
INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
W. F. MBASSO et al., Vol.13, No.3, September, 2023 
 

Contribution into Robust Optimization of 
Renewable Energy Sources: Case Study of a 

Standalone Hybrid Renewable System in Cameroon 

 

Wulfran FENDZI MBASSO *‡ , Serge Raoul DZONDE NAOUSSI * ,  

Reagan Jean Jacques MOLU * , Saatong KENFACK TSOBZE **  

 

* Technology and Applied Sciences Laboratory, U.I.T. of Douala, University of Douala, Cameroon, P.O. Box 8689 – Douala  

** Unité de Recherche d’Automatique et d’Informatique Appliquée, I.U.T. Fotso Victor, University of Dschang, Cameroon, 
P.O. Box 134 – Bandjoun  

 

 (fendzi.wulfran@yahoo.fr, sdzonde@gmail.com, molureagan@yahoo.fr, saakenft@yahoo.fr ) 

 

‡ FENDZI MBASSO Wulfran; DZONDE NAOUSSI Serge Raoul; MOLU Reagan Jean Jacques; KENFACK TSOBZE 
Saatong, P.O. Box 8689 – Douala, Tel: +237 694 160 659,  

Fax: +237 694 160 659, fendzi.wulfran@yahoo.fr 

 
Received: 11.04.2023 Accepted:06.06.2023 

 
Abstract- Environment conservation is a matter subject affecting both developing and developed countries. Long-lasting energy 
can be achieved by attenuating Greenhouse gas emissions. All over the world, Hybrid Renewable Energy Sources (HRES) appear 
as a vital element when it comes to cover the rapid growth of the energy demand. Moreover, renewable energy (RE) is an 
unaffordable response to the fight against unpredicted events such as the diseases, industries development, reliability of energy 
sources, added to the various directives related to produce sustainable electricity. Henceforth, it is crucial to optimize the various 
sources for satisfying the electrical demand. In particular, this paper aims to value the hybridization of optimization techniques 
to achieve a robust optimization. Photovoltaic (PV), and Battery Storage Systems (BSS) constitute the various RE sources in this 
work. The main goal was to simultaneously minimize the Deficit of power supply probability (DPSP) and maximize the BSS 
capacities. Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and hybridization of both techniques are 
employed to proceed with the optimization. This study reveals the performance of hybrid optimization used for several 
configurations of loads. Indeed, the results show that the autonomous day of the BSS can reach 03 days, while the DPSP can 
decrease towards 1%. Hence, the obtained HRES is eco-friendlier and more autonomous. Furthermore, the proposed idea 
provides improved reliability and robustness of our system under various types of loads due to different climate scenario. A 
statistical analysis shows a good stability and better efficiency while doing hybridization of both techniques.  

Keywords Deficit of power supply probability (DPSP), Hybrid Renewable Energy Sources (HRES), Autonomous days, Particle 
Swarm Optimization (PSO), Grey Wolf Optimizer (GWO) Hybrid Optimization, Robustness. 
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 Abbreviations and Nomenclature 

GHG Green House Gas 

HRES Hybrid Renewable Energy Sources 

IEA International Energy Agency 

COVID Corona Virus Disease 

RE Renewable Energy 

PV Photovoltaic 

RES  Renewable Energy Sources 

HSA Harmony Search Algorithm 

JOA Jaya Optimization Algorithm 

PSO Particle Swarm Optimization 

COE Cost Of Energy 

LPSP Deficit of power supply probability 

EQ Equilibrium Optimizer 

BAT  Bat algorithm 

BHB Black-hole-based algorithm 

RF Renewable Factor 

NPC Net Present Cost 

WT Wind Turbine 

BSS Battery Storage Systems 

HOMER Hybrid Optimization of Multiple Energy 
Resources 

TRNSYS Transient System Simulation  

PSO Particle Swarm Optimization 

DC Direct Current 

AC Alternating Current 

LIHR Low Investment with High Rating 

 Hourly power of the PV (kW) 

 Rated power of the PV (kW) 

 Reference solar radiation (1kW/m²) 

G Solar radiation (W/m²) 

 Derating factor of the PV 

 Reference temperature of the cell (◦C) 

 Temperature coefficient (/◦C) 

 Temperature of the cell (°C) 

  Ambient temperature (◦C) 

 

 

 

NASA National Aeronautics and Space Administration 

 Efficiency of the inverter 

 Input power of the inverter (kW) 

DOD Depth Of Discharge 

SOC State Of Charge 

 Instantaneous power of the battery at the 

charging (kW) 

 Instantaneous power of the battery at the 

discharging (kW) 

 Efficiency of the battery at the charging 

 Efficiency of the battery at the discharging 

SOC (t) State of charge of the battery at t 

SOC (t-1) State of charge of the battery at t-1  

σ Self-discharge factor of a battery 

AD Autonomous days of the battery  

 Hourly power of the BSS (kW) 

 Hourly power of the load (kW) 

 Minimum allowable battery power (kW) 

 Maximum allowable battery power (kW) 

GWO Grey Wolf Optimizer 

 Energy dumped (stored) into the battery (kWh) 

 Minimum autonomous days of the HRES 

 Maximum autonomous days of the HRES 

LPS Loss of Power Supply 

q Maximization function for the system 

 Weighing factor of the AD 

 Weighing factor of the  

RF Renewable Factor 

 Hourly power provided by the PV module and 

the battery storage system (kW) 

 Reliability limit tolerance 

  Minimum value for state of charge 

 Maximum value for state of charge 

 Hourly power of the PV (kW) 
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 Position of the i-particle at iteration k 

 Velocity of the i-particle at iteration k 

 Position of the i-particle at iteration k+1 

 Velocity of the i-particle at iteration k+1 

pi  Best individual particle position  

pg  Best global position 

c1 Cognitive parameter 

c2 Social parameter 

r1 Real within interval 0 and 1 

r2 Real within interval 0 and 1 

 Coefficient vector 

 Coefficient vector 

 Vector for the prey’s position 

 Vector for the wolf’s position 

 Best value for the applied technique 

 Total number of simulations  

 Efficiency of the battery 

 Vector of components 

 Real within interval 0 and 1 

  Real within interval 0 and 1 

MOO Multi Objective Optimization 

MOPSO Multi Objective Particle Swarm Optimization 

SOO Single Objective Optimization 

DSM Demand Side Management 

MAE Mean Absolute Error 

SD Standard Deviation 

RMSE Root Mean Square Error 

RE Relative Error 

 Energy of the battery at discharging (kWh) 

 Energy of the battery at charging (kWh) 

 Second best position in each iteration 

 Third best position in each iteration 

 Coefficient vector 

 Coefficient vector 

 Vector indicating the position of the prey 

 Vector indicating the position wolf 

 Position for the applied technique at each 

simulation. 

