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Abstract- In this paper, different optimization techniques for Wind Farm Layout Optimization (WFLO) are reviewed for the 

optimal placement of wind turbines. After reviewing the recent approaches, the most important considerations for the WFLO 

work are outlined, and the future objectives are mentioned. Wind is inexpensive, and renewable source of electricity. Wind 

energy seems to have the ability to reduce greenhouse gas emissions and slow down climate change. Wind energy lowers 

dependency on depletable, non-renewable energy sources like fossil fuels. Generation of wind energy is affected by the presence 

of wind. Wind turbines requires a lot of space, that can cause problems for people who do not want large wind farms next to 

their homes and for the safety of wildlife and environment. Researchers are attempting to find solutions to problems with wind 

farms like WFLO and the best locations for wind turbines in terms of cost and power output. Different optimization techniques 

have been discovered and proposed for the identified objectives. 

Keywords Wind power, Wind farm layout optimization, Wind turbines, Optimization Techniques, Metaheuristics. 

 

1. Introduction 

A pure and cost-free energy source is Wind Power (WP). 

The earth's rotation generates wind, which can be utilized to 

produce electricity [1]. The current global energy crisis has 

highlighted the ongoing risks of depending only on fossil fuels 

for our energy requirements. WP is safe for the environment 

because it causes no harmful effects like the greenhouse effect 

or pollution. WP can be used to power vehicles, water pumps, 

grain mills, and windmills. WP is generated by Wind Turbines 

(WTs) [2]. WTs run entirely on the energy of the wind which 

utilized from several years. The investment cost, power 

production cost, longevity, and maintenance cost of a Wind 

Farm (WF) are the four primary components of a WP projects. 

Through WTs, WP is converted into electricity. WTs are 

considered the most significant source of renewable energy 

[3]. In opposed that, WTs are also considered to be harmful to 

birds and other species of birds, and they also make noise. 

Storms, thunder, and strong winds harm WT. A hybrid 

metaheuristic is employed to solve the WT optimization 

problem [4]. WP is an extremely fast source of power 

generation since its operational costs are almost zero after 

installation. The cost of installing a WT involves 

manufacturing, transportation, and installation expenses. WP 

is produced in WFs. WF occupies a very limited size of land 

in comparison to their ability to produce renewable energy, 

and it is independently connected to the electrical grid. WFs 

are constructed in areas that are known to be windy on a 

regular basis. WFs can be utilized for power generation. Small 

WFs may consist of only a few turbines but rather large WFs 

have hundreds of turbines. WP is the most rapidly expanding 

energy source with zero cost. Wind generators are used to 

generate maximum power. Table 1 lists some historical 

examples of WTs. To maximize energy production, WTs are 

located in regions with strong and consistent wind patterns, 

such as windy plains or coastal regions. There are three types 

of WFs: on-shore, off-shore, and near-shore. The on-shore WF 

is at least three kilometers inland from the shore [5].   

The offshore WF is situated in lakes or the open ocean. 

The near-shore WF is less than 3 kilometers from the shore. A 

large amount of energy is produced by on-shore and off-shore 

WFs. Metaheuristic approaches are employed to Wind Farm 
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Layout Optimization (WFLO) to identify the best locations for 

WTs, minimize energy and wake losses, and increase the WFs 

energy output. When improving the layout of WFs, multi-

objective optimization problems are frequently solved using 

these algorithms. Artificial neural networks are applied on 

WFs to increase power efficiency [6]. 

Table 1. Wind turbines  

S. 

No. 
Wind Turbine (WT) Inventor Year 

1 Automatic WT 
Charles F. 

Brush 
1888 

2 
Electricity Generating 

Wind Turbine 
Poul la Cour 1891 

3 Electrical Power Plan Poul la Cour 1895 

4 Darrieus Wind Turbine 

Georges Jean 

Marie 

Darrieus 

1931 

5. 
Smith-Putman Wind 

Turbine 

Palmer 

Cosslett 

Putnam 

1941 

6. 
Commercial Wind 

Turbine Rotors 
-- 1980 

7. 
NASA Wind Turbine 

Program 
NASA 1987 

8. E-126 

Enercon 

Company, 

Germany 

2008 

9. Off-shore Wind Turbine Statoil 2009 

The first WF was located in the USA. Table 2 represents 

different WFs and their power capacities. 

