
INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
V. Shanmugapriya et al., Vol.13, No.3, September, 2023 

 

Smart Energy Management for a Hybrid DC 

Microgrid Electric Vehicle Charging Station 
 

V. Shanmugapriya* , Yashpal Rathod** , S. Vidyasagar***‡  

 

*Department of Electrical and Electronics Engineering, College of Engineering and Technology, SRM Institute of Science and 

Technology, Kattankulathur, Tamilnadu- 603203 

** Department of Electrical and Electronics Engineering, College of Engineering and Technology, SRM Institute of Science 

and Technology, Kattankulathur, Tamilnadu- 603203 

*** Department of Electrical and Electronics Engineering, College of Engineering and Technology, SRM Institute of Science 

and Technology, Kattankulathur, Tamilnadu- 603203 

(priyaveer4@gmail.com, yr480200@gmail.com, vidyasas@srmist.edu.in) 

 

‡ Corresponding Author; S.Vidyasagar, Department of Electrical and Electronics Engineering, SRM Institute of Science and 

Technology, Kattankulathur, Tamilnadu- 603203 Tel: +9003028986,  

vidyasas@srmist.edu.in 

 

Received: 20.04.2023 Accepted:08.06.2023 

 

Abstract- Electric Vehicles (EVs) are increasing in popularity due to their environment-friendly, lower-cost operation and 

technology elevation. With these advancements and new technologies come more significant challenges and opportunities. The 

increasing power demand and emerging EV usage reflect enhanced renewable energies such as PV and smart storage devices. 

Nevertheless, an EV charging station for a residential building or a parking lot powered through grid-connected local PV 

generation has specific uncertainty issues and energy management problems. Some of the main areas to investigate are selecting 

Energy Storage devices with adequate capacity, grid-PV integration, and energy management for maintaining constant EV 

charging station requirements based on the EV’s State of Charge (SOC). This study proposes an intelligent, coordinated energy 

management strategy between the PV power station, the grid, the ESS, and the EV charging station. Here, a smart Energy 

Management system (EMS) based on Convolution Neural Network – Long Short Term Memory (CNN-LSTM) is proposed for 

the real-time changes in solar irradiance and State of Charge (SOC) of the ESS to manage grid power and local PV to maintain 

EV charging station requirements. Moreover, the proposed method prioritizes using Renewable PV sources for the EV charging 

station, making this eco-friendly and sustainable. Simulation results illustrate the effective integration of the proposed EMS. 

Keywords: Electric vehicle, Energy management system, grid-integrated photovoltaic power, charging station, State of Charge.  

1. Introduction 

Electric vehicles (EVs) have become increasingly 

popular due to their efficiency and lower emissions. 

However, the widespread adoption of EVs has strained the 

electrical infrastructure, as they require significant amounts 

of power to charge [1][2][3]. Solar photovoltaic (PV) 

systems have been integrated into the grid to provide 

renewable energy for charging stations to address this 

challenge. However, the intermittent nature of solar energy 

can make it difficult to maintain grid stability. Therefore, an 

energy management system (EMS) is required to optimize 

the use of renewable energy and ensure grid stability. In 

response to the rising number of EVs using the energy grid, 

several types of research have been conducted to overcome 

the energy demand. However, if the energy crisis for EVs is 

met over conventional power, the carbon footprints due to 

vehicle emissions shift to power generating stations 

[4][5][6]. An EV can be powered by a combination of 

renewable energy sources and a power grid, among which 

PV-grid integration emerges with great opportunities for 

powering up residential and commercial parking lots. 

Hence, Photovoltaic power with ESS and smart grid for EV 

charging stations makes the integration cost-effective and 

eco-friendly [7][8][9].  

To alleviate the energy management of integrated grid-

PV for EV charging applications, several authors have 

analyzed and presented in the literature. Integration of PV 
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and grid for EV charging applications requires intense 

energy management with the required ESS to meet their 

power demand due to the intermittent nature of PV [10]. 