𝝰 Leading grey wolf 

𝝱 Superior grey wolf 

𝞭 Medium grey wolf 

𝟂 Inferior grey wolf 

 Mathematical model of wolf 𝝰 

 Mathematical model of wolf 𝝱 

 Mathematical model of wolf 𝞭 

chi1 Random real value between 0 and 1 for PSO 

chi2 Random real value between 0 and 1 for PSO 

 Coefficient vector for wolf 𝝰 

 Coefficient vector for wolf 𝝱 

 Coefficient vector for wolf 𝞭 

 Coefficient vector for the first best position in 

each iteration 

 Coefficient vector for the second best position 

in each iteration 

 Coefficient vector for the third best position in 

each iteration 

 Cognitive component of each 

particle at each iteration 

 Social component of each particle at 

each iteration 
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1. Introduction 

Nowadays, energy is crucial for every society at any stage 
and every sector. The different sources of energy employed 
and the tracking for the development imply deploying 
advanced modern technologies with both positive and 
negative impacts. An undeniable consequence of this issue is 
the drastic change of the world climate leading to 
environmental alterations [1]. Scholars found in Renewable 
Energy Sources (RES) a lasting solution to preserve the 
environment and improve stability, energy security, and 
sustainable power generation [2]. Nonetheless, the 
inconsistent output of these sources leads to the use of more 
than one of them to constitute a Hybrid Renewable Energy 
System (HRES). Several works have revealed the benefits of 
HRES in terms of efficiency and costs [3…5]. For distant 
localities including agricultural farms, petroleum platforms, 
and islands…., their use is a strength as they offer more 
reliability in their operation. 

However, about 800 million people in several countries in 
Africa and Asia will still not have access to electricity for the 
next decades [6…7]. This results into an increase of energy 
consumption of more than 50% by 2035 worldwide to cover 
[8]. Developing countries need to shift to eco-friendly power 
for the following benefits: health and employment 
improvement, carbon footprint reduction; etc. This is also a 
concern for Cameroon whose energy consumption will grow 
in an unparallel rate [9]. In the same idea of improving the 
energy sector with the different projects launched by the 
government in the country, this work will carry proper 
investigation to reveal the advantages of the penetration of 
renewable energy into energy sector of the country. This will 
enable the growth of RE usage which is evaluated at just 1% 
of the total electricity production [10]. 

1.1. Literature Review 

For decades, the world is under perpetual alterations in all 
domains: social, economic, environmental, health…. Many 
factors have contributed to these significant changes. COVID-
19, for instance, has affected the energy consumption 
worldwide [11], with positive impact on the environment due 
to pollution reduction. The transition to sustainable sources of 
energy is unavoidable and various combinations of energy 
sources are used to fulfil the first requirement: cover the 
demand [12…14]. The variability of RES conducts into using 
one or more energy sources to obtain HRES and assess them 
for several reasons. [15] used various energy sources to 
determine the optimal configuration. Three different 
algorithms namely Harmony search algorithm (HSA), Jaya 
optimization algorithm (JOA) and Particle swarm 
optimization (PSO) are employed to fulfil two objectives: 
minimize the cost of energy (COE) and determine the 
minimum limit value of the deficit of power supply probability 
(DPSP). The results obtained show an optimal system with a 
least cost and an improved reliability. Indeed, the ideal 
solution comprises in thirteen PV, four biomass systems, one 
wind turbine and fifteen BSS, for a total present cost of 
$581,218 and a cost of energy of 0.254 $/kWh. Furthermore, 
scholars in [16] have investigated on the impact of Soot on the 

efficiency of solar panels. Using a Smart Intelligent 
Monitoring System, results have shown an improvement of 
the efficiency of the solar panels integrated into the HRES. 

Likewise, HRES associated with storage systems are 
more profitable than those without. Authors [17] have 
obtained a convenable solution to the problem of standalone 
cities in Southern Nigeria, a technical analysis has been 
performed. Results show that the equilibrium demand-supply 
has been satisfied with the HRES employed. Besides, [18] 
have proposed a methodology to optimize a hybrid PV-storage 
system grid connected. In this paper, authors revealed the 
benefit of integrating BSS into HRES such as reducing the 
COE purchased from the grid and cover the gap due to the 
sporadic nature of RES.  In another work, [19] proposed an 
optimal planification of energy storage for power systems in 
short-term previsions. In addition to the cost-effectiveness, 
many authors have enumerated other benefits of HRES 
combined with storage systems, namely: reliability, load 
satisfaction and ecofriendly. [20] has employed many 
evolutionary algorithms to build up an optimal autonomous 
HRES. Authors have minimized the DPSP to improve the 
reliability of the system. In [21], a review has been elaborated 
a review on HRES by characterizing their optimal size, the 
control, and the management strategies. In this paper, a deep 
analysis has been drawn to reduce the cost function from the 
optimal model. [22] proposed an optimal HRES in an off-grid 
HRES taking into consideration the following aspects: 
economic and environmental parameters. In this work, the 
results show a COE of 0.691 (USD/kWh) and an annual 
emission of C  of only 4.43 kg. The proposed system shows 
an improvement of 18% of the net present cost (NPC) 
compared to the existing microgrid, and an ecofriendly system 
with a reduction of emissions of greenhouse gas. 

In recent years, many works reported optimum sizes of 
HRES using various optimization algorithms. For single or 
multi-objectives, the purposes remain mainly into minimizing 
cost and improving system’s reliability [23…26]. In [27], a 
techno economic analysis and optimization are realized into a 
HRES comprised of PV, WT, and BSS for a community in 
Saudi Arabia.  

Besides, alone [28…29] or combined with other methods 
[30…32] such as modern technologies and programming 
softwares like Hybrid Optimization of Multiple Energy 
Resources (HOMER), Transient System Simulation Tool 
(TRNSYS)…, optimization algorithms have proved their 
ability to obtain good results into optimization process. In 
addition, many studies are based under uncertainty in two 
parts: from the sporadic nature of the loads and from the 
variability of RES. In both cases, optimization is characterized 
as robust, and the results are more accurate. This study argues 
on the use of hybrid optimization algorithms as an important 
step into robust optimization. The case study is described as 
some households in a sub-Saharan country. 