Table 2. Wind farms and their power capacity 

S.  

No. 
Wind Farm Location 

Power 

Capacity 

1 
Smith-Putman 

Wind Turbine 
1941, USA 1.5 mw 

2 First Wind Farm 1980, USA 30 KW each 

3 Second Wind Farm 1981, USA 10 MW 

This paper examines and identifies the strengths and 

shortcomings of the most promising and workable WFLO 

techniques. The article is structured as follows. General 

framework of Wind Farm Optimization (WFO) is given in 

section 2. WFLO objective is presented in section 3. WFLO 

techniques are discussed in section 4. The key conclusions are 

summarized in section 5. 

2. Wind Farm Optimization (WFO) 

Increasing a WFs productivity and efficiency is referred to as 

WFO. For highest power output in the wind project, Wind 

Farm Layout (WFL) and design play a major role. Before a 

WF is set up land quality investigation is very important. The 

performance of the turbines will be influenced by the 

geography and wind flow, therefore selecting the appropriate 

location for the WF is crucial for optimization. Maximum 

power output depends on the WTs location and size. WTs are 

heavy in size; land must have the ability to support WTs 

weight. WF location also plays a major role in maximum 

power output. WTs produce maximum energy when they face 

the strongest winds. Depending on their size, WFs can have 

several WTs. WFs are designed in such a way they are cost-

effective and reliable. Maintaining the balance between wind 

energy generation and distribution is crucial. WFs are 

considered successful when they produce and distribute 

enough energy. The final WFL must be designed after 

comparing various wind farm layouts. A WFL must minimize 

investment costs while maximizing power output Running 

WFs requires a careful land project plan as well as the location 

of WTs in the suitable location.   

2.1. Wake Effect in WF 

Wake Effect (WE) limit power production in WF. WE slows 

the wind down. Wake is created, when turbulence is caused by 

a free stream of wind passing through the WT's rotor. The WE 

can be minimized and energy output maximized by using 

WFO techniques like wake management. The development of 

various wake models are listed in Table 3. Researchers 

frequently utilise the 1983-built Jensen wake model to 

determine WE in WFs [7, 8]. To reduce the WE WTs optimal 

positioning is important. Jansen’s wake model shown in 

Figure 1 is a simplistic analytical wake model that produces 

results quickly and accurately. 

Table 3. Wake effect models 

S. No. Popular Wake Models Year 

1 Jensen Wake Model [4] 1983 

2 Ainslie Eddy Viscosity Model 1985 

3 Katic Park Model [3] 1986 

4 Dynamic Wake Meandering 2007 

 
Fig. 1. The Jensen WE model 

In the renewable energy industry, the Jensen wake model is 

extensively used for WF design, optimization, and 

management. Jensen’s model can work with both radial and 
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axial directions using a cylindrical coordinate system. Jensen 

considered the wake behind the WT as a stormy wake, 

excluding the vortex shedding effect, which is only relevant in 

the local wake region [9]. 

Equation (1) represents the non-WE, which happens when the 

wind speed is equal for all WTs. 

uo =  ui  (1) 

Using the Jensen model [10], the wake speed is calculated 

from the current free wind speed for i-th WT in wake area is 

expressed in equation (2). 

ui =  uo (1 − 
2a

1+α (D R1⁄ )2)              (2) 

Where ‘a’ is the [0.2-0.4] range’s axial induction factor, ′𝛼′ is 
entrainment constant. The Equation (3) demonstrates the wake 

boundary expansion rate with respect to D [11]. 

