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Abstract- Nowadays, Microgrids are the more adopted in the electrification of autonomous aeras. The main idea of this study is 

managing frequency in an autonomous microgrid with renewable penetration. These microgrid systems aim to produce energy 

to reduce dependence on variable cost fuels and reduce harmful emissions into the atmosphere. The system under study is made 

up of a variety of energy sources, including controllable, renewable sources, as well as energy storage options. This combination 

is skillfully managed to ensure the MG's reliability and transparency in the face of intermittent power generation. Intermittent 

weather conditions from renewable sources and loads, such as temperature, solar radiation, wind speed, etc., indicate the 

numerous disturbances to the MG. Due to the active power compensation, these disturbances affect the power quality, especially 

the frequency. In order to solve this problem, it is highly recommended to intelligently manage the sources that can be controlled 

in order to reduce the frequency variation. This paper proposes a secondary frequency control with a cascade combination of 

three proportional integral and derivative (PID) as a reliable control technique under uncertainty. This controller is implemented 

in the input of the controllable sources in this study and tuned by a combined GA-TLBO as an efficient method to minimize the 

frequency fluctuation. An autonomous MG is simulated in MATLAB/Simulink and tested under numerous circumstances to 

validate the proposed method for generating the given parameters to reduce the frequency variation in various scenarios. 

 

Keywords frequency control; autonomous microgrid; PID controller; Two cascade PID controllers; Three cascade PID 

controllers, GA-TLBO algorithm.

Nomenclature: 

DE : Differential evolution 

DEG : Diesel generator 

DER : Distributed energy resource 

DG : Distributed generator 

EA : Evolutionary algorithm 

ESS : Energy storage system 

FC : Fuel cell 

GA : Genetic algorithm 

DE : Differential Evolution 

HS : Harmony search 

ISAE : Integral Square Absolute Error 

MG : Microgrid 

MOBHA : Modified black hole optimization algorithm 

MVO : multi-verse optimization 

MT : Micro turbine 

PI : Proportional Integral 
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PID : Proportional Integral and derivative 

PSO : Particle swarm optimization 

PV : Photovoltaic panel 

TLBO : Teaching Learning-Based Optimization 

WOA : Whale Optimization Algorithm 

WT : Wind turbine 

FA : Firefly Algorithm 

 

1. Introduction 

Microgrids have been the subject of several studies in 

various fields. In literature, several studies deal with the 

management of this systems because of the intermittence of 

their renewable sources and loads. For example, A. Goudarzi 

et all in [1] deal with the optimal economic power 

management of a reserve-constrained combined heat system 

based on a sequential hybridization of ETLBO and IPSO to 

beneficiate of performances of these two algorithms. In other 

case of study, authors of [2] present an economic and 

environmental study of a co-generation system based on the 

same approach in [1]. 

Moreover, at various levels of power generation, the 

output of renewable energy installations, such as photovoltaic 

and wind turbine panels, and energy storage systems is rising. 

One of the most well-known uses of these resources is in 

power systems called microgrids, which combine renewable 

energy sources with more traditional power plants like diesel 

engine generators to fulfill load demand. Combining these 

strategies attempts to cut down on reliance on fossil fuels, 

lower energy prices, and reduce harmful greenhouse gas 

emissions. By managing conventional sources and specialized 

resources like fuel cells, it offers flexibility, intelligence, and 

transparency while preventing frequency variation brought on 

by intermittent renewable sources and erratic load 

disturbance. The energy storage system may be used in the 

system as a source of generation in discharge mode or as a 

load in charge mode, and it is also used to increase the stability 

of the microgrid. 

In the literature, several control techniques have been 

considered. In actuality, there are three basic levels of 

frequency control: primary control, secondary control, and 

tertiary control. The governor-turbine mechanism is used at 

the first level to manage the area frequency in order to handle 

modest deviations, but this is insufficient to swiftly restore the 

normal frequency in the presence of significant disruptions. 

Frequency control was a classic problem in different MG 

architecture. For example, in [3] authors develop a secondary 

frequency control in a conventional MR based on double Fed 

induction generator. Reference [4] highlights the role of IT for 

secondary control of a conventional power grid. With 

renewable penetration, authors of [5] present a study of a 

variable speed wind turbine with flywheel to maintain a 

dynamic stability of frequency in this MG. Using several 

controllers, secondary control is used in this situation to 

increase the stability of the microgrid [6-9]. The simplest way 

to get the desired results was to adjust the PI controller using 

empirical techniques like Ziegler Nickols, which was 

employed in various applications. Despite its ease of use, 

when the system is subjected to a significant disturbance, the 

PI controller produces undesired overrun. Thus, a variety of 

techniques are used, including evolutionary algorithms [10–

18], to modify the settings of this controller. An 

implementation of the fuzzy logic frequency controller based 

on PSO in a microgrid is shown in Reference [14]. WOA is 

developed by the authors in [15] to fine-tune the obtained PID 

controller. In particular, MVO in [16], robust PI controllers 

with time delays, and evolutionary algorithms to reach the 

optimal values of the PI controller, such as TLBO in [17] and 

GA and FA in [18], have been suggested as solutions to this 

problem. The PI controller is the most basic controller with 

widespread industrial use and acceptable performance. In 

systems with significant disturbances and fluctuations, it is 

ineffective. As shown in [19–24], the fractional order PI can 

solve this issue as a solution to assure the adaptability of the 

microgrid under such circumstances. This controller was 

tested in a parallel control structure proposed in [19]. In fact, 

the tuning the fractional PID controller was applied using 

various strategies. For example, H. Wang, et all in [20] 

