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Abstract- The present study identifies various faults in wind turbine blades from the acquired vibration signals. Various 
statistically obtained features were computed from time-domain vibration signatures, including kurtosis, skewness, standard 
deviation, variation, root mean square, and crest factor. To identify faults in wind turbines, a comparison was made with the 
performance of two classification models, Random Forest (RF) and Support Vector Machine (SVM), using the feature set 
obtained from the time-domain vibration signals. The results demonstrate these classifiers for fault diagnosis. The use of chi-
square (χ2) statistical feature selection techniques has been found to improve classification accuracy. To test the efficacy of this 
approach, we compared the proposed model with traditional models using several performance measurements. The findings 
confirmed that when chi-square (χ2) is used in conjunction with RF, the proposed model achieved a significant improvement in 
precision, increasing from 75.3% to 83.315%. These results suggest that the chi-square (χ2) can be valuable for optimizing 
feature selection and improving classification accuracy in machine learning models.  
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1. Introduction  

Wind energy is a rapidly growing technology in the energy 
sector, known for its renewable, environmentally friendly 
and sustainable nature. The rotor blade of a wind turbine 
is a crucial component in wind energy production, and 
unpredictable failures can result in costly damage and 
repairs, as well as increased operating and maintenance 
expenses [1-5]. Therefore, early detection and diagnosis of 
wind turbine failures are crucial for effective condition 
monitoring. Vibration signals are often used as parameters 
for machinery conditions, with significant changes 
indicating developmental failures [6-7]. Wind turbine 
blades are particularly susceptible to damage due to 

environmental conditions and vibrations, which can affect 
them.  

The cost of installations and accounts for up to 15- 20% of 
total costs [8-11]. Therefore, effective monitoring and 
diagnosis of wind turbine blades is essential for ensuring 
the sustainability and viability of wind energy as an energy 
source.  The importance of monitoring wind turbine blades 
cannot be overstated, as it determines whether the 
monitoring equipment is operating optimally and 
producing the planned power output. Without sufficient 
information on the type of error, scheduling maintenance 
activities in advance becomes difficult. This lack of 
knowledge and understanding can fail to adequately 
prepare for potential errors. With greater knowledge and 
understanding, preparations could be made routinely and 
appropriately, ensuring maintenance activities are carried 
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out before any failures. Thus, ongoing research on wind 
turbine blade monitoring techniques is essential to 
enhance our understanding of these critical components 
and ensure the sustainability and effectiveness of wind 
energy as an energy source.  

 It is obvious that the blades of a wind turbine are 
constantly exposed to harsh environmental conditions and 
therefore susceptible to faults that can affect their 
performance and even cause catastrophic failure [12-14]. 
Changes in wind speed, foreign particle interaction, and 
environmental factors such as rain and snow can cause 
vibrations in the blades, leading to slow rotation and 
ultimately turbine failure. Therefore, monitoring the 
condition of the wind turbine blades is essential to ensure 
optimal performance and avoid costly shutdowns [14-17]. 
However, it can be challenging to accurately evaluate 
blade vibrations online due to the large size of wind 
turbines, their remote locations, and the various operating 
conditions they experience. Therefore, the development of 
effective fault detection systems is crucial to improve 
wind turbine blade condition monitoring and prevent 
costly and dangerous failures. With several studies 
conducted in this area, machine learning has emerged as a 
promising approach to diagnosing wind turbine defects. 
For example, Abdul Rahman and Al-Kindi [18] 
Experimental modal analysis was used to examine the 
detection of cracks in wind turbine blades. They used step 
beams to simulate wind turbine blades and applied 
experimental modal analysis techniques to identify cracks 
and their propagation. Although this study provided 
valuable information on the detection of cracks in wind 
turbine blades, more research is needed to improve 
effective wind turbine defect diagnosis systems. In a study 
by Tcherniak et al. [19], a structural health monitoring 
system based on vibrations of the wind turbine blades was 
demonstrated. The system detected structural flaws in the 
blades of the wind turbines, such as fractures, holes, and 
deformation. Using a semi-supervised learning algorithm, 
they simulated an artificially inserted edge opening in a 
blade, increasing the size from 15 cm to 45 cm over time. 
The system accurately classified the blade flaw. Sahoo et 
al. [20] incorporated the vibration of the wind turbine 
blade vibration with different machine learning methods, 
including decision trees, support vector machines (SVM), 
and k-nearest neighbor (KNN) to categorize the blade 
health status. They evaluated algorithms on healthy, bent, 
fractured, and eroded blades. They discovered that SVM 
was the most accurate in identifying blade defects (87%), 
followed by decision trees (82%) and KNN (80.0%). 
These studies demonstrate the potential of machine 
learning algorithms for detecting and monitoring faults in 
wind turbine blades, highlighting the importance of 
continued research to improve wind energy sustainability. 
Yang Tao [21-22] studied the effects of various types on 
the functioning of wind turbines by simulating impeller 
imbalance faults such as mass imbalance and asymmetric 
failure of the aerodynamic force. Specifically, mass 