α =  
0.5

In(
Z

Zo
)
      (3) 

Where, ‘Z’ is the height of the hub, ′𝑍𝑜′ is WF surface 

roughness, and ‘𝑍𝑜′  is 0.3 m and varies according to the 

location for plain territories [12]. The WT rotor is damaged by 

the upstream WE when a part of it is partially inside the WE 

boundary, [13] that is expressed in equation (4). 

ui =  uo (1 − 
2a

1+α (D R1⁄ )2)
AT,wake,i

AT,total,i
  (4) 

Where 𝐴𝑇,𝑤𝑎𝑘𝑒,𝑖  is the rotor portion that is damaged by the 

wake, 𝐴𝑇,𝑡𝑜𝑡𝑎𝑙,𝑖 is total rotor area. Equation (5) describes the 

full wake effect that WTs experience, which includes both 

upstream and downstream wake effect [14]. 

ui =  uo [1 − √∑ (1 − 
2a

1+α (D R1⁄ )2)
j

mi
j=1 ]  (5) 

Where 𝑚𝑖 is total number of WT with WE. The following 

other formulas are taken into consideration for analytical 

purposes are given in equation (6), (7) and (8): 

Rd =  Rd =  Rr [1 − √
1−a

1−2a
]  (6) 

R1 =  aD + Rr    (7) 

Ct =  4a(1 − a)   (8) 

Where 𝑅𝑑  is downstream rotor radius, 𝑅𝑟  is rotor radius and 

𝐶𝑡 is trust coefficient.  

2.2. Scenarios for Wake Effect (WE) 

Due to the WE, wind speed decreases and power output is 

reduced to a minimum. The WE can be reduced through WF 

evaluation, advancements in WT design, wind speed 

directions, and turbine location that is optimum. Wake 

management and wake merging are two strategies that can be 

used to reduce the effect of one turbine on the power 

generation of downstream turbines. In order to calculate the 

WE in the WF, several sceneries are taken into account. The 

three wind speed combinations are Uniform Wind Speed 

(UWS) and Uniform Wind Direction (UWD), Uniform Wind 

Speed (UWS) and Variable Wind Speed (VWS) with Variable 

Wind Direction (VWD). The wind speed and direction in the 

first scenario UWS-UWD are both constant at 12m/s. In the 

second UWS-VWS scenario, even when the wind direction is 

shifting, the wind speed remains the same. In the third case, 

the wind's direction and speed are both variables. VWS-VWD. 

The total Power that can be extracted using WT is expressed 

in equation (9) as: 

Power =  
1

2
 cpρAUs   (9) 

Where ‘𝑐𝑝’ is power extracted by WT, ‘𝜌’ is air intensity, ‘𝑈𝑠’ 

upstream wind speed. 

3. Wind Farm Optimization Objectives 

WFLO's goal is to improve power output from the WF while 

taking into account a range of limitations, such topography, 

impact on the environment, wind direction, and others. The 

prime target is to harness WE as much as possible. The WF 

optimization objective is to maintain WFs at a reasonable 

value while reducing overall investment costs [15]. The WFL 

is designed to deploy WTs where they will produce the most 

power. The proper type and size of turbines must be chosen 

for the specific site conditions in order to maximize energy 

output. The WF is considered successful if it minimizes total 

power generation and minimize investment costs [16]. 

3.1 WFLO Problem 

The purpose is to increase power generation while decreasing 

costs and harmful effects on the environment. WF electricity 

output is reduced by the WE. WTs are also affected by wind 

speed. Strong winds and storms can damage WTs. If a WF is 

not optimized, production power will decrease, and operating 

and maintenance costs will increase. 

3.2 Wind Farm Cost Calculation 

The location of the WT is extremely important in WFs for 

maximum power output. WF construction and maintenance 

cost. A WF's overall cost varies depending on its size, 

location, and equipment in addition to other elements 

including infrastructure development, rules, and demand. Cost 

functions are used to calculate the total cost WF. The most 

popular objective function used in WFLO for cost 

minimization is written in equation (10) as follows: 

Min:    f(x) =  
Cost

PT
    (10) 

In equation (6) WF cost is divided by the total energy 

generation. Where, one of the design variable's vectors is x, 

cost denotes the WF cost, and P_T is the total power produced 

by the WF. A WFs cost can be estimated by considering in a 

number of factors, such as the cost of the turbines, structures, 

generators, highways, and other equipment needed. Due to 
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recent drops in price, the cost of wind energy can sometimes 

exceed that of conventional energy sources like coal and 

natural gas. WT’s construction and installation cost, The cost 

is determined by how many WTs are deployed overall in each 

WF. The cost of a WF is calculated using a cost model. 