propose a multi-objective external optimization in the 

dynamic model of MG, and authors of [21] present a hybrid 

ALO-pattern search optimized fractional order controller for a 

load frequency control of a multiarea system incorporating 

distributed generation resources, gate-controlled series 

capacitor along with high-voltage direct current. Then refence 

[22] shows a novel concept of fuzzy adaptive fractional order-

PID controller to control frequency of a microgrid constituted 

under renewable sources uncertainties. Authors of [24] 

present a meta-heuristic optimization strategy on frequency 

excursion mitigation in a multi-source islanded energy System 

with fractional PID controller. 

To manage the load and power under uncertainties based 

on the linearized state of the MG, for example, Bervani 

proposes two robust control techniques H∞, µ-synthesis in 

[25] and shows that the -synthesis strategy is resilient. Other 

approaches were adopted in frequency control. For example, 

authors of [26] present the sliding mode control to improve the 

performance of load frequency control. Reference [27] show 

an adaptive control to deal with this problem.  

In other applications, authors of [28] demonstrate the 

efficiency of their proposed approach in shipboard frequency 

control. In the same application, but with a DC Microgrids, Z. 
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Jin et all in [29] highlight a hierarchical strategy in MG control 

with storage system. A review of power sharing control and 

frequency control was detailed in [30]. It examines and 

categorizes several methods to power sharing control 

concepts. Finally, the authors of [31] offer an optimization 

approach for determining the ideal architecture for a data 

communication network in a power system with distributed 

frequency management. 

This study is a continuation of my earlier work in [32-34], 

in which an intelligent tuning of PI controller in [32] and 

Fuzzy logic PI controller in [33-34] in the researched 

controller under parameter and power uncertainties was 

performed. This paper focuses on: 

▪ novel technique of frequency control in a microgrid that 

employs a cascade combination of three PID controllers 

tuned using GA-TLBO algorithm. The idea is to 

beneficiate of a parallel combination of linear controller 

to obtain best performances than classical PID controller. 

▪ Tuning the proposed controller parameters using a hybrid 

approach by combining two EAs (GA and TLBO). This 

approach was chosen to ensure the best convergence 

performance in the optimization of ISAE of frequency. 

▪ This tuning is applied to assure the flexibility and 

transparency of the microgrid. The linearized system will 

be simulated under uncertainties in order to test the 

controller's efficiency. 

The following sections arrange the work presented: Part 2 

offers the mathematical model of the MG and the researched 

MG system controller. Section 3 explains the formulation 

problem and the recommended controller parameter. The 

algorithm used to adjust the suggested controller settings is 

presented in Section 4. Part 5 discusses the simulation 

findings. Lastly, Section 6 gives conclusions. 

 

2. Modeling of the Studied MG 

2.1. Dynamic Model of MG 

In this paper, a hybrid power system is used, with two 

renewable sources acting as disturbances (PV grid and wind 

turbine), regulated sources such as diesel engine generators 

(DEG), fuel cells (FC), and micro-turbines (MT), and a battery 

storage system. The AC MG study is summarized in Fig.1 

where the frequency depends on the power balance between 

generation and load as expressed in Eq. (1). 

PLoad  =  PPV   + PWT  + PDEG  + PMT  + PFC  + PBES (1) 

Where PPV denotes PV output power, PWT denotes 

WT output power, PDEG denotes DEG output power, PFC 

denotes FC output power, PMT denotes MT output power, PBES 

denotes BES output power, and PLoad denotes load power. 

PBES is positive when discharging and negative when 

charging. 

 

Fig 1. MG dynamical frequency response model 

As previously described in the preceding paragraphs, 

PV, WT, and load are regarded as disturbances in the MG 

system to give frequency variation. Secondary frequency 

control, which is a combination of MT, DEG, and FC, is used 

to compensate for this erratic power. Each DER was 

represented by a basic, low-order linearized model in the 

investigated MG dynamic model to reflect the variations in 

DER output power. The following equation was devised to 

illustrate the changes in the MG DERs: 

ΔPLoad  =  ΔPPV   + ΔPWT  + ΔPDEG  + ΔPMT  + ΔPFC

+ΔPBES (2)
 

Equations for the MG dynamic frequency response 

model are provided in the following Eq (3-8), as seen in 

dynamic model. The two tables Table 1-2 indicate the MG 

parameters: 

Table 1. MG rated power 

Rated power (kW) Rated power (kW) 

PV 5 BES 10 

WT 5 DEG 20 

FC 10 Load 60 

MT 10   

Table 2. Parameters of the studied MG 

Parameter Value Parameter Value 

D (pu/Hz) 0.015 TFC (s) 4 

M (pu) 0.1667 TMT (s) 2 

TPV (s) 1,8 Tt (s) 0,4 

TWT (s) 1,5 Tg (s) 0,08 

TBES (s) 0,1 R (pu) 3 

2.2. Renewable resources 

Renewable resources are also known as uncontrolled 

sources due to their erratic nature and reliance on weather 
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conditions. The PV electric power and wind power output are 

generated by the solar radiation power and wind kinetic 

power, respectively. Equations (3-4) expresses the variation of 

output power PPV and PWT. 

