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Abstract- The research on Maximum Power Point Tracking (MPPT) techniques for wind turbine installation (WTI) is an ongoing 

effort to improve the output power of wind systems. AI-based controllers, particularly Neural network controllers, are becoming 

popular choices for capturing maximum power from wind generators. However, obtaining accurate data for training and fine-

tuning the Artificial Neural Network (ANN) model remains a significant challenge in establishing effective MPPT methods. Our 

study proposes a novel approach using feed-forward function neural networks (FF-NN) for MPPT in WTI based on Autonomous 

Squirrel Cage Generators (ASCGs). Our study contributes to the advancement of MPPT techniques in the wind energy industry 

by presenting a comprehensive comparative analysis of various MPPT techniques, including VSS-P&O, VSS-INC, OTC, GA, 

and GWO. The FF-NN approach maximizes MPPT by regulating the duty cycle and accurately tracking the maximum power 

point (MPP) without requiring knowledge of wind turbine power characteristics. The results of our simulations in the 

MATLAB/Simulink environment show that the FF-NN method performs better under diverse loads and environmental 

disturbances, sustains the ASCG's voltage build-up under severe loads, and has high responsiveness to noisy wind speeds. 

Moreover, our study highlights the improved performance metrics of using FF-NN, such as its lower complexity, easy 

maintenance, and better MPP tracking accuracy compared to the other MPPT techniques. The proposed approach using FF-NN 

is a novel and comprehensive solution that adds to the existing body of knowledge in the field of wind energy by presenting a 

new perspective for MPPT techniques in ASCG-based WTI. 

 

Keywords ASCG; MPPT; FF-NN; OTC; VSS-INC; VSS-P&O; GA; GWO.

1. Introduction 

Currently, wind energy is one of the most sought-after 

renewable energy sources for the production of electrical 

energy, both for remote localisations and as a supplement for 

integrated power distribution. It can be a competitive 

alternative, contributing to the reduction of the rapidly 

increasing demand for electricity. The development and 

proliferation of the use of wind energy conversion chains have 

led industrialists and scientists to invest in improving the 

technical and economic indices of this conversion and the 

quality of the energy supplied [1]. 

Most of the isolated wind systems prefer the use of 

asynchronous squirrel cage generators due to their low cost, 

robustness, and standardization [2]. These generators are often 

associated with a capacitor bank, which provides the reactive 

power necessary for their magnetization. When an ASCG is 

excited with a constant mechanical energy source, capacitor 

banks are a convenient solution for providing reactive power 

for its excitation to build up the voltage, as explained in [3].  

In fact, the rotor's speed changes due to the change of 

mechanical energy source, which also modifies the values of 

several variables in the ASCG and requires a new calculation 

of the excitation according to the varied rotor speed. As 

explained in [4], the use of capacitors as an excitation source 

in the case of variable rotor speed is severely restricted. This 

is because the connected capacitance has a highly nonlinear 

dependence and does not alter dynamically in response to the 

variable rotor speed. 

Producing electricity from a variable mechanical energy 

source, such as wind, requires systems for detecting and 
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tracking the generator's maximum power point (MPP) as they 

can work over a wide range of random speeds. Several works 

have [5] addressed the problem of optimizing wind power 

generation, using different MPPT techniques. These 

techniques differ according to the type of information they 

need to deliver the speed reference. The classification of these 

techniques into various families is determined by their 

operational characteristics, specifically, whether they require 

wind speed and aerodynamic features to generate the reference 

for maximizing power output or not. 

As explained in [6], the Tip Speed Ratio - TSR is a kind 

of control that regulates wind turbine rotation speed to 

maintain the speed ratio at its optimum level (λopt). This means 

that the turbine speed Ωturbine will be varied as a function of the 

wind speed variations V, allowing it to work continuously 

with maximum aerodynamic efficiency. The first drawback of 

this method is its strong dependence on the wind speed 
measurement; the quality of the wind image provided by the 

anemometer presents difficulties in practical implementations 

[7]. Abdullah, M. [8] claims that the TSR approach is 

straightforward, but measuring wind speed continually and 

precisely complicates the system and raises the cost. The 

second drawback is the need to obtain the optimal value of 

speed ratio λopt, which is different from one system to another. 