1.2. Research Gap and Contributions 

Each society needs electricity to ensure its development 
in several domains: social, economy…[33]. Many African 
countries are highly affected by the lack of electricity, 
especially in sub-Saharan countries. Cameroon is rated at 
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about 65% of electrification ratio, a value above most African 
countries which rate is at 48% [34]. In rural communities, 
more than 80% of the population are not electrified [35]. 
Surprisingly, these parts of the country abound with infinite 
renewable energy resources like solar energy resource in the 
northern part, wind in the western and coastal areas. 
Moreover, the HRES are not grid connected and henceforth, 
many studies are based on standalone systems. For instance, 
this work aims to: 

- Emphasize on utilizing RES in electricity sector as a 
lasting response to various changes; indeed, our HRES 
consists of PV/BSS 

- Enhance the proliferation of micro grid into rural 
communities of Cameroon, as RES are not yet connected to 
the main power supplier. 

- Contribute into valuing robust optimization of HRES 
with hybridization of optimization algorithms, especially 
when using various seasons or different configurations of 
loads. 

Furthermore, the study case is the Littoral region of 
Cameroon, a coastal area in the country. Henceforth, the 
analysis carried out has the main goal to maximize the 
autonomy of the HRES through the energy stored and the 
autonomous days, but more important to ameliorate the 
reliability of the system by minimizing the DPSP. 

1.3. Paper Structure 

A thorough methodology is performed in this paper as per 
the following organization: In section 2, the modelling of our 
HRES is presented. Section 3 formulates the problem by 
developing the energy management strategy, and the various 
functions (objective and constraints) employed for the 
optimization. Section 4 depicts the different optimization 
techniques used in this paper. Further, the results of the 
simulations performed are presented in section 5, highlighting 
the performance of the applied algorithms. Ultimately, the 
conclusion of the paper is presented in the last section. 

2. Mathematical Modelling of the HRES 

To achieve the goal of covering the demands in terms of 
energy in some households in Cameroon, an optimization 
based on several criteria has been performed. Every hour, the 
power demand of every activity sector (hospital, school, trade 
…) is highlighted based on the actual electrical appliances 
currently found in these households; but also, on the two main 
seasons that are met in those areas, namely dry season, and 
rainy season. Henceforth, several multi criteria optimization 
has been performed in this paper. 

This section describes the methodology for achieving our 
optimization as follows: (2.1) System modelling; (2.2) 
Meteorological data, (2.3) Load data, (2.4) The mathematical 
modelling of the HRES, and (2.5) Optimization problem 
formulation. Lastly, a detailed presentation of the hybrid 
optimization algorithm is realized. Then, power management 
strategies and various constraints of the HRES are 
investigated to obtain the optimal solutions of the problem. All 
the computations done in this paper are done every hour. 

2.1. System Modelling 

The designed HRES consists of four fundamental parts as 
shown in (Fig.1): PV Module, DC/AC Converter, Battery 
Storage systems, Electrical loads [36]. The power electronic 
converter used is suitable with the system power requirements. 

2.2. Meteorological Data 

In this section, the HRES will be presented from the load 
demand to the renewable energy sources. 

2.2.1. Case Study 

With an area of 475,442 , Cameroon is ranked as the 

world's -largest country. This country is located in Central 

and West Africa. Between longitudes 8° and 17°E and 
latitudes 1° and 13°N, Cameroon has a control on a part of the 
Atlantic Ocean (Fig. 2). 

Known as the economic capital of the country, Douala, 
our focus area, is the largest city in Cameroon (Fig. 3). 
Located at 04°03′N 009°41′E, Douala subject to a tropical 
climate, with approximatively constant temperatures all over 
the year. But, during July and August, the town undergoes 
cooler temperatures. Douala experiments both hot and cool 
conditions, knowing an average annual temperature of 27.0 °C 
(80.6 °F) and an average humidity of 83% [37]. During the 
year, Douala encounters a lot of rainfall, experiencing on 
average roughly 3,600 millimeters (140 in) of precipitation per 
year [37]. Henceforth, the city is full of RES and renewable 
energy context can be explored in this locality. 

In particular, our attention will be put on a specific 
location in Douala, Ndogbong (Fig. 4). Found at Latitude 
4.06447° or 4° 3' 52" north and Longitude 9.75213° or 9° 45' 
8" east, this suburb hosts population of all levels, depending 
on the life conditions. The study case is a household located at 
Ndogbong which load will rely on the meteorological data 
every hour. 

2.2.2. Weather Data 

(Fig. 5) presents the scales of the solar radiation of the 
country. For the concerned location, the data are gathered for 
a period of one year (8760 h). In (Fig. 6), 5.8 kW/  is the 
minimum daily radiation, 6 kW/  is the median value and 
6.46 kW/ /day is the maximum daily radiation. Therefore, 
this region is suitable to install solar PV. 

2.3. Load Data 

For the case study, the load is made up of electrical 
equipment commonly used for household. For instance, we 
have fan, PC, TV, washing machine, heater, charger, iron, 
lamps, fridge which constitute Low Investment with High 
Rating Equipments [38]. This is justified by the actual living 
conditions of people in that location, with medium life 
standards. Four configurations of load are presented 
depending on the seasons and the number of devices in the 
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household. Tables 1, 2, 3 and 4 depict the hourly energy 
consumption. In Figures 7a, 7b, 7c, and 7d, the various load 
variations show that there is no deviation, henceforth the load 
used for the study is realistic. During rainy season, the 
maximum power is 2.47kW for a great consumer and 1.47kW 
for a low consumer. In addition, the minimum consumption is 
0.1kW and 0.06kW for a great consumer and a low consumer 
respectively. Similarly, during dry season, the maximum 
power is 2.47kW for a great consumer and 1.47kW for a low 
consumer. But the minimum consumption is 0.155kW and 
0.065kW for a great consumer and a low consumer 
respectively.  

Moreover, meteorological conditions and socio-
economic factors can highly influence power supply. In [39], 
authors establish a dependent relation between load (hence 
electricity generation) and weather. Indeed, wind speed, 
humidity and temperature have a huge impact into human’s 
life, henceforth into their consumption of electricity. This 
explains the fluctuation in terms of energy consumption in the 
considered load profile. 