ΔPPV = ΔPirr. GPV = ΔPirr.
1

1 + TPV. s
 (3) 

ΔPWT = ΔPwind . GWT = ΔPwind.
1

1 + TWT. s
 (4) 

2.3. Controlled resources: 

The Eq (5) defines the power change PMT. This DER 

tries to create electrical power from an input transforms 

hydraulic power. As shown in Eq (6), the energy conversion 

process for FC is defined as the use of chemical energy from 

the electrochemical reaction of hydrogen fuel and oxygen to 

generate direct current form of electricity. DG is a traditional 

controlled resource that combines an electrical motor and a 

governor (engine). The governor is in charge of controlling 

this DR, and Eq (7) can show how its power changes. 

ΔPMT = U. GMT = U.
1

1 + TMT. s
 (5) 

ΔPFC = U. GFC = U.
1

1 + TFC. s
 (6) 

ΔPDEG = U. GDEG = U
1

(1 + Tt. s). (1 + Tg. s)
 (7) 

2.4. Energy Storage System: 

This source's primary function is to supply load demand 

in discharging mode while storing excess production in 

charging mode. The goal is to maintain power balance in 

response to frequency fluctuations, as shown in Eq (8). 

ΔPBES = Δf. GBES = Δf.
1

1 + TBES. s
 (8) 

The power fluctuation P and the dynamic model of are 

defined as follows: 

ΔP = ΔPPV + ΔPWT + ΔPDEG + ΔPMT + ΔPFC − ΔPBES

−ΔPLoad (9)
 

Δf = ΔP. Gsys = ΔP
1

D + M. s
 (10) 

3. Problem Formulation 

A novel control method for secondary frequency control is 

developed in this paper. In several similar cases, the PI 

controller was used in these studies, which were tuned using a 

classical method such as the Ziegler Nichols method. The 

objective is to provide the best disturbance rejection possible. 

The frequency profile, on the other hand, appears to be 

inappropriate due to its large overshoot. To stay on track with 

this problem, other methods were used to compute the 

proposed controller parameters using GA-TLBO. 

3.1. PID controller 

Eq (11) and Figure 2 show the PID controller's equation law: 

C1(s) = Kp +
Ki

s
+ Kd . s (11) 

The GA-TBLO algorithm is used to calculate Kp, Ki, 

and Kd as PID controller parameters. The purpose of this 

tuning is to reduce the IAE of frequency deviation as an 

objective function. 

 
Fig 2. Block diagram of PID controller 

3.2. Cascade Combination of two PID Controllers 

In this control technics, we propose a cascade 

combination of two PID controllers. The investigated system 

to control power of FC, DEG, and MT to minimize frequency 

deviation under disturbance of renewable resources and load. 

It’s depicted in Fig 3. 

 

Fig 3. Block diagram of cascade combination of two PID 

controllers. 

The general form of this controller law is expressed in Eq 12 

as: 

C2PID(s) = CPID1(s) ∗ CPID2(𝑠)

C2PID(s) = 𝐴0 + ∑
𝐴−𝑗

sj

2

j=1

+ ∑ 𝐴j. sj

2

j=1

 (12)
 

Where 

A0 = 𝐾𝑝1 ∗ 𝐾𝑝2 + 𝐾𝑖1 ∗ 𝐾𝑑2 + 𝐾𝑖2 ∗ 𝐾𝑑1 

A1 = Kp2 ∗ Kd1 + Kp1 ∗ Kd2 

A2 = Kd1 ∗ Kd2 

A−1 = Kp2 ∗ Ki1 + Kp1 ∗ Ki2 

A−2 = Ki1 ∗ Ki2 

Where Kp1 and Kp2 are the proportional gain of the two 

controllers, Ki1 and Ki2 are the integral gain of the two 

controllers, Kd1 and Kd2 are the derivative gain of the two 

controllers. 
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3.3. Cascade Combination of Three PID Controllers 

In this paper, a cascade combination of three PID 

controllers is used with the following controller law and 

Figure 4: 

 

Fig 4. Block diagram of the proposed controller 

The general form of this controller law is expressed in Eq (12) 

as: 

C3PID(s) = CPID1(s) ∗ CPID2(s) ∗ CPID3(𝑠)

C3PID(s) = 𝐵0 + ∑
𝐵−𝑗

sj

3

j=1

+ ∑ 𝐵j. sj

3

j=1

 (13)
 

Where 

B0 = Kp3 ∗ A0 + A1 ∗ Ki3 + A−1 ∗ Kd3 

B1 = A0 ∗ Kd3 + A1 ∗ Kp3 + A2 ∗ Ki3 

B2 = Kp3 ∗ A2 + Kd3 ∗ A1 

B3 = Kd3 ∗ A2 

B−1 = A0 ∗ Ki3 + A−1 ∗ Kp3 + A−2 ∗ Kd3 

B−2 = Kp3 ∗ A−2 + Ki3 ∗ A−1 

B−3 = Ki3 ∗ A−2 

Where A0 and Kp3 are the proportional gains, A−1, A−2 and 

Ki3 are the integral gains, A−1, A−2 and Ki3 are the derivative 

gains. 