Investment cost function is written in equation (11) as: 

Cost =   NWT  (
2

3
+ 

1

2
 e−0.00174NWT

2
) (11) 

Where ‘𝑁𝑊𝑇’ represents total number of WTs purchased. 

3.3 Wind Farm Power Calculation 

The placement of the WFs turbines, which must be regulated 

based on the flow patterns, may also have an impact on power 

generation. The quantity of power produced by a WF can be 

calculated using the formula below presented in equation (12) 

and (13) as: 

PU =  
1

2
 ρAu3    (12) 

PG =  η
1

2
 ρAu3    (13) 

Where, air density is 𝜌, swept area is A, and wind speed is u. 

The WTs utilizable power and generated power is given in 

equation (8), and (9) respectively. Where 𝜂 is considered as 

WT efficacy. If 𝜂 = 40%, total power generated by WT is 

calculated in equation (14) and (15) as: 

PG =  
40

100
×

1

2
×  1.2 × π × (20)2 × u3 (14) 

PG =  301 ×  u3 W = 0.3 u3 Kw   (15) 

4. Wind Farm Optimization Techniques 

Proper wind data and analysis are important for calculating 

energy production and improving turbine location and design. 

By modifying the blade height or rotor speed, active power 

control techniques can be used to maximize the energy 

generation of single turbines. Massive amounts of data from 

WF operations can be evaluated using machine learning 

algorithms and data analytics to find ways to improve 

efficiency. For maximum power output, optimal placement of 

WTs is required. Kunakote. T. (2022), compared twelve 

metaheuristics for WFLO problems.  The fundamental flow 

method for WFLO using metaheuristics is shown in Figure 2 

and schematic representation of WFLO using metaheuristics 

is shown in Figure 3. The design problem for the optimal WF 

layout is expressed in terms of cost minimization, total power 

maximization, noise minimization, and performance are tested 

on 12 different metaheuristic algorithms [17].   

 
Fig. 2. Basic flow process to solve WFLO using metaheuristics 
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Fig. 3. Schematic representation of WFLO using metaheuristics 

The layout optimization of a WF is an example of a large-scale 

problem that can improve by the use of metaheuristic 

optimization techniques. The researcher applied metaheuristic 

algorithms to overcome WFLO issues because they are the 

best at solving engineering design objective functions. The 

review of some of the most notable works in optimization 

techniques are enumerated in Table 4. 

Table 3. Metaheuristics used for WFLO 

S. 

No. 
Metaheuristics Problem 

Research 

Work 

1 PSO WFLO 
Philip  

et. al. [18] 

2 SSA 
WT 

Placement 

Kumar 

et. al. [32] 

3 GA WFLO 
Majid  

et. al. [33] 

4 ACO WFLO 
Eroğlu Y 

et. al [34] 

5 TLBO WFLO 
Patel J 

et. al. [35] 

6 GWO 
WF Energy 

Production 

Kiji, Sareta 

et. al [36] 

7 ABC WFLO 
Patel J 

et. al. [35] 

8 GOA 
WF Energy 

Production 

Fathy Ahmed 

Et. al [37] 

9 
FA WF Energy 

Production 

R. I. Putri 

et al [38] 

10 DE WFLO 
Hen, L 

et. al. [39] 

11 CSA WFLO 
S. Rehman 

et, al. [40] 

12 BA WFLO 
Qi, Yuanhang 

et. al. [29] 

13 DA WFLO 
Rahman 

et. al. [30] 

In terms of quality and convergence ratio, metaheuristic 

approaches produce the best results. Different metaheuristics 

are applied to solve WFLO problems including particle 

Swarm Optimization (PSO) [18], Sparrow Search Algorithm 

(SSA) [19], Genetic Algorithm (GA) [20], Ant Colony 

Optimization (ACO) [21], Teaching Learning Based 

Optimization (TLBO) [22], Grey Wolf Optimization (GWO) 

[23], Artificial Bee Colony (ABC) Optimization [24], 

Grasshopper Optimization Algorithm (GOA) [25], Firefly 

Algorithm (FA) [26], Differential Evolution (DE) [27], 

Cuckoo Search Algorithm (CSA) [28], Bat Algorithm (BA) 

[29], Dragonfly Algorithm (DA) [30], etc. 