imbalance faults were found to create a wave of electric 
power due to the impeller's output torque induced by the 
gravity of the imbalanced mass. However, asymmetric 
aerodynamic force faults caused the tower's vibration to 
produce a wave of the aerodynamic force on the impeller, 
resulting in a wave of electric power. This indicates that 
the aerodynamic force and tower vibration models are 
interconnected, highlighting the importance of 
considering both factors in diagnosing and monitoring.   

Machine learning techniques have become increasingly 
popular for diagnosing various machine defects. To ensure 
accurate and effective fault classification, it is essential to 
identify the appropriate fault signatures for each type of 
machine element [23-24]. By leveraging machine learning 
algorithms and selecting the right fault signatures, it is 
possible to achieve a more precise and effective fault 
diagnosis, helping to prevent costly downtime and 
improve overall machine performance. 

This investigation aims to detect faults in wind turbine 
blades using vibration signals as measurement parameters. 
The experimental work includes a healthy blade and three 
faulty blades. We developed the instrumentation 
equipment for the experiment and used it to obtain 
measured vibration signals. Statistical features were 
extracted from these signals and machine learning 
classifiers (including Random Forest and SVM) were 
trained on these features for fault categorization tasks. We 
use confusion matrices to evaluate accuracy to compare 
the classifier's performance. Ultimately, our goal is to 
identify whether a wind turbine blade operates normally 
accurately or has a defect and, if a defect is present, to 
classify the type of defect.  

2. Machine Learning Model 

2.1.  Random Forest (RF) 

RF, short for Random Forest, is an AI technique that 
uses machine learning to assess the health of machine 
components. It was originally developed by Breiman [25] as 
an extension of decision trees. In RF, decision trees are built 
using the CART (Classification and Regression Tree) 
method, without pruning, to their maximum size. The 
resulting assembly of trees produces a more accurate and 
robust model than any individual tree. For a visual 
representation of the RF construction, see Figure 1. To 
reduce variation and overfitting, Random Forest combines 
two techniques, bagging, and random feature selection. Each 
tree in the forest is constructed with a random subset of 
features and data samples. The data samples used to build a 
tree are known as "data in the bag," while the remaining 
samples are "out-of-bag observations" (OOBs) [26]. 
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Fig. 1. Construction of a random forest [25].  

To determine the class of a given sample, the forest takes 
a majority vote of all tree classifications. The OOBs estimate 
the model error rate without requiring a separate validation 
data set. For each tree t in the forest, the OOBt is the set of 
samples not used to build that tree. Classification error is 
typically measured using accuracy, precision, and recall 
metrics as shown in Eq. (1) [27]. 

𝑒𝑟𝑟𝐹𝑜𝑟𝑒𝑠𝑟 = '
(
𝐶𝑎𝑟𝑡{𝑖 ∈ {1,… , 𝑛}, 𝑦5 ≠ 𝑦ˆ𝑖}	                        (1)  

Where is yi the most typical class trees suggest for which a 
sample i is in OOBt. 