3.4. The Importance of the Parallel Processing of PID 

Controllers 

The parallel processing allows the creation of higher 

derivatives and integral orders in the controller law as shown 
in section 3. The importance of the parallel processing was 

briefly explained in the paper in section 5 as discussion of the 

results. For a classical PID controller, the integral term aims 

to eliminate the error in the input of controller and the 

derivative term improve the rapidity but affect the stability. 

The parallel processing creates an additional second derivative 

and integral order in the 2 parallel PID controller. A third 

derivative and integral order is added in the three parallel PID 

order. 

The second and the third integral order reinforce the 

elimination of the error, but it affects the rapidity comparing 

to the classical integral controller. Moreover, the second and 

the third derivative order increase the rapidity, but it badly 

affects stability comparing to the integral controller. Then 

combing all these terms and tuning effect their gains will 

improve the performances of the two and three parallel PID 

controller in front of the classical PID controller.  In section 5, 

a comparison between the three methods will be made to see 

and analyze the behavior of the three different controllers. 

3.5. The Fitness Function. 

The goal is to minimize the ISAE of frequency deviation 

as the objective function when tuning the controller 

parameters using the combined GA-TLBO Algorithms. 

The variable decision for each controller is made up of its 

parameters. The variable decision for the PID controller is a 

vector of 3 elements expressed as XPID = [Kp KI Kd]. The 

variable decision with the cascade two PID controllers is 

composed of 6 scalar variables as X2PID =

[Kp1 Ki1 Kd1 Kp2 Ki2 Kd2]. For the proposed controller with 

three PID cascade controllers, we define the variable decision, 

which is made up of 9 elements, as X3PID =

[Kp1 Ki1 Kd1 Kp2 Ki2 Kd2 Kp3 Ki3 Kd3]. The optimization is 

carried out with the primary goal of minimizing the ISTE 

while keeping the bounds of decision variables in mind. The 

mathematical model is illustrated in the following equations 

(14-15): 

FObj = ∫ |Δf|2. dt
T

0

 (14) 

(𝑋𝐽𝑚𝑖𝑛)
𝐽=1,𝑛

 ≤  (𝑋𝐽)
𝐽=1,𝑛

 ≤  (𝑋𝐽𝑚𝑎𝑥)
𝐽=1,𝑛

(15) 

where XJ is the Jst element of the variable X, n is the 

variable decision size (3 for PID, 6 for two cascade PID 

controllers, and 9 for the proposed controller), and XJmin and 

XJmax are the lower and upper values of the variable X. 

3.6. Evolutionary Algorithms Performances 

The two main criteria for selecting the top EA are the global 

and local best search performances. The first one is the best 

objective function value, and by this criterion, the least 

number of iterations is the best. The variance of the population 

is used in Eq. (16) to get the second one. In reality, EA ceases 

to operate when the candidate solution remains unchanged, 
causing the fitness function to settle before the population 

variance. 

𝑆2 =
1

𝑁 − 1
. ∑(𝑓𝑖 − 𝑓)

𝑁

𝑖=1

 (16) 

Where N is the number of particles, 𝑓𝑖 is the fitness values 

of the 𝑖𝑠𝑡 individual and f is the mean of fitness values of 

population.  

In the next sections 4 and 5, we will define the six EA 

adopted in this work and we will run and explore results to 

select the two best algorithms in the two criterions. 

 

4. Optimization Algorithm 

This paper presents some EA algorithms as genetic 

algorithm (GA), differential evolution (DE), harmony search 

(HS) and teaching learning-based optimization (TLBO). 
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4.1. Genetic Algorithm 

The process of natural selection inspired the GA 

metaheuristic optimization. This method is defined by three 

operators: mutation, crossover, and selection, which are used 

to get the best potential solution. 

▪ Mutation is the process of modifying an individual from 

a previous population in order to generate a greater rival 

(solution). It is distinguished by its poor probability of 

escaping the random search. 

▪ Recombination or crossover attempts to develop a new 

candidate by combining the genetic composition of two 

parents. 

▪ Selection is a function that assesses an individual based 

on the fitness function values. 

It is achieved after the recombination process by choosing 

certain genomes from a population. 

4.2. Particle Swarm Optimization Method 

Kennedy and Eberhart developed the metaheuristic 

technique known as particle swarm optimization (PSO) in 

1995 [15]. It enhances a candidate solution from a very large 

space of candidate solutions, starting with a randomly chosen 

population, to maximize a problem specified by an objective 

function. depending on particle movement modeled by the 

flocking behavior of birds, this method limits the search space 

depending on the position and velocity of the particles. The 

particle's path is dictated by its local best-known position in 

order to reach the best-known locations in the search space. 

This should focus the swarm's attention on the best choices. 