The consequence of this dependence on the wind generator 

characteristics is that each wind turbine must have its own 

adapted management software. To avoid the measurement of 

wind speed, the optimal torque control (OTC) controls the 

torque to its optimum in order to obtain the maximum value 

of the power coefficient and, therefore, maximum energy 

efficiency without the use of a wind speed sensor. However, 

this control requires knowledge of the maximum power curve 

of the wind turbine [9,10]. 

Each of the OTC and TSR methods is directly or 

indirectly reliant on the characteristics of the wind generator, 

which leads to difficulties in the implementation of these 

methods and additional costs for the system. To overcome 

these issues, there are several methods to determine the 

operating points without knowing the aerodynamic 

characteristics curve. For instance, Perturb & Observe (P&O), 

the principle of this technique consists in adjusting the 

operating point by perturbing the system's operating voltage 

or current and comparing the resulting change in power to 

determine the direction of the next perturbation. The method 

has a relatively simple implementation, but it may lead to 

oscillations around the MPP and can be slow to converge 

when the operating point is far from the MPP. To address this 

issue, the variable step size (VSS-P&O) adjusts the step size 

of the perturbation based on the rate of change of power 

output, which leads to faster and more accurate convergence 

towards the MPP. However, this method can be more complex 

to implement because it requires additional algorithms to 

determine the step size, and it needs to be adjusted 

dynamically based on the tracking performance [11]. 

On the other hand, the INC method adjusts the operating 

point by calculating incremental conductance, which is the 

ratio of the change in power to the change in voltage or current 

[12]. The operating point is adjusted in the direction that 

maximizes the incremental conductance using a fixed step 

size, whereas the variable step size (VSS-INC) calculates the 

incremental conductance at each step and adjusts the step size 

in proportion to the change in conductance. This results in 

faster convergence towards the MPP and reduced oscillation 

around the MPP. However, both methods are more complex 

and require additional circuitry to prevent false triggering due 

to noise and measurement errors [13]. 

Recently, fuzzy logic control has been used in maximum 

power point tracking (MPPT) systems [14]. Unlike 

conventional MPPT methods, the step change of the reference 

speed ΔΩref is not constant. This sampling step was chosen in 

order to find a compromise between a fast search for the 

optimum and low oscillations around this optimum in a steady 

state. In addition, this control offers other advantages: it does 

not require exact knowledge of the model to be controlled, 

does not depend on the parameters of the system nor on the 

climatic parameters, and can deal with non-linearities. Despite 
this, there is still a problem with choosing the right 

membership functions, and a lot of calculations and data 

storage are needed. Additionally, simulations or experimental 

testing are necessary to figure out the maximum power curve, 

making implementation expensive and difficult [15]. 

According to advanced studies and surveys [16,17], smart 

maximum power point tracking algorithms can exploit the 

benefits of traditional approaches while eliminating their 

shortcomings. Therefore, a strong control approach is 

proposed in this study to enhance the efficiency of MPPT in 

WTIs, which employs an adaptive strategy using an FF-NN. 

The proposed method optimizes the duty cycle to attain the 

MPP. The FF-NN is a simpler structure providing a more 

robust and adaptable control system. In addition, the boost 

converter duty cycle is regulated by the FF-NN utilizing 

voltage and current as inputs, making the need for knowledge 

of the wind turbine's characteristics unnecessary. Thus, this 

MPPT control technique eliminates the requirement for 

anemometer or tachometer sensors to measure wind speed or 

turbine speed, resulting in a more cost-effective approach. 