 

2.2.  Support Vector Machine (SVM) 

Support Vector Machines (SVM) is a supervised machine 
learning technique that uses boundaries to separate and classify 
data points [28]. SVM works with both linearly separable and 
non-separable data, and the boundary selection depends on the 
structure and relationships. The support vectors represent the 
boundary, and the data points closest to the hyperplane axis. 
The SVM aims to identify the hyperplane with the maximum 
margin and the most considerable distance between the 
hyperplane and the support vectors. This approach results in a 
robust and accurate model. SVM is a fast and accurate 
classification algorithm that provides an excellent trade-off 
between model complexity and performance. For nonlinearly 
separable data, SVM uses kernel methods to identify 
similarities and relationships between data points, resulting in 
a hyperplane representation of the data. The SVM formulation 
is based on structural risk, which aims to minimize the model's 
generalization error. For binary classification problems, SVM 
maximizes the margin between two hyperplanes (H1), which 
can be used to categorize data into their respective classes. The 
H1 equation is expressed as follows: 

𝑥.𝑤 + 𝑏 = 0                                                                           (2)  

Here, x is the point on the separator plane (H1) and w is 
the vector on the plane. Normalization of the two class w 
parameters can be represented as 

𝑥5. 𝑤 + 𝑏 ≤ −1 + 𝜉5 for 𝑦5 = −1                        (3) 

and 

𝑥5. 𝑤 + 𝑏 ≥ 1 + 𝜉5 for 𝑦5 = +1                                              (4)  

By combining Eqs. (3) and (4), we get the following. 

𝑦5(𝑥5. 𝑤 + 𝑏) ≥ 1 − 𝜉5                                                           (5) 

Here	ξi	represents	the	slack	parameter. 
 

2.3. Validation and evaluation of performance 

     A confusion matrix is a useful tool to assess the efficacy of 
a classification method [29]. It enables visualization of a 
model's performance by comparing expected and actual 
values. The confusion matrix is typically used to analyze 
binary classification tasks and is organized as a table. For each 
class, the matrix displays the number of true positives (𝑇F), 
true negatives (𝑇(), false positives (𝐹F), and false negatives 
(𝐹(	) . By analyzing the confusion matrix, we can generate 
several performance indicators for the model, including 
accuracy, precision, recall, and the F1 score. Precision, 
calculated as the ratio of true positives to the total number of 
positive predictions Eq. (6), quantifies the model's ability to 
identify the positive class accurately. High accuracy suggests 
that the model finds positive cases effectively, whereas low 
precision shows several false positives. The confusion matrix 
is essential to evaluate the performance of a classification 
model and identify improvement areas.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = JKLJM
JKLNKLNM	LJM

                                                       (6)  

It is crucial to note that this classification metric can lead 
to inaccurate results, as it measures the correlation between 
returns [30]. The true positive value is divided into true 
positives and false positives to assess precision. The recall is 
computed by dividing the number of true and false negative 
values by the total number of false positive and false negative 
values. The F1 score is a combined metric that considers both 
accuracy Eq. (7) and recalls Eq. (8). The equations used to 
calculate these metrics are as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 = JK
JKLNM

					                                                                   (7) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = JK
JKLNK

                             (8) 

The F1 score represents the harmonic mean of recall and 
precision Eq. (9), which offers a fair performance assessment 
[30]. It is advantageous when dealing with imbalanced class 
distribution datasets. The F1 score is calculated using the 
following equation: 

F1 = SJK
SJKLNKLNM

                                                                        (9) 

Receiver Operating Characteristics (ROC) curves are 
commonly used to evaluate and compare predictive models 
[31]. These curves show the correlations between the true and 
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False Positive Rates (TPR and FPR) to determine the optimal 
performance of the model. The TPR represents the percentage 
of positive cases that the model correctly recognized. In 
contrast, the FPR counts the percentage of negative cases that 
were mistakenly classified as positive. The uncertainty matrix 
is used to construct a ROC curve that shows the probabilities 
of the TPR and FPR values for different classification 
thresholds. Changing the threshold allows us to plot multiple 
points on the ROC curve. The area under the curve (AUC) can 
be calculated as a summary metric of the performance of the 
model. The equations used to calculate the TPR Eq. (10) and 
FPR Eq. (11) depend on the classification threshold and the 
number of true positives, false positives, and false negatives 
[31].  