Thus, meeting the demand requires sustainable, and clean 
energy sources. Nevertheless, in Cameroon, renewable energy 
is not yet well distinct. This work proposes a reliable HRES to 
work under various meteorological uncertainties. 

 

Fig. 1. Representation of PV/Load with Storage systems. 

 

Fig. 2. Illustration of Cameroon in the World map. 

 

Fig. 3. Illustration of Douala city in Cameroon map. 

 

 

Fig. 4. Illustration of Ndogbong suburb in Douala map. 

 

Fig. 5. Illustration of Ndogbong suburb in Douala map. 
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Fig. 6. Yearly representation of the solar radiation for the 
study area. 

2.4. Hybrid renewable energy system modeling 
In this work, the proposed HRES consists of PV, BSS, 

and DC/AC converter. In this section, a focus is put on the 
mathematical model of the different constituents of the HRES. 

2.4.1. PV Panels 

Due to the ambivalent seasons in the country, we use a 
mono-crystalline PV module for its advantages in warm areas 
[40]. The two main characteristics of the PV namely the life 
cycle and the efficiency have the values of 25 years and 14%, 
respectively. The power output of the PV is function of the 
solar radiation penetrating the area of the cells, the 
temperature, and the geolocation [41]. Authors in [42…44] 
proposes a formula to compute the power of the PV every hour 
in Eq. (1): 

 =  *  *  * [1 +  (  - )] (1) 

 represents the nominal power expressed in kW,  the 

reference solar radiation (W/m²) whose value is 1kW/m², G is 
the solar radiation in W/m²,   is the derating factor fixed at 

0.9,  is the temperature of the cell at reference conditions 

(◦C) with value 25◦C,   is the temperature coefficient with 

value - 4.1× /◦C and Tc is calculated by the Eq. (2) [44]: 

 =  + (0.0256 * G)  (2) 

  represents the cell temperature and  the ambient 

temperature both expressed in ◦C. 

(Fig. 8) presents every hour the insolation of the selected 
area of this study during the year 2022. All the data employed 
have been collected from the database of the National 
Aeronautics and Space Administration (NASA). 

2.4.2. Inverter 

In this HRES, when solar resource is not available, the 
inverter is in charge to convert the DC energy into AC in order 
to supply the load. This situation generally happens during the 
night and in dark hours. The efficiency of the converter is 
estimated at 95%. The energy conversion is essentially 

determined by the efficiency of the inverter but also by the 
type of inverter chosen. This was calculated using Eq. (3) [45]. 

 =    (3) 

Where  and  represent respectively the efficiency and 

the input power of the inverter. The  is set at 95%. 

2.4.3. Battery Storage Systems 

Due to the intermittency of RES, there is always a gap 
between demand and offer. Hence, it is important to dispose 
of a device in the HRES that will store the energy produced. 
Thus, storing excess energy will help into satisfying the 
system’s requirements.  

A battery storage system (BSS) is defined as an 
electrochemical device that has two roles: to store the energy 
at a charging state and supplies the energy stored when 
requested by the load at another state and under certain 
conditions. It is essential for HRES to cover the demand. BSS 
are of a great use to build up a reliable, suitable, and 
sustainable system. BSS plays a major role for energy 
management strategies. Nowadays, several technologies of 
BSS have been designed depending on the degree of 
performance, energy variations, storage abilities and other 
technical specifications.  

When studying BSS, many criteria are to be taken into 
consideration. For instance, we have the ambient temperature, 
battery life cycle, depth of discharge (DOD), and the capacity 
[46]. Indeed, they have an impact on the BSS. In this paper, a 
12-volt battery with a rated storage energy of 1 kWh has been 
employed. The permanent availability of this type of batteries 
which represents 70% of the whole market justifies their 
regular usage by scholars [47]. 

Many parameters like the State Of Charge (SOC) and the 
instantaneous power are to be considered when assessing a 
BSS. Those parameters depend either the BSS is on charging 
or discharging phase. Eqs. (4-7) model those critical 
parameters [48]: 

a. Charging Process: 
- Instantaneous power: 

 (t) = (t) *   -   (4) 

- State Of Charge:  

SOC (t) = (1 - σ) * SOC (t-1) +  (t) (5) 
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a.    b.  

c.    d.  

Fig. 7. Various configurations for load profile depending on rainy season for great consumer (a), low consumer (b); and 
dry season for great consumer (c), low consumer (d). 

 

Fig. 8. Hourly radiation of the chosen site. 
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Table 1. Load profile for rainy season great consumer.  

RAINY SEASON GREAT CONSUMER LOAD PROFILE 

EQUIPMENT Lamps TV Iron Fan Charger Fridge PC Heater AC Micro 
wave 

Washing 
machine 

H
O

U
R

L
Y

 E
N

E
R

G
Y

  
C

O
N

SU
M

P
T

IO
N

 

            

RATED POWER(W) 10 100 1000 60 5 250 45 1000 1700 1000 500 

DAILY OPERATING 
COMPONENTS 

100 18 2 8 25 16 10 2 4 1 1 

DAILY ENERGY 
CONSUMED(Wh) 

1000 1800 2000 480 125 4000 450 2000 6800 1000 500 

TIME (h) 
 

1:00 4 
   

5 1 2 
    

405 

2:00 4 
   

5 1 2 
    

405 

3:00 4 
   

5 
 

2 
    

155 

4:00 4 
    

1 
     

290 

5:00 4 
    

1 
     

290 

6:00 4 1 
       

1 
 

1140 

7:00 
 

1 
   

1 
    

1 850 

8:00 
 

1 
   

1 
     

350 

9:00 
 

1 
         

100 

10:00 
 

1 
 

2 
 

1 
     

470 

11:00 
 

1 1 2 
 

1 
 

1 
   

2470 

12:00 
 

1 1 
    

1 
   

2100 

13:00 
 

1 
   

1 
     

350 

14:00 
 

1 
   

1 
     

350 

15:00 
 

1 
         

100 

16:00 
 

1 
   

1 
     

350 

17:00 
 

1 
 

2 
 

1 
     

470 

18:00 12 1 
 

2 
       

340 

19:00 12 1 
   

1 
     

470 

20:00 12 1 
   

1 
  

1 
  

2170 

21:00 12 1 
      

1 
  

1920 

22:00 12 1 
   

1 
  

1 
  

2170 

23:00 12 1 
  

5 1 2 
 

1 
  

2285 

0:00 4 
   

5 
 

2 
    

155 
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Table 2. Load profile for rainy season low consumer.  