This control strategy results in efficient MPPT and has the best 

tracking. Comparative studies with VSS-P&O, VSS-INC, 

OTC, GA, and GWO techniques are conducted to evaluate the 

performance of the proposed approach. 

The paper is structured as follows: section 2 outlines the 

configuration of the whole wind power system; Section 3 

provides a comprehensive overview of both typical and 

advanced Maximum Power Point Tracking (MPPT) 

techniques; Section 4 presents the simulation findings in 

detail, while section 5 offers conclusive remarks.  

2. WTI modeling section 

The system depicted in Fig. 1 displays the configuration 

of a WTI that utilizes an ASCG. This configuration consists 

of a wind turbine that is linked to an autonomous squirrel cage 

generator. To transform the AC voltage from the wind turbine 

to DC voltage, a three-phase diode rectifier is employed. 

Additionally, the DC/DC converter is regulated by a Pulse 

Width Modulation (PWM) signal from the MPPT controller, 

which assesses the wind generator's output voltage and current 

to determine the suitable PWM signal
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Fig. 1. Set-up of the aero-generator conversion plant 

2.1 Autonomous squirrel cage generator setup 

modeling 

The determination of adequate capacitance to ensure 

the priming of the machine has been studied in several kinds 

of research [3,4]. The modeling of the ASCG’s 

magnetization is translated by taking into account the 

variation of the magnetizing inductance Lm, which is 

necessary to satisfy the accumulation and stabilization of 

the stator output voltage [4]. 

 

Fig.2. Variation of magnetizing inductance Lm with 

excitation current in ASCG 

According to Fig. 2, it is obvious that Lm is initially 

close to 0.205H when the excitation current is near zero. As 

self-excitation begins, the generated current increases, 

leading to an increase in Lm. This, in turn, causes the 

generated current to grow faster. The magnetizing 
inductance then starts to decrease while the current 

continues to grow until it reaches its steady-state value, 

which is determined by the Lm value, excitation capacitance, 

and rotor speed. The global matrix form of the squirrel-cage 

asynchronous machine in a d-q reference frame, taking into 

account magnetic saturation, is written as follows [18]: 

(

 
 
 
𝑅𝑠 + 𝑠𝐿𝑠 +

1

𝑠𝐶
0 𝑠𝐿𝑚 0

0 𝑅𝑠 + 𝑠𝐿𝑠 +
1

𝑠𝐶
0 𝑠𝐿𝑚

𝑠𝐿𝑚 −𝜔𝑟𝐿𝑚 𝑅𝑟 + 𝑠𝐿𝑟 −𝜔𝑟𝐿𝑟
𝜔𝑟𝐿𝑚 𝑠𝐿𝑚 𝜔𝑟𝐿𝑟 𝑅𝑟 + 𝑠𝐿𝑟)

 
 
 
(

𝑖𝑞𝑠
𝑖𝑑𝑠
𝑖𝑞𝑟
𝑖𝑑𝑟

)

+ (

𝑉𝑐𝑞0
𝑉𝑐𝑑0
−𝐾𝑞𝑟
𝐾𝑑𝑟

) =  (

0
0
0
0

)                                                                         (1) 

Where Rs and Rr denote the per-phase resistances of the 

stator and rotor, correspondingly. 

 Ls and Lr represent the per-phase inductances of the stator 

and rotor, successively. 

 Ids and iqs represent the stator current in the d-axis and q-

axis, respectively. 

 Idr and iqr represent the rotor current on the d-axis and q-

axis, respectively.  

Kdr and Kqr represent induced voltages resulting from 

residual magnetizing flux along the d-axis and q-axis, 

respectively. 

Vcd0 and Vcq0 represent the initial voltages along the d-axis 

and q-axis, respectively. 