One definition of velocity is: 

𝑉𝑘+1 = 𝑤. 𝑉𝑘 + 𝑏1. (𝑃𝑖 − 𝑋𝑘) + 𝑏2. (𝑃𝑔 − 𝑋𝑘) 

variable decision: 𝑋𝑘+1 = 𝑋𝑘 + 𝑉𝑘+1 

where: 

𝑉𝑘+1 is the updated velocity, 𝑉𝑘 is the actual velocity, w is the 

inertia weight, 𝑏1 is the global learning coefficient, 𝑃𝑖 is the 

global best particle, 𝑋𝑘 is the 𝑘𝑡𝑘 particle, 𝑏2 is the personal 

learning coefficient and 𝑃𝑔 is the local best solution. 

4.3. Differential Evolution 

DE is a stochastic, population-based optimization technique 

created by Storn and Price in 1996 to optimize real parameter, 

real valued functions. The population in this algorithm is made 

up of agents who migrate to the optimal place. It is made up 

of mutation, recombination, and selection [21]. These sections 

are repeated until a criterion is achieved. 

Where: 

-Mutation: this step consists on creating a new vector named 

donor vector VfG+1 from previous ones named target vectors 

Xi using a mutation factor F: 

VfG+1 = X1 + F(X2 + X3) 

-Recombination: It combines successful solutions from the 

previous generation to develop the trial from the target vectors 

and the donor vector from the previous step with a probability 

Cr. 

-Selection: in this level, the target vector is compared with the 

trial vector and the one with the lowest function value is 

admitted to the next generation. 

4.4. Teaching Learning-Based Optimization 

The TLBO algorithm is motivated by a teacher's effect on 

the production of students in a class. It is organized into two 

primary phases: instructor and learner. The algorithm's goal is 

to turn all learners into instructors. 

▪ The teacher phase is the period during which students get 

instruction from the instructor in order to achieve 

excellent marks. The caliber of the teacher and the other 

students in the class, on the other hand, has an impact on 

a student's grade. As a result, the top students are 

considered as instructors, while the remainder are simply 

students. 

▪ Student phase: The interactions of a random student with 

other students serve as the foundation for their learning. 

At this phase, a student is randomly partnered with 

another student. If the second student obtains less 

information than the first, he will approach his colleague; 

else, he will withdraw. 

This method is repeated until the halting requirements are 

met. 

4.5. Biogeography-Based Optimization 

The novel technique to problem solving, known as BBO 

[23], has several characteristics in common with earlier 

biology-based algorithms. A good solution corresponds to an 

island with a high HSI, whereas a poor solution denotes an 

island with a low HSI, according to the BBO hypothesis. 

Solutions with high HSI are more successful in preventing 

change than those with low HSI. BBO is the study of species 

extinction, speciation, and migration. The migration of a 

species from one island (habitat) to another, the emergence of 

new species, and the extinction of existing species are all 

described by mathematical models of BBO. The first example 

given of how a natural process might be expanded to address 

optimization issues is the BBO optimization algorithm. 

4.6. Harmony Search 

HS is a metaheuristic optimization method based on music 

[16]. The search process in optimization may be compared to 

the improvisation process of a jazz musician. The goal is to 

achieve the best or optimal by idealizing the qualitative 

improvisation process and therefore translating music's beauty 

and harmony into an optimization technique through the 

search for perfect harmony. 

5. Simulation Results 

The goal of this part is to use EA to tune the three 

investigated controllers. The three controllers are compared 

using the MATLAB/Simulink program, with a common 
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population size of 100 people and a maximum iteration of 100 

iterations set. 

Prior to optimizing the three controllers, a simulation was 

conducted without control under the three perturbations 

(radiation power, kinetic power of wind and load). Figure 5 

depicts the frequency deviation of the examined MG with 

wind kinetic power perturbation at T1=5s, irradiation power 

perturbation at T2=15s, and load power perturbation at 

T3=25s. The perturbations are represented by 0.5 pu step 

variation. 

 
Fig 5. Frequency deviation without control 

Fig 5 shows that the effect of load perturbation is the most 

significant when compared to irradiation and wind kinetic 

power (the fluctuation at T=25s). It is explained by the direct 

relationship between frequency deviation and load power 

deviation, as given in Eq (9-10). Nevertheless, the effect of the 

transfer function’s step fluctuation in PV and WT power, as 

demonstrated in Eq (3-4). As a result, we will concentrate on 

the load perturbation in order to adjust the three controller 

parameters using the fours presented evolutionary algorithms 

in the previous sections (GA, DE, PSO and TLBO). 