RAINY SEASON LOW CONSUMER LOAD PROFILE 

EQUIPMENT Lamps TV Iron Fan Charger Fridge 

H
O

U
R

L
Y

 E
N

E
R

G
Y

  
C

O
N

SU
M

P
T

IO
N

 RATED POWER(W) 10 100 1000 60 5 250 

DAILY OPERATING COMPONENTS 100 18 2 14 25 16 

DAILY ENERGY CONSUMED(Wh) 1000 1800 2000 840 125 4000 

TIME(h) 
 

1:00 4 
   

5 1 315 

2:00 4 
   

5 1 315 

3:00 4 
   

5 
 

65 

4:00 4 
    

1 290 

5:00 4 
    

1 290 

6:00 4 1 
    

140 

7:00 
 

1 
   

1 350 

8:00 
 

1 
   

1 350 

9:00 
 

1 
    

100 

10:00 
 

1 
 

2 
 

1 470 

11:00 
 

1 1 2 
 

1 1470 

12:00 
 

1 1 
   

1100 

13:00 
 

1 
   

1 350 

14:00 
 

1 
   

1 350 

15:00 
 

1 
    

100 

16:00 
 

1 
   

1 350 

17:00 
 

1 
 

2 
 

1 470 

18:00 12 1 
 

2 
  

340 

19:00 12 1 
 

2 
 

1 590 

20:00 12 1 
 

2 
 

1 590 

21:00 12 1 
 

2 
  

340 

22:00 12 1 
   

1 470 

23:00 12 1 
  

5 1 495 

0:00 4 
   

5 
 

65 
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Table 3. Load profile for dry season great consumer.  

DRY SEASON GREAT CONSUMER LOAD PROFILE 

EQUIPMENT Lamps TV Iron Fan Charger Fridge PC Heater AC Micro 
wave 

Washing 
machine 

H
O

U
R

L
Y

 E
N

E
R

G
Y

  
C

O
N

SU
M

P
T

IO
N

 RATED POWER(W) 10 100 1000 60 5 250 45 1000 1700 1000 500 

DAILY OPERATING 
COMPONENTS 

100 18 2 32 25 16 10 1 4 1 1 

DAILY ENERGY 
CONSUMED(Wh) 

1000 1800 2000 1920 125 4000 450 1000 6800 1000 500 

TIME(h) 
 

1:00 4 
   

5 1 2 
    

405 

2:00 4 
   

5 1 2 
    

405 

3:00 4 
   

5 
 

2 
    

155 

4:00 4 
    

1 
     

290 

5:00 4 
    

1 
     

290 

6:00 4 1 
       

1 
 

1140 

7:00 
 

1 
   

1 
    

1 850 

8:00 
 

1 
 

2 
 

1 
     

470 

9:00 
 

1 
 

2 
       

220 

10:00 
 

1 
 

2 
 

1 
     

470 

11:00 
 

1 1 2 
 

1 
 

1 
   

2470 

12:00 
 

1 1 2 
       

1220 

13:00 
 

1 
 

2 
 

1 
     

470 

14:00 
 

1 
 

2 
 

1 
     

470 

15:00 
 

1 
 

2 
       

220 

16:00 
 

1 
 

2 
 

1 
     

470 

17:00 
 

1 
 

2 
 

1 
     

470 

18:00 12 1 
 

2 
       

340 

19:00 12 1 
 

2 
 

1 
     

590 

20:00 12 1 
 

2 
 

1 
  

1 
  

2290 

21:00 12 1 
 

2 
    

1 
  

2040 

22:00 12 1 
 

2 
 

1 
  

1 
  

2290 

23:00 12 1 
 

2 5 1 2 
 

1 
  

2405 

0:00 4 
   

5 
 

2 
    

155 
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Table 4. Load profile for dry season low consumer. 

 

 

 

RAINY SEASON LOW CONSUMER LOAD PROFILE 

EQUIPMENT Lamps TV Iron Fan Charger Fridge 

H
O

U
R

L
Y

 E
N

E
R

G
Y

  
C

O
N

SU
M

P
T

IO
N

 RATED POWER(W) 10 100 1000 60 5 250 

DAILY OPERATING COMPONENTS 100 18 2 32 25 16 

DAILY ENERGY CONSUMED(Wh) 1000 1800 2000 1920 125 4000 

TIME(h) 
 

1:00 4 
   

5 1 315 

2:00 4 
   

5 1 315 

3:00 4 
   

5 
 

65 

4:00 4 
    

1 290 

5:00 4 
    

1 290 

6:00 4 1 
    

140 

7:00 
 

1 
   

1 350 

8:00 
 

1 
 

2 
 

1 470 

9:00 
 

1 
 

2 
  

220 

10:00 
 

1 
 

2 
 

1 470 

11:00 
 

1 1 2 
 

1 1470 

12:00 
 

1 1 2 
  

1220 

13:00 
 

1 
 

2 
 

1 470 

14:00 
 

1 
 

2 
 

1 470 

15:00 
 

1 
 

2 
  

220 

16:00 
 

1 
 

2 
 

1 470 

17:00 
 

1 
 

2 
 

1 470 

18:00 12 1 
 

2 
  

340 

19:00 12 1 
 

2 
 

1 590 

20:00 12 1 
 

2 
 

1 590 

21:00 12 1 
 

2 
  

340 

22:00 12 1 
 

2 
 

1 590 

23:00 12 1 
 

2 5 1 615 

0:00 4 
   

5 
 

65 
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b. Discharging Process: 
- Instantaneous power: 

 (t) =   - (t) *    (6) 

- State Of Charge:  

SOC (t) = (1 - σ) * SOC (t-1) -  (t) (7) 

In addition, the hourly power at the output of the battery 
is given by Eq. (8) from [49]: 

 =    (8) 

In all the relations above,  (t) and  (t) denote 

respectively the instantaneous power at the charging and 
discharging phases.  and are the efficiency of the 

battery at the charging and the discharging phases. During 
discharging phase,  = 1 and during charging phase,  = 

0.8 [50]. SOC (t) and SOC (t-1) represent the state of charge 
of the battery at t and (t-1) respectively. To assess the ability 
of the BSS to operate within the system, one critical 
characteristic named self-discharge denoted σ is to be 
considered. A value of 0.2% per day is considered for this 
parameter in this study [51]. Furthermore,  represents the 

efficiency of the battery which is either  during charging 

process or  on discharging process. AD represents the 

number of autonomous days of the battery. 

