded in other real-life applications such as 
PV parameter estimation, PI parameter tuning, management 
applications such as energy management and load 
management, conventional and smart grid applications, 
industry, and engineering applications. 
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