𝑇𝑃𝑅 = 	JK
JKLNM

                                                                         (10) 

𝐹𝑃𝑅 = NF
NKLJM

	                                                                         (11) 

The ROC curve displays the true positive rate (TPR) 
against the false positive rate (FPR) at different classification 
thresholds, providing a visual representation of model 
performance [32]. The ROC curve can be adapted to 
accommodate multiple outcome variables, improving its 
ability to visualize complex data. The diagonal line of the ROC 
curve represents a classifier of random guessing. At the same 
time, the upper left triangle denotes high classification 
accuracy for both classes and the lower right triangle 
represents poor classification performance. The ROC curve is 
widely used in signal detection and in assessing prediction 
accuracy in various fields such as medicine, economics, 
climate prediction, and geoscience evaluation [32]. The ROC 
curve provides a valuable tool for evaluating and comparing 
machine learning models, allowing us to visualize the trade-off 
between sensitivity and specificity for different classification 
thresholds. 
2.4. Evaluation Models 

 Supervised learning categorization was measured using 
industry standard measures of each method such as precision, 
recall, and F1 scores. Classification prediction error 
evaluation, confusion matrices, receiver operating 
characteristic curves, and precision recall curves were just a 
few of the evaluation approaches used to illustrate the 
classification results of the various machine learning models.  

In this study, ten-fold cross-validation was used to 
evaluate the performance of the classification models. This 
method randomly divides the data into ten parts, each of which 
contains approximately the same proportion of each class as 
the original data set.  Different parts are tested during each 
iteration while the model is trained on the remaining nine parts. 
The error rate is then calculated on the holdout set, and the 
process is repeated for each of the ten parts. The final error 
estimate is obtained by averaging the ten error estimates, 
providing an unbiased and reliable evaluation of the model's 
performance. All classification models developed in this study 

followed the ten-fold cross-validation method, ensuring a fair 
comparison of their performance on the given dataset.  
3. Experimental Work 

3.1. Experimental setup      

The benchmark analysis used wind turbine blades, shown 
in Figure 2a and provided by Edibon Equipment's Computer-
Controlled Wind Energy Unit (EEEC). The EEEC uses a 
laboratory-scaled aerogenerator to study how kinetic wind 
energy is converted into electrical energy and how variables 
affect it. The system consists of a stainless steel tube and 
computer-controlled variable-speed axial. The aerogenerator 
includes rotors and a generator that changes rotational speed 
with air velocity. The airflow from the fan rotates the wind 
energy, which is then converted into electrical energy by the 
generator. The angle of the blade can be adjusted and the 
configurable blades are detachable. EEEC is free-standing 
experimental test equipment with a 2000×550×550 mm 
stainless steel tunnel with two 1000×130 mm clear windows. 
The diameter of the aerogenerator is 510 mm and it can 
generate nearly 60 W with a charging current of 5 Am and 12 
volts. The wind tunnel velocity ranges from 1.3 to 5.3 m/s and 
serves as a wind source for the start of the wind turbine. To 
simulate natural wind conditions, the wind speed was 
continuously altered. The experimental design is depicted in 
Figures 2(b) and 2(c). 

To obtain vibration signals, a piezoelectric accelerometer 
was used as a transducer. It has a high frequency sensitivity for 
fault detection and is commonly used in condition monitoring. 
The PCB Piezotronics 352C65 uniaxial accelerometer was 
used, which has a sensitivity of (±10%) 100 mV/g (10.2 
mV/(m/s²)), a measurement range of ±50 g pk (±491 m/s² pk), 
a broad resolution of 0.00016 g RMS (0.0015 m / s2) RMS and 
a frequency range of (±5%) 0.5 to 100,000 Hz. The 
accelerometer was mounted on the nacelle near the wind 
turbine hub using an adhesive mounting technique to record 
vibration data. A connection used to link it to the data 
acquisition device was an NI USB 4431 with five analog input 
channels, a sampling rate of 102.4 kilobits per second, and a 
resolution of 24 bits. The accelerometer is coupled to a signal 
conditioning instrument that contains an integrated charge 
amplifier and an analog-to-digital converter (ADC). ADC is 
used to acquire the vibration signal.  The characteristic 
extraction technique was used to extract the characteristics of 
these vibration signals. Cables are connected to accelerometers 
and DAQ, and data capture devices are connected to Lenovo 
laptops incorporated with Core i7 CPUs, where LabVIEW 
software is used to collect data [33].   
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a) EEEC wind turbine   

b) NI-USB-4432 model DAQ 

 
c) Accelerometer 

adhesive on 
turbine hup 

Fig.2. Experimental Setup 

 