Many researchers establish the relations related to the 
constraints of a BSS to regulate its efficient operation mode. 
In [43, 48,52], the following Eqs. (9) and (10) have been 
drawn up: 

 ≤  ≤   (9) 

DOD = 1 -    (10) 

 and  represent the respectively the lower and 

the upper bounds for the battery power. 

The technical specifications of the study are described in 
Table 5. 

2.5. Optimization Problem Specification 

In this study, the main objective is the contribution into 
robust optimization by proceeding with hybridization of 
optimization techniques into energy management strategies to 
provide robust optimal solution with lowest DPSP, and best 
AD and Battery energy dumped. The results are obtained from 
comparison between separated algorithms PSO, GWO; and 
hybrid PSO-GWO. 

The optimization part of this work will consist of both 
into Minimizing (Min) and Maximizing the Objective (Obj) 
functions given in Eqs. (11)-(13). 

Obj1 = Min DPSP  (11) 

Obj2 = Max AD   (12) 

Obj3 = Max   (13) 

Subject to the following constraints: 

0 ≤ DPSP ≤ 1 

 ≤ AD ≤  

With  is the energy kept into the BSS. 

Table 5. Parameters of the HRES. 

Parameter Unit Value 

Inverter   

Life time 

Efficiency 

Years 

% 

 24 

92 

Battery storage   

Life time 

Efficiency 

years 

% 

 12 

85 

Rated power kW  40 

PV   

Life time 

Rated power 

years 

kW 

 24 

1.0 

PV regulator 

efficiency 

%  95 

PV regulator cost $/kW  150 

Project life time Years  24 

  

2.5.1. Deficit of Power Supply Probability 

DPSP is a useful parameter to assess the reliability of a 
system. It is calculated as the total over a year (8760h) of all 
the loss of power supply (DPS(t)) to the all-load power. 

In a hybrid microgrid, investigating on the reliability of 
the system is commonly unavoidable. This is due to the 
sporadic behavior of the power at the output of the HRES. In 
this case, one parameter to take into consideration is the loss 
of power supply. 

DPSP of a HRES can be evaluated by Eq. (14) as in [53]: 

DPSP =  (14) 

Where  represents the hourly power provided by the 

PV module and the battery storage system. Moreover, two 
values are possible for the DPSP namely: zero represents that 
all the demand is covered by the HRES and one characterizes 
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that all the power generated by all the sources cannot satisfy 
at all the demand. 

2.5.2. Autonomous Days 

Another important parameter when it comes to assess the 
HRES, especially on the battery storage system, is the 
autonomy days. It characterizes the total duration of the 
battery to restore the energy stored during the charging 
process. A battery is assessed on this parameter as it is 
important and crucial. In this work,  = 0 and  = 3. 

2.5.3. Energy Dumped into The Battery 

For the system to be reliable and to have a balance 
demand-supply perfectly aligned, manage the energy is 
unaffordable. This helps into minimizing power losses and 
capitalizing the amount of energy saved. Henceforth, the 
storage systems are required in this process. Indeed, during 
charging phase, a certain quantity of energy is stored into 
battery and will be restored under certain conditions. This is a 
very essential part of energy management strategies. 

3. Energy Management Strategy 

Covering the instantly demand is crucial for reliable 
HRES. This implies to deploy efficient strategy and actions to 
fulfill this requirement. Thus, develop an efficient strategy to 
manage the energy within the system is required. The BSS will 
cover the shortage. (Fig. 9) presents a flowchart of the energy 
management of the hybrid renewable energy system. Firstly, 
the input data are at initialization step and the various 
conditions and constraints are established. Secondly, the 
energy balance is computed. The battery discharges its energy 
if and only if the power generated from the HRES is inferior 
to the load, as expressed in Eq. (15): 

 = (  - ) * Δt  (15) 

However, the BSS will be in charging phase when the 
global disposable energy provided by the HRES is greater than 
the demand, according to Eq. (16): 

 = ( ) * Δt  (16) 

Furthermore, during the charging phase of the BSS, the 
excess power from solar PV is stored into the battery, 
expressed as follow in Eq. (17): 

(t) =  * Δt *  – (  * Δt +  * )

 (17) 

3.1. Objective Function 

The main objective of this paper is to value the 
hybridization of optimization algorithms in context of robust 
optimization. This will result into optimal values that will 

simultaneously minimizing the DPSP and maximizing both 
the autonomous days and the energy stored into the battery. It 
can be illustrated in Eq. (18): 

min DPSP   (18) 

max q = max (  AD +   (19) 

Where, ,and  are parameters chosen via trial-and-error 

method in order to realize the optimization. At any time of the 
simulation, these parameters shall always globally be equal to 
1. 

3.2. Optimization Constraints 

To achieve our main goal, some points are to be 
considered to allow a good computation. This constitutes the 
constraints of our optimization: 

3.2.1. Constraints for Reliability 

The technical parameter used as metric for reliability of 
HRES is the DPSP. Indeed, it should not exceed the acceptable 
value denoted . Hence, the constraint related to the reliability 

can be written as: 

DPSP ≤   (20) 

Furthermore, scholars proposed a value of 0.05 or 5% for 
 [53]. 

3.2.2. Constraints for Storage System 

To ensure a better operation of the battery storage system, 
the SOC needs to satisfy the Eq. (21): 

 ≤ SOC(t) ≤  (21) 

Where   and   describe the interval within the state 

of charge of the BSS is operational. 

In addition, this will ensure to have the battery always 
operating within its safe conditions at every time of the 
optimization  

4. Optimization Techniques 

4.1. Individual Techniques 

In this paper, two methods are used to fulfill our main 
objective: Particle Swarm Optimization (PSO) and Grey Wolf 
Optimizer (GWO). These techniques are presented below: 

4.1.1. Particle Swarm Optimization 

Proposed by Eberhart and Kennedy (1995), PSO is a 
stochastic algorithm based on swarms [54]. Inspired by the 
nature, it is a metaheuristic technique which acts to understand 
the behavior of animals such as fishes, insects, birds… The 
efficient process to understand this technique is based on the 
ability of the swarms to cooperate in order to look for food. 
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This is mainly characterized by the path followed by swarms 
that learn from their previous personal activities or others. 
Characterized as a performant algorithm with undeniable 
results, it has various successful applications into some 
complex problems generally non-linear in nature [15]. 