4.1 Particle Swarm Optimization (PSO) 

PSO is inspired by the birds flocking behavior [18]. PSO 

mimics the behavior of a group of birds in the search for food. 

In PSO, possible solutions are represented by moving particles 

in a search space, with each particle's velocity and position 

constantly updated in accordance with its own and other 

particles' interactions. PSO is used to solve various constraint 

and unconstraint optimization problems. WTs are placed at 

optimal locations using the PSO algorithm. For efficient 

optimal output power, PSO is applied on WF layout. To check 

the PSO's efficiency, the author [31] considers three scenarios, 

including CWS-CWD, CWS-VWD, and VWS-VWD. Table 5 

displays the WFLO PSO performance [31]. 

Table 5. PSO results for the WFLO problem 

S.No Parameter 

PSO results [31] 

Case 1: 

CWS-CWD 

Case 2: 

CWS-VWD 

1 Wind Turbines 32 19 

2 Total Power 16326.59 kW 9741.30 kW 

3 Cost 0.00140 0.00164 

4 Wake loss 262.20 kW 108.30 kW 

5 Efficiency 98.42% 93.90% 

4.2 Sparrow Search Optimization (SSA) 

SSA algorithm is inspired by sparrow bird foraging behavior 

in nature [19]. SSA is used to position WTs in wind farms in 

the best possible way. To examine the effectiveness of WT in 

a 2 km by 2 km flat region, author [32] takes into consideration 

two scenarios, including CWS-VWD and VWS-VWD. WT's 

optimal placement is done within the WF reduces overall cost. 

In contrast to other metaheuristics like GA and Randon Search 

Algorithm (RSA), the SSA provides better results for 2 cases 

(CWS-VWD and VWS-VWD). Table 6 presents SSA 

performance on two cases for WFLO [32]. 
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Table 6. SSA results for the WFLO problem 

S.No Parameter 

SSA results [32] 

Case 1: 

CWS-VWD 

Case 2: 

VWS-VWD 

1 Wind Turbines 40 39 

2 Total Power 17.781 MW 32.49 MW 

3 Cost 0.0000015461 8.377e-7 

4 Efficiency 85.74% 86.11% 

4.3 Genetic Algorithm (GA) 

GA use crossover, mutation, and selection operators to find 

the best solution [20]. Natural selection is the foundation for 

GA. It uses a population of potential solutions that are 

combined and modified to produce new solutions until an 

ideal solution is found. To optimize small WFL as well as 

large WFL, the author [33] used two-step optimizations based 

on GA. Table 7 presents GA performance on different 

parameters for WFLO [33]. 

Table 7. GA results for the WFLO problem 

S.No Parameter 

GA results [33] 

Case 1: 

X=372.8,  

Y=186.4 

Case 2: 

X=186.4, 

Y=372.8 

1 Wind Turbines 56 48 

2 Total Power 10441 kW 8834.9 kW 

3 Fitness value 0.0036 0.0036 

4 Normalized Cost  37.41 32.29 

5 Efficiency 89.54% 88.39% 

4.4 Ant Colony Optimization (ACO) 

ACO algorithm is inspired by ants foraging behavior in real 

life [21]. The algorithm is used to determine the optimal 

solution. In ACO, artificial ants are used to generate a series 

of solutions, each of which is a sequence of moves all around 

the problem space, to identify a problem's answer. The quality 

of each solution is evaluated, and this evaluation is used to 

guide the ants' movement toward better solutions. One of the 

many applications of ACO is in the optimization of WFL. 

Table 8. ACO results for the WFLO problem 

S. 