 The electromagnetic torque is given by: 

 𝑇𝑒 = 1.5𝑝(𝜑𝑑𝑠𝑖𝑞𝑠 − 𝜑𝑞𝑠𝑖𝑑𝑠)                                                (2) 

𝜑𝑞𝑠 = 𝐿𝑠𝑖𝑞𝑠 + 𝐿𝑚𝑖𝑞𝑟                                                                (3) 

𝜑𝑑𝑠 = 𝐿𝑠𝑖𝑑𝑠 + 𝐿𝑚𝑖𝑑𝑟                                                               (4) 

Where Te represents the electromagnetic torque 

produced by the ASCG.  

φds, φqs represent stator flux along the d-axis and q-axis, 

respectively.  

p represents the pole pairs number. 
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The mechanical torque of the aero-generator driven 

induction generator is: 

𝑇𝑚 = 𝑗
𝑑𝑤

𝑑𝑡
+ 𝐷𝑤 + 𝑇𝑒                                                             (5) 

        Where J denotes the inertial coefficient.  

D is the combined friction coefficient of the gearbox 

and generator.  

Tm represents the mechanical torque of the aero 

generator. 

2.2 Wind turbine modeling 

The power produced by the aerogenerator can be 

written as follows [19]: 

𝑃𝑣 =
1

2
∗ 𝐴 ∗ 𝜌 ∗ 𝑉𝑤𝑖𝑛𝑑

3                                                             (6) 

Where Pv represents the power produced by a wind 

turbine. 

A represents the area covered by the blades [m²].  

ρ represents the air density, approximately 1.3 kg/m3. 

Vwind represents the wind speed [m/s]. 

The turbine modeling entails simulating the turbine's 

mechanical power and torque, which are supplied by [19]: 

Pm = CP ∗ Pv = Cp(λ, β) ∗
1

2
∗ A ∗ ρ ∗ Vwind

3

=
1

2
∗ ρ ∗ π ∗ R2 ∗ Vwind

3 ∗ Cp(λ, β)     (7) 

Tm =
Pm
Ω
=
1

2
∗ ρ ∗ π ∗ R3 ∗ Vwind

3 ∗ Tt                               (8) 

Where Pm is the mechanical power. 

Cp represents the power coefficient. 

 λ represents the tip speed ratio. 

 β represents the pitch angle. 

  R represents the radius of a wind turbine blade [m]. 

Generally, there are several articles that present the 

coefficient Cp by graphs [19]. The Cp coefficient is different 

from one turbine to another, and is usually provided by the 

designer and can be used to define a mathematical 

approximation. The power coefficient Cp represents the 

aerodynamic efficiency, its value relies on the tip speed 

ratio λ and the Pitch angle β. 

𝐶𝑝(𝜆, 𝛽) = 𝑐1(𝑐2 𝜆𝑖 − 𝑐3𝛽 − 𝑐4)𝑒
−𝑐5 𝜆𝑖⁄⁄ + 𝑐6𝜆               (9) 

With: 

1

𝜆𝑖
=

1

𝜆 + 0.08𝛽
−
0.035

𝛽3 + 1
                                                   (10) 

The coefficients 𝑐1 through 𝑐6 are: 𝑐1= 0.5176, 

𝑐2=116, 𝑐3=0.4, 𝑐4=5, 𝑐5= 21 and  𝑐6=0.0068.  

As illustrated in Fig.3, the peak value of Cp 

(Cpmax=0.48) is achieved for β=0 and for 𝜆 = 8.1. This 

particular value of  𝜆 is defined as the nominal value 𝜆𝑛𝑜𝑚. 

 

Fig.3.: Characteristic of Cp as a function of 𝜆 for 

different values of the Pitch angle β 

The tip speed ratio 𝜆 is wind turbine’s particular factor, 

defined as [19]. 

   𝜆 =
Ω ∗ 𝑅

𝑉𝑤𝑖𝑛𝑑
                                                                            (11) 

Where Ω represents the angular velocity of the rotor 

[rad/s]. 

2.3 DC/DC Boost converter modeling 

As illustrated in Fig.4, the basic circuit of a boost 

converter consists of an inductor L, a semiconductor switch 

(MOSFET), a diode, and a capacitor [20].  