3.2. Experimental Procedure 

Signals were initially recorded when the wind turbine was 
healthy, without defects. The accelerometer was used to 
capture these signals based on the following requirements: 

v In order to ensure consistency, the duration of the sample 
was determined after considering several factors. It is 
essential to have enough samples to make the statistical 
measurements meaningful. However, as the number of 
samples increases, so does the computation time. To strike 
a balance, the sampling frequency was set to meet the 
Nyquist sampling theorem, which requires the sampling 
frequency to be at least twice the maximum frequency. 
This study set the sampling rate at 1000 Hz to achieve this 
requirement. 

v LabVIEW 2020 was used to record vibration signals, and 
at least 500 samples were captured for each state of the 
wind turbine blade.  

v  The manufacturer designed the wind turbine blades used 
in this study to closely approximate those of genuine 
commercial wind turbines. The blades were 300mm long, 
composed of fiber-reinforced polymer (FRP), and had a 
solid core. In addition, a variety of blades were identified. 
The following sections will discuss the models built using 
these wind turbine blades.  

•  When all other components are in excellent working 
condition, the following faults are simulated 
concurrently, and associated vibration signals are 

produced. The many failure scenarios modeled on the 
blade are shown in Figure 3.  

• State1: Healthy blade without any defect 

• State 2: Blade crack occurs due to damage from foreign 
objects on the blade while it is operating. 

• State 3: Blade erosion. This fault is caused by high-
velocity wind erosion of the outermost layer. The 
flawless surface was degraded using a sandpaper sheet 
to create an erosion effect. 

• State 4: Due to the mass imbalance of the turbine blade 
used in the investigation, this study added 5 g to the 
blade at 18 cm from the root, as shown in Figure 3D. 

 

 
Fig.3. the simulated fault in this study. 

3.3. Statistical feature extraction (calculation) 

Appropriate signal processing techniques must be 
employed to extract useful information about the health or 
condition of components from the non-linear vibration signals 
obtained using the wind turbine. Time-domain analysis is one 
technique that allows for a direct examination of the signal 
pattern, making it easy to calculate characteristics. The 
characteristics are derived directly from the time waveform 
and this method has the advantage of simplicity in calculation. 

Table 1. Time-domain features 
Feature name Formula 

Kurtosis 𝑁∑ (𝑥5 − 𝜇)XY
5Z' 	

[∑ (𝑥5 − 𝜇)SY
5Z' ]S 

Root Mean Square 
(RMS). ]

1
𝑁	^_

(𝑥5)S
Y

5Z'
` 

Variance (Var) 1
𝑁	^_

(𝑥5 − 𝜇)S
Y

5Z'
` 

Standard Deviation 

(Std Dev) 
]
1
𝑁	^_

(𝑥5 − µ)S
Y

5Z'
` 

DAQ 

Pc 
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Vmax max (xi) 

Skewness 𝑁		 ∑ (𝑥5 − 𝜇)bY
5Z'

𝜎b  

Crest Factor Vmax		
𝑅𝑀𝑆  

Mean µ 1	
𝑁_𝑥5	

Y

'

 

Where xi is a signal for i = 1, 2, N, N is the number of data 
points.    
3.4. Enhanced Models with Feature Selection 

Feature selection necessitates selecting a tiny number of 
functions from the original subset of functions to reduce 
dimensionality without compromising the information 
contained. The characteristics to retain and the ones to 
eliminate are determined solely by the technique used. When 
redundant functions are employed, the classifier's efficacy is 
enhanced. To eradicate an irrelevant feature, it is preferable to 
employ feature selection criteria that quantify the importance 
of each feature in the feature set in terms of class labels. 
Feature classification techniques, such as chi-squared (χ2), 
Fisher score, ReliefF, and Information Gain [34], are widely 
used in various problems. The method of ranking features aims 
to reduce the dimension, better separate features, and retain the 
necessary information. Before applying the RF models, this 
article selected the essential characteristics of the chi-square 
(χ2) [35-36]. The Chi-square test (χ2) selects characteristics 
based on correlations that determine the correlation between 
the characteristics and the expected class. Each nonnegative 
characteristic (Xi) calculates the chi-square statistic to 
determine which characteristic depends on the predicted 
attribute. The higher the chi-square score, the higher the chi-
square (χ2) score, as shown in Eq. (12). The feature refers to 
[37]. 