No 
Parameter 

ACO results [34] 

First 

Scenario 

Second 

Scenario 

Third 

Scenario 

1 
Wind 

Turbines 
8 8 8 

2 
Total 

Power 

111589.7 

kW 

56453.73 

kW 
105238.261 

kW 

3 Wake loss 776.20 2071.71 2445.73 

4 Efficiency 99.30% 96.46% 97.73% 

Author [34] uses ACO for WFLO. For the three scenarios 

CWS-CWD, CWS-VWD, and VWS-VWD, the WFL is 

tested. For maximum power generation problem, ACO 

performs better than the existing methods. Table 8 presents 

ACO performance on 3 scenarios for WFLO problem. 

4.5 Teaching Learning Based Optimization (TLBO) 

TLBO algorithm is stimulated by teaching learning behavior 

in real life [22]. In TLBO, a teacher imparts knowledge to a 

group of students, who then utilize that knowledge to enhance 

their own solutions to a particular optimization problem. On 

the basis of the student's performance, the teacher improves 

his knowledge. TLBO has been used to tackle a range of 

optimization issues and has been effective in a number of 

contexts. The WFLO problem was solved using both basic and 

enhanced TLBO by the author [35]. The author tests the 

proposed methodology on the WFLO problem as well as 10 

different real-life engineering design challenges. Table 9 

presents TLBO performance on two cases considering CWS-

VWD and VWS-VWD for WFLO problem [35]. 

Table 9. TLBO results for the WFLO problem 

S.No Parameter 

TLBO results [35] 

Case 1: 

CWS-VWD 

Case 2: 

VWS-VWD 

1 Wind Turbines 39 39 

2 Total Power 18401 kW 33137 kW 

3 Cost 0.001463 0.000812 

4 Efficiency 91.01% 89.58% 

4.6 Grey Wolf Optimization (GWO) 

GWO algorithm is stimulated by grey wolf leadership and 

hunting behavior in real life [23]. By mimicking wolf 

behaviors, The GWO algorithm is utilized to effectively 

resolve optimization issues. GWO has been used to handle a 

range of optimization issues and has shown progress in a 

variety of fields. The author [36] applied modified GWO to 

address the problem of energy production at WFs. When 

compared to other metaheuristics like GWO, PSO, and Safe 

Experimentation Dynamics (SED) Methods, Modified GWO 

produces the greatest energy generation results. Table 10 

presents GWO performance for WFLO problem [36]. 

Table 10. GWO results for the WFLO problem 

S.No Parameter 

GWO results [36] 

Modified 

GWO [36] 

Conventional 

GWO [23] 

1 Mean MW 4.76484157 4.76483905 

2 Best MW 4.764841572 4.76484129 

3 Worst MW 4.76484157 4.76483393 

4 
Standard 

Deviation 
6.678 × 105 1.3615 

4.7 Artificial Bee Colony (ABC) Optimization 

Honey bee foraging behavior in nature serves as an inspiration 

for the ABC algorithm [24]. ABC simulates the behavior of 

honeybees to identify the optimal solution to optimization 

difficulties. ABC is able to handle high-dimensional 

operational problems. The author [35] researched a wind farm 
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having 10 WTs that is located in southern Turkey. In a real 

WF, energy production is optimized by eliminating the WE. 

Energy production is increased annually and costs are reduced 

when the ABC algorithm is used. Table 11 presents ABC 

performance on two cases for WFLO [35]. 

Table 11. ABC results for the WFLO problem 

S.No Parameter 

ABC results [35] 

Case 1: 

CWS-VWD 

Case 2: 

VWS-VWD 

1 Wind Turbines 39 39 

2 Total Power 18062 kW 33652 kW 

3 Objective function 0.001490 0.0008 

4 Efficiency 89.34% 90.97% 

4.8 Grasshopper Optimization Algorithm (GOA) 

GOA is inspired by grasshopper swarm behavior in nature 

[25]. By mimicking the movement of grasshoppers using the 

approach, optimization issues are resolved as effectively as 

possible. GOA is appropriate for highly complicated 

optimization problems. The maximum energy production of 

the WF under various wind conditions at various sites in Saudi 

Arabia is determined by the author [37] and is shown in Table 

(12). Compared to the other alternatives, The electricity 

produced by the WE system can be increased more 

successfully using the suggested methods. Table 12 presents 

GOA performance on different locations for WFLO in Saudi 

Arabia WF [37]. 