 
Fig.4. Circuit equivalent of a boost converter 

 

The parameters that define this converter are sized as 

follows: 

➢ Duty cycle:  

The operating duty cycle 𝛼 is defined by the fraction 

[21]: 

𝛼 = 1 −
𝐸 ∗ 𝜂

𝑉𝑆
                                                                       (12) 

Where Vs and E represent the output and the input 

voltages of the DC/DC converter, respectively.  

η stands for the converter's effectiveness. 
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➢ Inductor calculation:  

The calculation of the inductance begins with the 

calculation of the maximum input current [21]: 

Δ𝐼𝐿 =
𝛼 ∗ 𝐸 ∗ 𝑇

𝐿
=
𝛼 ∗ 𝐸

𝐿 ∗ 𝑓
                                                    (13) 

𝐿 =
𝛼 ∗ 𝐸

𝑓 ∗ Δ𝐼𝐿
                                                                            (14) 

Where ΔIL represents inductor ripples, and f represents 

the switching frequency.  

➢ Capacitor calculation:  

During phase 1, which lasts αT, the capacitor provides 

the energy to the load. We can write [21]: 

𝐶 ∗
𝑑𝑉𝑠
𝑑𝑡
= −𝐼𝑠                                                                        (15) 

Assuming the output current is constant, we can 

calculate the charge supplied by the capacitor, which is 

equal to: 

Δ𝑄 = 𝐼𝑠 ∗ 𝛼 ∗ 𝑇                                                                     (16) 

We admit a ripple in the output voltage, ΔVs, to be 

written as:  

Δ𝑄 = 𝐶 ∗ Δ𝑉𝑠                                                                         (17) 

To deduce the capacitance: 

𝐶 =
𝐼𝑆 ∗ 𝛼 ∗ 𝑇

Δ𝑉𝑠
=
𝛼 ∗ 𝐼𝑠
𝑓 ∗ Δ𝑉𝑠

                                                    (18) 

3. Advanced MPPT algorithms section 

 

3.1 Variable Step Size Perturb and Observe (VSS-P&O)-

based MPPT algorithm. 

 The variable step size perturbs and observe (VSS-

P&O) algorithm works by continuously perturbing the 

operating point of the wind turbine and observing the 

resulting power output, as shown in Fig.5. The perturbations 

are carried out by changing the duty cycle of the power 

converter, which affects the voltage and current of the 

system. The algorithm then calculates the instantaneous 

power output of the wind turbine, based on the measured 

voltage and current, and compares it with the previous 

power output. If the new power output is higher, the 

algorithm continues perturbing in the same direction, but 

with a smaller step size. If the new power output is lower, 

the algorithm perturbs in the opposite direction with a larger 

step size. This way, the step size of the algorithm is adjusted 

dynamically based on the response of the system, improving 

tracking accuracy and reducing oscillations around the 

maximum power point (MPP). Compared to fixed step P&O 

algorithms, which use a fixed step size for perturbation, the 

variable-step P&O algorithm can adapt to changing wind 

speed conditions more efficiently, resulting in improved 

energy conversion efficiency [11]. 

 

Fig.5.: Outline of VSS-P&O algorithm 

3.2 Variable Step Size Incremental Conductance (VSS-

INC)-based MPPT algorithm 

The variable step size incremental conductance (VSS-

INC) algorithm is another popular maximum power point 

tracking (MPPT) technique used in wind energy conversion 

systems. Similar to the variable step perturb and observe 

(P&O) algorithm, the variable step INC algorithm adjusts 

the step size dynamically based on the system's response. 

However, instead of comparing the instantaneous power 

output with the previous power output as in the P&O 

algorithm, the variable step INC algorithm compares the 

incremental conductance, which is the change in power with 

respect to the change in voltage. When the incremental 

conductance is zero, the system is operating at the MPP, as 

shown in Fig.6. The variable step INC algorithm then 

adjusts the duty cycle of the power converter accordingly to 
maintain the system at the MPP. Compared to fixed-step 

INC algorithms, which use a fixed step size for adjusting the 

duty cycle, the variable-step INC algorithm can track the 

MPP more accurately and efficiently under changing wind 

speed conditions, leading to improved energy conversion 

efficiency [13]. 