Table 3. Simulation results of fitness values with the fours 

controllers 

Algorithm 

Fitness 

function with 

PID 

Fitness 

function with 

2 cascaded 

PID 

Fitness function 

with 3 cascaded 

PID 

GA 5.39 ∗ 10−5 9.89 ∗ 10−6 3.625 ∗ 10−7 

PSO 5.408 ∗ 10−5 9.897 ∗ 10−6 3.633 ∗ 10−7 

DE 5.392 ∗ 10−5 9.903 ∗ 10−6 3.618 ∗ 10−7 

TLBO 5.4 ∗ 10−5 9.91 ∗ 10−6 3.63 ∗ 10−7 

Table 4. Simulation results of minimum of iterations with 

the fours controllers  

Algorithm 

Number of 

iterations 

with PID 

Number of 

iterations with 

2 cascaded PID 

Number of 

iterations with 

3 cascaded PID 

GA 37 32 41 

PSO 45 47 53 

DE 53 62 84 

TLBO 58 81 92 

Table 5. Simulation results of variance values with the fours 

controllers 

Algorithm 

Variance 

value with 

PID 

Variance value 

with 2 cascaded 

PID 

Variance value 

with 3 cascaded 

PID 

GA 1.78 ∗ 10−31 2.51 ∗ 10−34 2.34 ∗ 10−33 

PSO 1.77 ∗ 10−33 7.94 ∗ 10−33 1.26 ∗ 10−36 

DE 2.37 ∗ 10−36 1.69 ∗ 10−35 1.41 ∗ 10−41 

TLBO 1.45 ∗ 10−39 9.12 ∗ 10−37 4.17 ∗ 10−42 

 
(a)  

 

(b) 
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(c) 

Fig 6. Fitness function variation of the four algorithms; (a) 

with PID controller; (b) with two cascaded PID controller; (c) 

with three cascaded PID controller 

The simulations results are presented in the Tables 3-5 

and Fig. 6. According to table 4 and Fig. 6, the GA provide 

the minimum iteration number of 37 in tuning PID controller 

comparing to DE and the two other EA. It has the best global 

convergence performance due to mutation. TLBO has the best 

local search property referring to Table 5. It shows the 

minimum variance value of 

1.45 ∗ 10−39 comparing to PSO and the two other EAs in 

tuning PID controller. They illustrate the global convergence 

property of GA and DE with their lower iteration number and 

TLBO and PSO demonstrate their local convergence with 

their minimum variance population value. Results confirm the 

same conclusions with two and three cascaded PID 

controllers. We propose to combine GA -TLBO as explained 

in the next part of this section. 

5.1. Combined GA-TLBO Algorithm 

We can select respectively GA an TLBO due to their best 

global and local convergence shown in the simulation results. 

The goal is to integrate both EA performances in order to 

benefit from them (as explained in the previous section). This 

novel technique combines GA's unpredictability with its 

higher overall performance and local convergence of TLBO, 

which is supported by population homogeneity and low 

variance values. The application of the recommended 

approach for decreasing frequency deviation is the main 

contribution of this study. 

By alternating between the two approaches, the hybrid 

algorithm obtains the benefits of both GA and TLBO. In 

reality, GA produces a diversified population as a result of the 

algorithm's unpredictability, as well as an elite group that 

includes a few outliers. The TLBO algorithm will eliminate 

these worst solutions in order to safeguard the best individuals 

while improving the worst. Based on the variance of the 

population of solutions and the iteration value of each method, 

these two algorithms are alternated. 

This strategy begins by producing the starting population 

at random while initializing the program settings (setting 

population size, decision variable boundaries, GA, and TLBO 

parameters). GA is the first algorithm to be employed due to 

the greater capabilities of global search. It is repeated until the 

population variance is less than the Set Variance Value, at 

which time TLBO is employed to eliminate any poor 

individuals created by GA. TLBO may take a long time and 

many iterations before meeting the stopping criteria while 

providing the greatest local search performance. 

As a result, the variation in the best fitness function F Obj 

should be compared to a Set_FObj_Value = 10−5. This 

contrast influences the decision to utilize GA or not. The 

combined GA-TLBO algorithm is depicted in the image 

below. Set_Variance_Value = 10−5, Set_FObj_Value =

10−5, Set_Cpt1 = 5 and Set Cpt2 = 5 are the parameters 

chosen. 

As shown in Fig. 7, the proposed technique begins by 

initializing the first population, FObj , to infinity and allowing 

index=0 in step 0. We initially assess the population's fitness 

value before deciding whether EA to run (GA or TLBO) and 

construct the next population. Next, we examine if index=0, 

FObj , and variance are less than their predetermined 

thresholds. If the maximum number of iterations is reached, 

the program stops; otherwise, the first step is repeated. 

 

Fig 7. Flowchart of GA-TBLO algorithm 

Using the combined GA-TLBO algorithm, the simulation 

results are shown in the tables 6-11 and Fig. 8.  Figure 8 and 

Table 7 illustrate the effectiveness of the hybrid combination 

of GA-TBLO against GA and TLBO in the term of iteration 

number. Moreover, Table 8 confirms the best local search 

performance of the proposed method against GA and TLBO 

in PID. Numerical results are summarized in Table 6. Figure 
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11 depicts frequency deviation profiles. The optimization was 

carried out using a step change in load of 0.1 pu at T=1s. This 

is due to the most significant influence of load as the 

equivalent of total production. 

Table 6. Simulation results of fitness values with the three 

controllers GA, TLBO and GA-TLBO. 