𝑥S	 = ∑ jklmnlo
p

nl
Y
qZ'                             (12) 

𝑌q	 is the quantity of class observations j, and 𝑢q  is the 
expected value of 𝑌q . For 𝑢q  = NPj, N is the number of 
observations, and Pj is the probability of occurrence. 

 4. Results and Discussion 

4.1. Measurement of Vibration Signals 

The vibration signals in different cases of wind turbine 
blades, shown in Figure 3, show that the characteristics of the 
vibration waveform differ considerably under the same 
working conditions. The state of the wind turbine blade 
includes a healthy and non-eroding surface, a crack at the tip, 
and an imbalance. The wind turbine blade rotated at 200 RPM 
when this condition was detected. Every 50 ms, the vibration 
signals are measured.  Figure 3 shows the unfiltered and 
filtered vibration signals that the operating wind turbine blades 
produce. The vibration signals are shown to be healthy in 

Figure 3a. In a typical engine room, there would be minimal 
vibrations. As a result, the measured signals showed that the 
wind turbine was operating normally. 

At the same time, Figure. 3b shows the vibration signals 
when there is an imbalance fault in the wind turbine blade. 
Compared to signals in the healthy state, it could be found that 
vibration signals varied greatly from signals in the other cases. 
The highest vibration amplitude was approximately 0.248 g. 
Figure 3c shows the vibration signal on the surface of the 
damaged blade. It can be found that the vibration signal in this 
state is higher compared to the healthy state. The highest 
measured vibration amplitude measured was approximately 
0.22 g. The final-state study of the blade tip crack in Figure (3-
d) observed that the vibration signals raided in the healthy state 
and had a higher amplitude of approximately 0.021g. 
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Fig.4. Vibration signals of a wind turbine in a) healthy 

state, b) imbalance state, c) erosion state, D) crack state. 

4.2. Machine Learning Scoring and Evaluation 

From the vibration signals, statistical features were 
extracted. The features were given as input to the RF algorithm 
and SVM. Classifier to determine the classification accuracy 
for fault detection in wind turbine blades. Not all features may 
be necessary for classification. Adding more irrelevant 
features may negatively impact the performance of the 
classification algorithm. They also increase the number of 
computational resources needed. Foreseeing which parameters 
will be helpful for classification using machine learning 
algorithms is impossible. Therefore, investigators must extract 
every descriptive statistical trait before choosing the best. The 
present investigation improved the model by applying the χ2 
statistical feature selection approach. The method of choosing 
features was used to choose the four most important ones. The 
essential characteristics that affect the models in Figure 4, 
which can be observed in kurtosis, std, dev, RMS, and 
skewness, are the best characteristics that influence the 
accuracy (CA) of the modal compared to another 
characteristic. Tables 2 and 3 illustrate the effectiveness of the 
FR and SVM models, respectively. Table 2 displays the results 
before the major feature selection approach. 

In contrast, Table 2 displays the identical ones after the 
primary feature selection method. Tables (2&3) obtained the 
overall classification accuracy of both model classifiers with 
respect to the selected characteristic. The classification 
precision of the basic model was 75.2%, with eight 
characteristics. 

However, the upgraded model that incorporates eight 
features demonstrated a classification accuracy of 63.6% when 
using the SVM and a higher accuracy when using the RF 
model. The maximum classification accuracy for fault 
detection and type reached 83%, comparable to the results 
obtained in the reference [16-20]. The computational training 
time for the RF model was 3.42 s, while the test time was 0.313 
s. The improved accuracy also led to an increase in precision 
and recall. However, the influence of several assessment 
factors was not significant. Specifically, the specificity 
improved from 82.89% to 90.95% and the area under the AUC 
increased from 87% to 92.14%. 