Compared to genetic algorithms, PSO is more efficient, 
faster, and less complicated. Its simplicity and easy 
deployment into different types of problems characterize this 
technique as a relevant optimizer. 

Three steps are to follow when implementing the PSO 
algorithm, namely: 

 Evaluate the fitness of individual 
particle 

 Update best finesses and positions of 
the local and global particles 

 Update the velocity and position of 
individual particle 

A perpetual recall of the previous best value of each 
particle is achieved at any step of the simulation. While 
iterating this process, a computation of the best fitness value 
among all the particles is made. This will be repeated until a 
defined condition is fulfilled, either a certain number of 
iteration is reached or a specific target fitness value is 
obtained. The position of each particle in the swarm is updated 
using the following equation: 

      (22) 

Where  and  are respectively i-particle position and 

velocity in iteration k. The velocity is calculated as followed: 

 (23) 

          (24) 

     (25) 

 pi represents the best particle position for an 

individual while pg is the best global position; the 

social and cognitive parameters are denoted c1 and 

c2; whereas r1 and r2 are two real values within 

internal 0 and 1. 

 , called inertia, determines the fact that particles 

have the following identical characteristics:  same 

direction and same velocity. 

 , is the cognitive component, causing the 

particle return to a previous position in which it has 

experienced high individual fitness. 

 , represents the social component, which 

makes the particle to adhere to the best region 

identified by the swarm and to follow the best 

direction all around. Two considerations can be done 

concerning c1 and c2 : when c1>>c2, hence each particle 

will follow the individual best position; but when 

c2>>c1, then particles will move to the global best 

position. In this study the value of certain parameters 

is optimized by using PSO.  

The flowchart of the PSO is presented in (Fig. 10). 

4.1.2. Grey Wolf Optimizer 

Proposed by Mirjalili in 2014 [50], this technique is based 

on the attitude of wolves while hunting. To capture the prey, 

wolves implement a good organization which ranked them on 

top of predators. They are adequate for the social life, and to 

preserve their collaborative identity of hunters, a rough social 

hierarchy is established among them. While modeling the 

social hierarchy and hunting process of the wolves, three 

phases are required, (Fig.11): search (a), encircle (b), and 

attack the prey (c,d,e). This has highly inspired GWO [50]. 

4.1.2.1. Social Hierarchy 

Four parameters allow to classify grey wolves, especially 

(α, β, δ and ω). While it comes to decide on the hunting, the 

leader called (α) is the best answer to this call. (Fig. 12) clearly 

illustrates this statement.  The next level while hunting the 

prey named (β) is of a great help to the alpha when attacking 

the prey. The following step called delta (δ) and the rest of the 

grey wolves assumed to be omega (ω), constitute the subsets 

that follow the three wolves α, β, and δ. 

4.1.2.2. Encircling Prey 

Eqs. (26) and (27) present the optimal updates values of 

the positions of the wolves: 

|  = Q *  – Y(t) |  (26) 

 (t+1) =  – C (   (27) 

Where t represents the current iteration, the coefficient 

vectors are denoted  and ,  is the vector that represents the 

position of the prey, and  is a vector that represents the 

position of the wolf. Eqs. (28 and 29) compute the vectors  

and : 

 = 2 *  *  -    (28) 
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 = 2*    (29) 

Where is the vector of components that varies within 0 

and 2 over all iterations.  and  are two random real numbers 

chosen in the interval [0, 1]. 

4.1.2.3. Behavior of Hunting 

Firstly, after determining the location of the prey, the grey 

wolves encircle it to hunt. Then, the three leaders (α), (β), and 

(δ) will decide and collaborate in the hunting process. Hence, 

the three best solutions are defined α, β, and δ, while the other 

search agents (as well as omegas) will contribute into updating 

the positions corresponding to the status of the best agent. 

The mathematical model for grey wolf hunting is shown 

in Eqs. (30 - 32): 

|  =  *  – Y |   (30) 

|  =  *  – Y |   (31) 

|  =  *  – Y |   (32) 

Where , , and  are the first three best solutions in 

each iteration. The actual position of a search agent (omega 

wolves) from each best solution is given by Eqs. (33 - 35): 

 = )   (33) 

 = )   (34) 

 = )   (35) 

 (t+1) =    (36) 

(Fig. 13) depicts Eq. (36), showing the process to update 

the position of a search agent randomly, allowing α, β, and δ 

in the search space area [50]. The various positions of the 

wolves around the prey are updated. (Fig. 14) describes the 

flowchart of the GWO. 

4.2. Hybrid Technique: Particle Swarm Optimization – 
Grey Wolf Optimizer: 

In context of robust optimization, a hybridization is 
performed between PSO and GWO for more efficient 
optimization algorithm. In addition, many parameters are to 
be optimized. Henceforth, we are performing Multi-Objective 
Optimization (MOO). This was proposed by COELLO [55], 
especially for PSO (MOPSO). Furthermore, in MOPSO, all 
particles shared all the information. This will help them 
moving towards the global best particles and their own best 
memory. A temporary external back up memory is used to 
keep non-dominated solutions of the population at the end of 
each iteration.  

In comparison of the PSO, GWO offers two advantages: 

a high probability to avoid the local optima and a perfect 

ability of exploration. In GWO, the initialization is not 

required. Indeed, this is due to the fact that the initial set of 

population of PSO constitutes the primary sorted population 

of GWO. Although GWO is a Single-Objective Optimization 

(SOO), it produces child population G of the same size as the 

parent population. This implies to have the positions given by 

the GWO updated and sorted according to the fitness value 

obtained at each iteration. The algorithm stops processing 

while it reaches the upper limit of iterations; otherwise, it 

continues, as depicted in (Fig. 15). Therefore, the hybrid 

algorithm combines the resourcefulness of both techniques to 

provide by the end a much more reliable delivery. 

5. Results and Discussions 

Two optimization algorithms are used in this paper to 
obtain optimal results. The meteorological data of four types 
of houses in the area located combined with the technical 
parameters were imposed on the simulations executed through 
the algorithms of PSO, GWO and hybrid PSO-GWO. The 
constituents of the chosen HRES used are PV and BSS in a 
stand-alone configuration. Optimization algorithms were 
performed on the designed HRES for 100 maximum numbers 
of iterations and 10 particles for population. Results were 
generated with MOO algorithms coded in MATLAB R2018a 
environment. The input parameters of the problem are given 
in Table 6. The different meteorological data comprising the 
solar radiation and the temperature on hour basis all over a 
complete year (8760 h) and each specific type of load were 
used in this study. 