Algorithm 

Fitness 

function with 

PID 

Fitness 

function with 

2 cascaded 

PID 

Fitness 

function with 

3 cascaded 

PID 

GA 5.39 ∗ 10−5 9.89 ∗ 10−6 3.625 ∗ 10−7 

TLBO 5.4 ∗ 10−5 9.91 ∗ 10−6 3.63 ∗ 10−7 

GA-TLBO 5.392 ∗ 10−5 9.87 ∗ 10−6 3.61 ∗ 10−7 

Table 7. Simulation results of number of iterations with the 

three controllers GA, TLBO and GA-TLBO. 

Algorithm 

Number of 

iterations 

with PID 

Number of 

iterations with 

2 cascaded 

PID 

Number of 

iterations with 

3 cascaded 

PID 

GA 37 32 41 

TLBO 58 81 92 

GA-TLBO 25 28 33 

Table 8. Simulation results of variance values with the three 

controllers GA, TLBO and GA-TLBO. 

Algorithm 

Variance 

value with 

PID 

Variance value 

with 2 

cascaded PID 

Variance value 

with 3 

cascaded PID 

GA 1.78 ∗ 10−31 2.51 ∗ 10−34 2.34 ∗ 10−33 

TLBO 1.45 ∗ 10−39 9.12 ∗ 10−37 4.17 ∗ 10−42 

GA-TLBO 7.94 ∗ 10−43 2.51 ∗ 10−45 8.18 ∗ 10−46 

Table 9. PID controller tuned parameters with GA-TLBO. 

Kp Ki Kd 

373.6751 184.7626 122.8552 

Table 10. Two cascade PID controllers tuned parameters 

with GA-TLBO. 

Kp1 Ki1 Kd1 Kp2 Ki2 Kd2 

90.855 39.248 9.366 89.176 16.802 6.195 

Table 11. Proposed controller tuned parameters with GA-

TLBO. 

Kp1 86.198 Kp2 86.098 Kp3 71.3473 

Ki1 2.254 Ki2 5.024 Ki3 6.334 

Kd1 1.635 Kd2 1.745 Kd3 1.263 

 

(a)  

 
(b) 

 
(c) 

Fig 8. Fitness function variation of the three algorithms; (a) 

with PID controller; (b) with two cascaded PID controller; (c) 

with three cascaded PID controller 
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Fig 9. Frequency deviation with the three controllers using 

GA-TLBO algorithm. 

Table 6 shows that the suggested controller has the lowest 

fitness function value of   

3.61 ∗ 10−7 and the smallest frequency variation. The PID 

controller has the biggest overshoot against other controllers 

and with the higher rise time. The suggested solution provides 

the and excellent frequency deviation profile with lower 

overshoot and minimum rise time. 

These results are explained by the second (and third) 

derivative and integral order respectively in PID-PID and the 

proposed controller in this paper. In fact, the integral terms 

aim to eliminate the error in the input of controller. This 

property is reinforced by the second and the third integral 

gains. The derivative gains anticipate the variation of error to 

rapidly seek the steady state value.  

The combination of these higher derivative and integral 

orders improves the elimination of the overshoot and the rise 

time as illustrated in Fig 9. The red curve of the three PID 

controllers in cascade shows its performances against the PID-

PID controller and PID controller. 

To validate the three controllers adjusted in the preceding 

scenario, three distinct perturbations with three different step 

times are investigated. These perturbations are implemented 

as follows: at T1=1s, 0.5 pu is used to produce an irradiation 

power perturbation. A 0.5 pu kinetic power perturbation is 

injected at T2=13s, and a 0.1 pu perturbation is put under load 

at T3=25s. 

In order to combine GA and TLBO, we establish two 

counters, Cpt1 and Cpt2, to calculate the number of 

consecutive GA or TLBO iterations. Set Cpt1 and Set Cp2 if 

Cpt1 and Cpt2 are less than their respective Set values. The 

frequency deviation profile obtained by the three tuned 

controllers is shown in Fig 10. 

 
Fig 10. Frequency deviation using different controllers under 

different perturbations. 

Table 12. Simulation results of different controllers under 

different perturbations. 

Controller Objective function 

PID 2.831 ∗ 10−4 

2 cascade PID controllers 2.82 ∗ 10−5 

3 cascade PID controllers 

“Proposed controller” 
8.4 ∗ 10−7 

The suggested controller achieves the greatest results 

with the lowest frequency variation. Furthermore, according 

to Table 12, the ISTE of Δf with the cascade combination of 

three PID controllers is the lowest at  

8.4 ∗ 10−7. In comparison to PID and two PID controllers, the 

suggested controller achieves steady state faster than PID 

controller and PID-PID controller as illustrated in Fig 12. 

5.2. Robustness of Proposed Method 

A robustness study is performed to evaluate the resilience 

and efficacy of the proposed approach while taking into 

account the parameter uncertainties of the investigated 

system, as presented in Tab 13. The MG system program is 

run in this scenario with the various perturbations shown in 

the previous simulations. The goal is to see if the suggested 

controller maintains the same performance as the other two 

control techniques. 

Table 13. Variation of MG parameters 

Parameter Value Parameter Value 

D (pu/Hz) +40% TFC (s) 15% 

M (pu) +40% TMT (s) -10% 

TPV (s) +20% Tt (s) 25% 

TWT (s) +25% Tg (s) -35% 

TBES (s) +20% R (pu) -25% 
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Table 14 shows the values of the objective functions, and 

Fig. 11 shows the frequency deviation profiles of the three 

controllers. 