 

Fig.6.: Outline of VSS-INC algorithm 
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3.3 Optimal torque control (OTC) based-MPPT algorithm. 

The optimal torque control (OTC) algorithm is a 

maximum power point tracking (MPPT) technique that 

aims to extract maximum power from the wind turbine by 

controlling the generator's torque. The algorithm uses the 

wind turbine's aerodynamic characteristics and the 

generator's electromagnetic properties to determine the 

optimal torque for maximum power extraction, as shown in 

Fig.7. The algorithm calculates the optimal torque based on 

the wind speed, the blade pitch angle, and the generator's 

electrical parameters. Once the optimal torque is 

determined, the algorithm adjusts the generator's torque by 

controlling the generator's rotor speed or the blade pitch 

angle to maintain the system at the MPP. The OTC 

algorithm has been shown to be effective in improving 

energy conversion efficiency, particularly in variable wind 

speed conditions. However, the algorithm's implementation 
requires accurate knowledge of the wind turbine's 

aerodynamic and electromagnetic properties, which can be 

challenging to obtain [9,10]. 

 

Fig.7.: Outline of OTC description 

3.4 Feed forward Neural network (FF-NN) based MPPT 

algorithm. 

In this study, a Feedforward Neural Network (FF-NN) 

controller was utilized to train the Maximum Power Point 

Tracking (MPPT) controller. This approach offers 

significant advantages over traditional methods by 

effectively handling non-linearities, time-varying behavior, 

and uncertainties in both wind turbines and wind speed. 

Consequently, the tracking of maximum power points is 

quicker, and power extraction efficiency is higher [22]. 

The FF-NN model is designed with a simple 

architecture comprising an input layer, two hidden layers 

with multiple neurons, and an output layer, as shown in 

Fig.8. It uses voltage and current as input variables and the 

duty cycle of the boost converter as an output variable. A 

large dataset is used to train the FF-NN model, which 

determines the optimal duty cycle for maximum power 

output [23,24]. 

 

Fig.8.: Outline of Feedforward Neural network algorithm 

3.5 Grey wolf optimizer based MPPT Algorithm 

     In this study, the Grey Wolf Optimizer (GWO) 

algorithm was employed to design a Maximum Power Point 

Tracking (MPPT) control for an aerogenerator linked to a 

boost converter. The objective function was defined as the 

negative value of the wind turbine's output power at duty 

cycle D, which was considered the input parameter for the 

algorithm. 

The algorithm, as illustrated in Fig.9, was initialized 

with a population of N grey wolves, each with a randomly 

generated position vector in the duty cycle search space. 

The fitness of each wolf was evaluated using the sigmoid 

function, and the position of each wolf was updated using 

the equations below. The duty cycle was then calculated for 

each new position using a sigmoid function, and the fitness 

was re-evaluated. The alpha, beta, and delta wolves were 
identified based on their fitness, and the process was 

repeated until convergence. 

Finally, the duty cycle of the alpha wolf was determined 

as the optimal duty cycle to ensure that the wind turbine 

operates at its highest level of efficiency [25,26]. 

𝐷𝛼 = 𝑋𝛼 −𝐴 ∗ (𝑋𝛽 − 𝑋ẟ)                                                  (19) 

𝐷𝛽 = 𝑋𝛽 − 𝐴 ∗ (𝑋𝛼 − 𝑋ẟ)                                                   (20) 

𝐷ẟ = 𝑋ẟ − 𝐴 ∗ (𝑋𝛼 − 𝑋𝛽)                                                   (21) 

𝑋𝛼, 𝑋𝛽, and 𝑋ẟ represent the position vectors of the α, 

β, and ẟ wolves, respectively. 