 
Fig.5. Important Features. 

Table 2. Evaluation of Model Results Before Feature 
Ranking 
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Modal RF SVM 

(Area under curve) 

AUC 

0.931 0.878 

Classification 
Accuracy (CA) 

0.752 0.636 

F1 0.753 0.612 

Precision 0.7525 0.603 

Recall 0.752 0.636 

Specificity 0.917 0.89 

Train time (sec) 3.248 1.63 

Test time (sec) 0.298 0.225 
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Table 3. Evaluation after the ranking of features 

 

 

 

 

 

 

 

 

 

 

 

 
 
Table 4. Classwise accuracy for RF and SVM with χ2     

 

 

 

 

   Table 4 presents the class-wise accuracy in detail for RF and 
SVM with χ2. The evaluation of classwise accuracy in this 
article involves the determination of different properties, such 
as the area under the curve (AUC), the accuracy of 
classification (CA), precision, recall, the F1 score, and 
specificity, as presented in Table 4. For the RF model, the AUC 
values range from 0.922 for erosion to 0.9964 for healthy, 
indicating that the model has adequate discriminatory power 
for all classes.  

 

     The CA ranges from 0.855 for erosion to 0.976 for healthy, 
indicating that the model correctly classifies most instances in 
each class. The F1 score ranges from 0.716 for erosion to 
0.9526 for healthy, which is the harmonic mean of precision 
and recall. The precision ranges from 0.7 for erosion to 0.948 
for healthy, which indicates the proportion of true positives 
among predicted positives. Recall ranges from 0.7 for erosion 
to 0.957 for healthy, signifying the proportion of true positives 
among actual positives. The specificity ranges from 0.89 for 
erosion to 0.9825 for healthy, demonstrating the proportion of 
true negatives among actual negatives. 

     For the SVM model, the AUC values range from 0.862 for 
erosion to 0.998 for healthy, indicating that the model has 
adequate discriminatory power for all classes except erosion. 
The CA ranges from 0.777 for erosion to 0.984 for healthy, 
indicating that the model correctly classifies most instances in 
each class. The F1 score ranges from 0.487 for erosion to 
0.9688 for healthy. The precision ranges from 0.572 for 
erosion to 0.948 for healthy. The recall ranges from 0.424 for 
erosion to 0.964 for thriving. Specificity ranges from 0.829 for 
imbalance to 0.991 for healthy. 

Overall, both models demonstrate good performance in 
the healthy and crack classes, with high AUC values, CA, F1-
score, precision, recall, and specificity. Performance in erosion 
and imbalance classes is lower, particularly for the SVM 
model. The lower efficacy in these classes may be due to class 
imbalance or other factors specific to the data set. It would be 
beneficial to examine the confusion matrices or other 
performance metrics better to understand the model 
performance for each class. 

     Furthermore, the findings were strengthened by a 
confusion matrix (Figure 6) that evaluated each case 
individually. Figure 6a shows the confusion matrix for the RF 
model before the feature selection technique was applied. 
Illustrates the values for each of the four cases, where the total 
number of occurrences was divided by 4 to yield 2100 samples 
per case, with 8400 divided by 4. The results indicate that the 
healthy state was accurate in 846 cases. However, the erosion 
signals with erosion (state2) were sometimes misinterpreted as 
unbalanced states. On the contrary, more than half of the data 
for the unbalanced blade (state 4) were distributed among the 
three healthy and damaged states, making it challenging to 
determine the blade's actual health status. However, 

Modal    RF          SVM 

(Area UnderCurve) 

AUC 
0.9623 0.9136 

Classification 
Accuracy (CA) 0.8315 0.732 

F1 0.830788 0.753 

Precision 0.8315 0.756 

Recall 0.83154 0.75923 

Specificity 0.94384 0.91984 

Train time (sec) 3.424 1.983 

Test time (sec) 0.313 0.254 

For RF 
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0.9 0.9
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For SVM 

Class AUC 
CA 

F1 Preci
sion 

Rec
all 

Spe
cifi
city 

Healthy  
0.998 

 