 
Fig 11. Frequency deviation with three controllers under 

uncertainty MG parameters. 

Table 14. Simulation results of different controller under 

uncertainty MG parameters. 

Controller Objective function 

PID 2.7 ∗ 10−4 

2 cascade PID controllers 2.82 ∗ 10−5 

3 cascade PID controllers 

“Proposed controller” 
8.4 ∗ 10−7 

The simulation results validate the robustness of the 

proposed controller. In fact, in Fig 13, this controller has the 

lowest fitness function and the smallest frequency deviation 

profile. 

5.3. Simulation under Uncertainty 

In this part, each DER power is affected by 10%. The goal 

is to test the efficacy of the proposed technique in the context 

of uncertain non-controllable source inputs. Under this 

ambiguous disturbance, it will have an effect on output power. 

As a result, power balance will become unstable, and 

frequency fluctuation will be greater than in previous 

circumstances. The simulation results are shown in Fig. 12 and 

Table 15. 

Table 15. Simulation results under uncertainty 

Controller Objective function 

PID 2.831 ∗ 10−4 

2 cascade PID controllers 4.957 ∗ 10−5 

3 cascade PID controllers 

“Proposed controller” 
8.493 ∗ 10−7 

 
Fig 12. Frequency deviation using the three studied controllers 

under uncertainty of DG output power. 

The suggested controller maintains its performance 

regarding the objective function and frequency variation. In 

addition, when compared to PID and two PID controllers, it 

maintains the optimal frequency deviation profile. The 

frequency deviation profile shows minimal overshoot and 

reaches steady state rapidly. Table 15 illustrates the efficiency 

of the adjusted prosed control with a lower minimal fitness 

function value than other controllers. These results show the 

proposed controller, as presented in this case of study. 

5.4. Simulation under Variable Perturbation Profiles 

In this subsection, the studied microgrid will be tested 

under variable perturbation profiles. The idea is to check the 

efficiency of the proposed controller under realistic 

irradiation, wind and load power profile. The following three 

figures presents respectively radiation and wind and a random 

load power profile. 

 
Fig 13. Wind turbine power variable changes. 
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Fig 14. Irradiation power variable changes 

 

Fig 15. Load power variable changes 

Table 16 displays the fitness function values for the three 

controllers investigated. These results support the suggested 

controllers' reliability and demonstrate the effectiveness of the 

cascade combination of three PID controllers as demonstrated 

in previous examples of research study.  

Figures 16 and 17 depict the frequency deviations of the 

three controllers. It demonstrates the proposed controller's 

resilience in minimizing frequency deviation better than PID 

and cascade of two PID controllers, the most efficient classical 

algorithms discussed in this research study. 

This is seen as a realistic circumstance that may have an 

impact on the MG. According to Fig 18, the deviation with the 

suggested technique is the best profile, which is very close to 

the required setpoint value of zero. As compared to PID and 

cascade of two PID controllers, it nearly always gives the least 

amount of variability. Table 16 summarizes all of the data that 

support the robustness of the suggested technique. 

Table 16. Simulation results under variable perturbation 

profiles 

Controller Objective function 

PID 5.204 ∗ 10−4 

2 cascade PID controllers 1.312 ∗ 10−4 

3 cascade PID controllers 

“Proposed controller” 
4.875 ∗ 10−6 

 

Fig 16. Frequency fluctuation under variable perturbation 

profiles 

 

Fig 17. Frequency fluctuation under variable perturbation 

profiles between 1s and 7s 

The proposed controller is used in this study for the 

secondary frequency control I, the examined MG. The 

combined GA and TLBO method is used to modify the 

settings of this suggested controller for efficiency. This 

controller was compared against PID and the cascade 

combination of two PID controllers, which were both adjusted 

using the same technique. 
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6. Conclusion 

The investigated MG was created utilizing a linearized 

MG state-space model in which all DER are represented by a 

low order transfer function. The comparison of the three 

controllers emphasizes the accuracy of the suggested 

controller, which combines all of the performance of the two 

conventional controllers. 

Results confirm the selection of GA and TLBO as 

algorithms which provide respectively the best global and 

local search performance. As said in section 5, with GA, the 

fitness function reaches its optimal value with the minimum 

of iteration number. 

As compared to the cascade combination of two PID and 

three PID controllers, the single PID controller provides a high 

overshoot with a significant rising time and poor stability 

performance. The higher derivative order aims to reach the 

steady state value quickly than the derivative term of the PID 

controller. Also, the second and the third integral gain improve 

the elimination of the error comparing to the integral term of 

the PID controller. As a result, the suggested controller 

incorporates all of the performance demonstrated in the 

robustness research as well as varied perturbation profiles. 

 All of these results were evaluated in a robustness analysis 

using parametric uncertainties in microgrid parameters and 

uncertainties in DER power. 

As implications of this work, we can investigate various 

control techniques, such as adaptive ones, to compare with the 

suggested method in this research, and examine additional 

system nonlinearities with greater complexity in the study. In 

a more modern MG system, it can additionally include 

predictions of the disturbances that are considered, such as 

kinetic and solar power. 
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