Furthermore, four houses have been considered according 
to the number of apparatuses. This has been segregated as 
follows: 

- Load 1: rainy season low consumer  
- Load 2: rainy season great consumer 
- Load 3: dry season low consumer  
- Load 4: dry season great consumer 
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Fig. 9. Flow chart of the operation mode of the HRES. 
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Fig. 10. Flowchart of the particle swarm optimization algorithm. 

Fig. 11. Haunting process of Grey Wolves. 
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Fig. 12. Social hierarchy of Grey Wolves. 

 

Fig. 13. Position updating mechanism of search 
agents. 

 

Fig. 14. Flowchart of the Grey Wolf Optimizer. 
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The results presented in Table 7 clearly illustrate that best 
results are obtained with hybrid algorithm. With the energy 
conservation demand side management (DSM) strategy 
implemented, the optimization of the hybrid energy is 
performed on the four various loads with the three algorithms. 
Indeed, for all the loads, the system is more reliable with better 
autonomy while performing PSO-GWO algorithm. This is 
visible for instance for load 1 with a DPSP of 4.21%, a good 
autonomy (2.5 days) and the amount of energy stored into the 
battery is higher (2.77kW). In comparison, the two techniques 
individually offer great results for DPSP accepted as stated in 
[53], but not as good as the hybrid PSO-GWO. In addition, as 
shown in (Fig. 7), the great consumer in dry season (load 3) 
represents the biggest one among the 4 types. The results 
obtained after performing the simulation for load 3 are still the 
same, showing that hybridization constitutes a good step into 
robust optimization. (Figs. 16-19) depicts the simulation 
results for all loads.  

Table 7. Results of the simulations. 

LOAD 1 

Parameters 
Optimization 

DPSP(%) AD Edumped(kW) 

PSO 4.71 1.8 2.51 

GWO 4.91 1.9 2.61 

PSO-GWO 4.21 2.5 2.77 

LOAD 2 

Parameters 
Optimization 

DPSP(%) AD Edumped(kW) 

PSO 1.47 2.1 6.124 

GWO 1.405 2.5 6.413 

PSO-GWO 1.375 3 6.742 

LOAD 3 

Parameters 
Optimization 

DPSP(%) AD Edumped(kW) 

PSO 3.61 1.5 2.87 

GWO 3.72 1.4 2.67 

PSO-GWO 1.04 2.2 2.95 

LOAD 4 

Parameters 
Optimization 

DPSP(%) AD Edumped(kW) 

PSO 1.21 2.1 6.824 

GWO 1.36 2.4 6.613 

PSO-GWO 1.01 2.9 7.013 

6. Statistical Analysis 

Table 6. Parameters of the optimization algorithms. 

 

 

 

 

 

 

 

Those parameters can be presented by the above relations: 

SD =   (37) 

RMSE =  (38) 

RE =   (39) 

MAE =   (40) 

Efficiency =   (41) 

Where  corresponds to the DPSP for the chosen 

technique at each simulation. While  represents the best 

value obtained, and  is the total simulations achieved with 

MATLAB software. In this work, the following parameters 
have been employed to obtain optimal and efficient results: 
search agents = 10, iterations number in each simulation = 
100, and executions number of simulations for each method = 
35 simulations. 

Table 8 describes the statistical performance of PSO, 
GWO and PSO-GWO. In this table, the value of SD obtained 
demonstrates the stability of the PSO-GWO compared with 
the two other techniques throughout the simulations and has 
an acceptable RMSE. The results indicate that the PSO and 
PSO-GWO have close values in the majority of the 35 
simulations, while the GWO optimization technique arrives 
hard fully at the optimum solution. Alike, the optimization 
algorithms efficiency is 99.62%, 98.11%, and 99.87% for 
PSO, GWO, and PSO-GWO respectively. In addition, the 
average best value in the 30 runs shows the PSO-GWO results 
can be suggested as the better optimal solution of the objective 
function, has the small deviations, and has the superiority in 
solving the optimization problem, followed by PSO, and 

Parameters of PSO 

chi1  0.81 

chi2  0.81 

Parameters of GWO 

r1  0.5 

r2  0.5 

a  2 
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GWO, correspondingly. (Fig. 20) presents the efficiency of 
the three methods employed in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Flowchart of the Particle Swarm Optimization - Grey Wolves 
Optimizer. 
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Fig. 16. Results of the simulation for load 1. 
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Fig. 17. Results of the simulation for load 2. 
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Fig. 18. Results of the simulation for load 3. 

3,61 3,72
1,04

LPSP(%)

1,5 1,4 2,2

AD (DAYS)

P SO GW O P SO-G W O

2,87
2,67

2,95

EDUMPED(KWH)

 

 

Fig. 19. Results of the simulation for load 4. 

1,21 1,36 1,01

LPSP(%)

2,1 2,4 2,9

AD (DAYS)

P SO GW O P SO-GW O

6,824 6,613 7,013

EDUMPED(KWH)



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
W. F. MBASSO et al., Vol.13, No.3, September, 2023 
 

 1116

Table 8. Statistical results of PSO, GWO and PSO-GWO 
techniques. 

7. Conclusion 

In this paper, a methodology of an optimal solution 

of a stand-alone HRES comprising PV, BSS via three 
metaheuristic techniques is described. Four types of loads 
have been selected in a located area in Douala Cameroon 
according to their life conditions. PSO, GWO and PSO-
GWO have been employed in this study to assess and 
improve the reliability and the autonomy of the HRES. 
Simulations have been performed with MATLAB 
R2018a environment. In this study, two nature-inspired 
algorithms PSO and GWO were hybridized to proceed to 
the optimization, focusing on DPSP, autonomous days 
and energy stored into the battery as decision variables. 
The main objective was to find the minimum DPSP and 
maximum autonomy by varying types of loads and 
providing all the optimal solutions. At the end of the 
study, the developed hybrid algorithm has a high 
probability while achieving the global optimum solution. 
A much better efficiency, a lower DPSP, a lower mean 
are also some advantages offered by hybridization. 
Henceforth, hybridization of HRES is more accurate 
while being under uncertainty conditions (load, 
meteorological data). From the lowest to the highest 
consumer, PSO-GWO provides better reliability and 
autonomy.  
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