0.9
84 

0.9
688   

0.948 0.9
64 

0.9
91 

Erosion 0.862 0.7
77 

0.4
87 

0.572 0.4
24 

0.8
94 

Crack 0.993 0.9
6 

0.9
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0.578 0.7
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incorporating the χ2 with the RF model significantly improved 
the classification accuracy. The confusion matrix of the 
enhanced RF model is shown in Figure 6b. The model 
accurately predicted the condition of blades 1, 2, and 3. 
However, there was confusion between erosion and unbalance 
blades. Specifically, 712 erosion states were misclassified, 
resulting in an unbalanced state, and 738 states in the erosion 
state were classified as unbalanced. Another classifier, the 
SVM, produced the lowest accuracy in both cases before and 
after feature classification, as shown in Figure 7. 

a 

 
b 

Fig.6. Confusion matrices for the RF: (a) before important 
feature selection, (b) after important feature selection. 

 

 

 

 

 

 

 

 

                                      a 

 

 

 

 

 

 

 

b 

Fig.7. Confusion matrices for SVM: (a) before the selection of 
important features, (b) after important feature selection. 

The ROC curve helps to evaluate the performance of 
machine learning models. It helps to visualize the balance 
between sensitivity and specificity by plotting the TPR against 
the FPR. In Figure 8, we can see the ROC curves for a random 
forest model that was used to predict the fault state of the wind 
turbine blades. The results for each state are listed as follows: 
crack state = 0.977, healthy state = 0.985, erosion state = 0.882, 
and imbalance state = 0.887. This indicates that the random 
forest model is a suitable classifier for this task, particularly 
when increased by χ2. Furthermore, Figure 9 shows the ROC 
curve for different states when using SVM as a classifier. 

 
Fig.8. ROC curve within the score of each class for 

Random Forest. 

 
Fig.9. ROC curve within the score of each class for 

SVM. 
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Random forests are often the most effective when χ2 and 
RF are used. However, they are immune to generalization 
problems. Breiman [25] proposed that the generalization errors 
of the random forest classification are related to the connection 
between two trees and the strength of individual trees. A tree 
with a low error rate was found to be an effective classifier. In 
contrast, the decline in correlation between classes decreases 
the generalization error. These factors may help to categorize 
the random forest classifier more accurately. Moreover, there 
is only one variable; the user must determine the number of 
trees. Therefore, the complexity of the classifier is reduced. 
The drawback of SVM is that it is fundamentally a binary 
classifier and can be used for multiclass classification with all 
algorithms. Therefore, the derived average result is 
computationally intensive and may contain bias. This may 
contribute to SVM's inferior performance compared to 
Random Forest.  
5. Conclusions 

 The implementation of machine learning technology has 
revolutionized the process of identifying, tracking, and 
diagnosing faults in wind turbines, making them more resilient 
and easily accessible. Much of the success and proper 
functioning of artificial intelligence (AI) are based on the 
acquisition and classification of data. Therefore, the approach 
in this research involved the use of machine learning 
algorithms to detect the state of the wind turbine blade based 
on vibration data from a transducer. We selected three common 
types of blade failure for the analysis and built models for the 
customarily used and faulty states. Random Forest (RF) and 
SVM machine learning algorithms were used as fault 
classifiers. To improve fault diagnosis and prediction precision 
while reducing computational load, the χ2 statistically optimal 
feature selection method was used to improve precision and 
efficiency. The results obtained were then used to evaluate the 
performance of the RF and SVM algorithms. It was discovered 
that the RF algorithm was more effective than SVM, with a 
performance increase from 75.3% to 83.315% when 
employing χ2. It accurately predicted healthy, cracked, erosion, 
and imbalance states based on the high values of precision, 
recall, F1 score, and analysis of the ROC curve found.  

Overall, the findings suggest that machine learning 
techniques can effectively diagnose and predict wind turbine 
failures. Further research could focus on improving the 
accuracy of classifiers to detect erosion faults. Furthermore, 
more advanced signal processing techniques, such as wavelet 
transform, which deals with non-stationary vibration analysis, 
could be applied in future work to extract more indicative 
features.  
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