Table 12. GOA results for the WFLO problem 

S. 

No 
Location 

GOA results [37] 

Mechanical 

Power (kW) 

Maximum 

Power (Kw) 

1 Sakaka 1.5023 40.3462 

2 
Dumat 

Al-Jandal 
1.5024 40.1940 

3 Qurayyat 1.0919 64.9912 

4 Tabarjal 1.7860 49.2735 

4.9 Firefly Algorithm (FA) 

FA is stimulated by fireflies flashing behavior [26]. By 

mimicking the behaviors of fireflies. The algorithm is 

employed to address optimization issues in the best possible 

way. In FA, the optimal solution is discovered by using a 

population of fireflies. FA has been used to resolve numerous 

optimization issues. Furthermore, FA is exploited to resolve 

large-scale optimization difficulties. Author [38] applied 

modified FA for maximum power extraction. Modified FA 

provides better results as compared with PSO and other 

methods. Table 13 presents modified FA performance on two 

cases for WFLO [38]. 

Table 13. FA results for the WFLO problem 

S. 

No 
Metaheuristic Wind Speed Efficiency 

1 Modified FA 

[38] 

7 m/s 94.10% 

2 8 m/s 93.16% 

4.10  Differential Evaluation (DE) 

DE is a heuristic optimization algorithm that simulates natural 

selection and evolution to find the best solution to 

optimization problems [27]. In 1997, Storn and Price invented 

the population-based optimization algorithm known as 

Differential Evolution (DE). The author [39] applied DE to 

solve the WFLO issues. DE is a hybrid that uses a brand-new 

bilevel programming model to produce the most power 

possible. 

4.11  Cuckoo Search Algorithm (CSA) 

Yang and Deb [28] first introduced the CSA algorithm as a 

tool for numerical functions and continuous problems. The 

method is based on cuckoo species that brood parasitically in 

their natural habitat. The CSA algorithm is contrasted with the 

widely used PSO and GA methods for WFL design [40]. 

According to empirical findings, the presented CSA 

algorithms performed better than the PSO and GA algorithms 

for the specified test scenarios in terms of annual power output 

and efficiency. Table 13 presents CSA performance on two 

cases for WFLO [40]. 

Table 13. CSA results for the WFLO problem 

S. 

No 
Parameter 

CSA results [40] 

Case 1: 

CWS-VWD 

Case 2: 

VWS-VWD 

1 Wind Turbines 39 39 

2 Total Power 17861 34548 

3 Efficiency 88.34 87.82 

4 Run time 2428 sec 5271 sec 

4.12  Wind Turbines Optimal Placement Techniques 

The location of the WTs is determined by the precise design 

requirements as well as offshore and on land. Sites with 

average winds of more than 10 m/s are often seen as ideal 

locations for WTs [41, 42]. Placements of WTs are usually 

constructed in areas with the stable, regular wind [43]. The 

WT placement problem in wind farms is solved using a variety 

of metaheuristics, including SSA, Water Cycle Optimization 

(WCO) [44], Binary Invasive Weed Optimization (BIWO) 

[45], GA [46, 47], and PSO [48]. 

5. Conclusion 

By producing recyclable, reusable, reasonably priced, and 

renewable electricity, wind farms can reduce reliance on 

scarce and non-renewable energy sources, such as fossil fuels. 

This paper reviews existing research on WFLO problems 

using various metaheuristic optimization techniques along 

with Jensen WE model. Different research works performed 

by researchers for the optimization of wind farm layouts are 

highlighted. The performance of several metaheuristics for 

WFLO optimization problems is reviewed and mentioned 

with results. To get better results, further research on various 

cutting-edge methods, including hybrid approaches, can be 

chosen. This work will be beneficial to exist researchers and 

newcomers to the field of studying WFLO. 
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