A is a coefficient used in the update equation to control 

the movement of the wolves during the search process.  

𝐷𝛼, 𝐷𝛽, and 𝐷ẟ represent the duty cycle of the α, β, and 

ẟ wolves, respectively, which are calculated based on their 

updated positions using the sigmoid function. 
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Fig.9.: Outline of Grey Wolf Optimizer Algorithm 

3.6 Genetic algorithm-based MPPT 

In this study, a Genetic Algorithm (GA) was employed 

to design a Maximum Power Point Tracking (MPPT) 

control for an aero-generator connected to a boost 

converter, where the input variables were the values of Idc 

and Vdc. The objective function aimed to maximize the 

power output of the wind turbine at the duty cycle D, which 

was the output variable. 

The GA algorithm, shown in Fig.10, initiated with a 

population of N individuals, and the fitness of each 

individual was evaluated based on the objective function. 

The selection, crossover, and mutation operators were 

applied to generate new individuals until the convergence 

criteria were met. Finally, the individual with the highest 

fitness value was determined as the optimal duty cycle to 

maintain the wind turbine at its maximum power point 

[27,28]. 

 

Fig.10. Outline of Genetic Algorithm 

4. Simulation results section 

This study investigates various MPPT techniques, 

including VSS-P&O, VSS-INC, OTC, GWO, GA, and FF-

NN. The simulation tests involve comparing the 

performance of these algorithms under fixed and variable 

conditions (wind speed/load) and examining the effect of 

MPPT techniques on the voltage buildup of the ASCG. 

4.1 Case 1: Wind speed constant 

 

Fig.11. The DC power of the DC/DC boost converter 

performance for several MPPT approaches 

 

Fig.12. The Power Coefficient performance for several 

MPPT approaches 

Figure 11 illustrates that all MPPT techniques were able to 

extract the maximum power from the wind turbine under a 

permanent wind speed condition. However, the MPPT 

technique based on FF-NN was found to reach the 

maximum power point (MPP) faster than other techniques, 

resulting in an increased overall energy yield of the system. 

This is due to FF-NN being a machine learning technique 

capable of learning patterns and relationships from data, 
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allowing it to predict the optimal operating point based on 

the current operating parameters. Conversely, other MPPT 

techniques such as GA and GWO utilize optimization 

algorithms that search for the optimal operating point using 

iterative calculations, which may take longer to converge to 

the MPP. 

Additionally, the VSS-P&O technique was observed to 

have a slower response time compared to FF-NN as it 

changes the operating point in small steps and observes the 

change in power output. This process can take longer to 

converge to the MPP compared to FF-NN, which uses a 

more direct approach to predict the optimal operating point.  

The Power Coefficient performance shown in Fig. 12 

also supports this observation, where the use of feed-

forward NN in the MPPT technique resulted in quicker 

attainment of power coefficient compared to other 

techniques. 

4.2 Case 2: Variation of wind speed 

 
Fig.13. The DC power in the DC/DC boost converter 

under variable wind speed condition for for several MPPT 

approaches 

 

 
Fig.14. The power coefficient performance under 

variable wind speed condition for for several MPPT 

approaches 

The results presented in Fig.13 demonstrate that the 

feedforward neural network-based MPPT technique 

outperforms other techniques in terms of tracking and 

maintaining the maximum power point (MPP) of a wind 

turbine under variable wind speed conditions. Additionally, 

as depicted in Fig.14, the FF-NN technique exhibits a faster 

response time and higher power coefficient than other 

techniques, indicating its ability to quickly adapt to 

changing operating conditions. While other MPPT 

techniques rely on iterative calculations or optimization 

algorithms, which can take longer to converge to the MPP 

and struggle to adapt to wind speed changes, the FF-NN 

technique's continuous tracking and maintenance of the 

MPP provide an advantage in maximizing power output. 

4.3 Case 3: Variation of load 

 

 
Fig.15. The DC power in the DC/DC boost converter 

under variable load condition for several MPPT 

approaches 

 

 
Fig.16. The power coefficient performance under 

variable load condition for several MPPT approaches 

According to Fig. 15, all maximum power point 

tracking (MPPT) techniques were able to extract maximum 

power from a DC/DC boost converter prior to the 

application of load, with the FF-NN-based technique 

responding the fastest. However, after the load was applied, 

only the FF-NN and OTC-based techniques were able to 

maintain a stable output power by adjusting their operating 
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point, while the other techniques struggled due to their 

slower response time caused by heuristic search algorithms. 

These findings indicate that the choice of MPPT technique 

is crucial for stable output power under sudden load 

changes, with the FF-NN and OTC-based techniques being 

more suitable. Moreover, as shown in Fig.16, the FF-NN-

based MPPT technique was able to maintain a higher power 

coefficient even after the load was applied. However, the 

OTC-based technique struggled to return the power 

coefficient to its maximum value and exhibited significant 

oscillations. The other MPPT techniques were also unable 

to maintain the power coefficient at its maximum value. 

 
Fig.17. The RMS stator voltage build-up under extra- 

load condition for several MPPT approaches 

 

 
Fig.18. The RMS stator voltage build-up under extra-

large load condition for several MPPT approaches 

 

In Fig. 17, it can be observed that all the maximum 

power point tracking (MPPT) techniques had a similar 

voltage build-up profile before applying the extra-load, 

except for the OTC-based technique, which had a slightly 

higher voltage build-up. However, after applying the extra-

large load, the voltage build-up decreased for all the 

techniques. Interestingly, the FF-NN-based technique 

showed the highest voltage build-up, while the OTC-based 

technique had a slightly lower voltage build-up than the FF-

NN-based technique, but still higher than the other 

techniques. However, in Fig.18, when applying an extra-

large load, all the MPPT techniques experienced a loss in 

voltage build-up after the load change, except for the FF-

NN-based technique, which was able to maintain a certain 

level of voltage build-up. 

 
Fig.19. The DC power in the DC/DC boost converter 

under extra-large load condition for several MPPT 

approaches 

 

Fig.20. Three phase stator voltage build up under 

extra-large load for several MPPT approaches. 

The output power of the DC-DC boost converter is 

presented in Fig. 19. Prior to applying the extra-large load, 

all MPPT techniques attained the maximum power point. 

However, after the load was added, all techniques lost MPP 

tracking and their voltage build-up, as shown in Fig. 20. The 

FF-NN-based technique was the only one that maintained a 

certain level of voltage build-up, allowing it to re-establish 

the MPP after making adjustments. This outcome 

emphasizes the significance of choosing appropriate MPPT 

techniques that can handle abrupt load changes and 

maintain a steady output power. 

5. Conclusion 

      In conclusion, this study analyzes several MPPT 

techniques for wind energy conversion plants based on 

autonomous squirrel cage generators. The results show that 

the FF-NN-based controller is the most effective technique 

for extracting the highest power point of the aero-generator, 

while the FF-NN-based controller exhibits superior 

performance due to its ability to handle complex and non-

linear systems, adapt to changes in wind speed, and 

efficiently handle different types of load and environmental 

disturbances. The simulation tests were conducted under 

fixed and variable conditions, and the FF-NN-based 
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approach consistently outperformed other techniques. 

Moreover, the FF-NN-based controller maintained the 

voltage buildup of the self-excited induction generator 

under heavy load, distinguishing it from other techniques. 

This study highlights the potential of artificial intelligence 

techniques in renewable energy systems and contributes to 

the advancement of wind energy technology for sustainable 

energy generation. The findings provide valuable insights 

for researchers and engineers seeking to optimize wind 

energy systems, particularly those based on self-excited 

induction generators, and emphasize the superior 

efficiency, adaptability, and reliability of the FF-NN-based 

approach. 
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