Here we discuss some extensive research for EV charging 

with renewable energy systems. A real-time optimal EV 

charging and discharging scheme with photovoltaic and 

ESS integrated power system provides better utilization of 

PV with intermittent nature [11][12][13]. A mixed integer 

linear programming is used to prioritize the utilization of 

PV and ESS for the EV charging system [14]. Further, the 

authors proposed a rule-based energy management scheme 

for a PV-grid integrated EV charging station for 

uninterrupted daytime charging at a constant price with 

complete utilization of renewable PV sources [15]. The 

main objective remains to find a cost-effective solution for 

EV charging stations. Authors in [16] proposed a fast 

charging scheme with a Genetic Algorithm based energy 

management system and a Monte Carlo method to model 

the EV’s demand and availability of PV power. Another 

dynamic EV charging scheme imposes a Model Predictive 

Control (MPC) to obtain real-time scheduling information, 

considering parking lots’ scheduling as a benefit 

maximization problem [17]. 

Demand prediction for EV charging has escalated due 

to the increased installation of EV charging stations. Hence, 

developing a predictive model for EV charging and energy 

management has become inevitable. An accurate data-

driven framework proposed in [18][19] predicts Electric 

Vehicles' charging needs based on battery SOC, ambient 

temperatures, and, grid power availability. In another study, 

a flexibility prediction method based on LSTM-RNN 

supports Demand response management for power grid 

operation planning based on the historical power 

consumption behavior of the EV and Demand response 

signals [20][21]. The emerging trends in the usage of 

renewable energy-based resources and microgrids have 

brought undeniable changes within the smart power 

generation and charging of EV’s. EV’s charged through 

photovoltaic-fed power stations require an outright energy 

management system (EMS) [22]. EMS for distributed 

energy resources is often formulated as an optimization 

problem to minimize emissions, running costs and energy 

consumption from the grid. In work [23], a particle swarm-

based optimization technique establishes an optimized 

dispatch schedule with a PV-storage system for the EV 

charging station. However, due to constant changes in the 

EV charging demand, it is required to charge the battery 

whenever needed to operate the EV charging station 

effectively. A deep LSTM-RNN-based method for EV 

charging demands forecasts the constant changes using 

features extracted by Empirical Decomposition Method 

[24]. 

Although considerable research has been carried out for 

predicting EV charging demands, research on maintaining 

constant voltage and current for EVs with local PV-grid-

connected charging stations is still an open research area. 

Predicting the SOC of stationary batteries and photovoltaic 

power for maintaining constant charging demands required 

for EV charging stations also plays an important role. Real-

time coordination between EV charging stations (EVCS), 

grid-integrated PV supply, and energy storage systems is 

essential to maintain constant charging demands in the 

EVCS and reduce dependence on the grid for cost-effective 

operation. The main contribution of this paper are 

summarized as follows: 

➢ In this study, a PV-grid integrated DC microgrid 

is examined for the EV charging station. 

➢ A CNN-LSTM-based real-time online energy 

management system is developed for real-time 

changes in solar irradiance and SOC of the 

stationary energy storage system to manage grid 

power and local PV to maintain EV charging 

station requirements. 

➢ The developed model predicts the SOC of the 

stationary battery according to prediction classes 

with high accuracy and effectively allocated 

resources for the EVCS requirements. 

The organization of this paper is as follows. Section 2 

gives the preliminaries of the system under study and its 

Modelling and control. Subsequently, Section 3 of the 

CNN-LSTM-based EMS is detailed. Section 4 discusses in 

detail the simulation results. Finally, Section 5 gives the 

overall conclusion on the performance of the proposed 

method. 

2. Preliminaries 

2.1 System Understudy 

The EVCS, as shown in Figure 1 for the residential and 

commercial parking lot powered through a 2 kW Rooftop 

PV-Grid tied power source, consists of suitable Lithium-Ion 

ESS backup. The EVCS works with renewable PV power 

as long as possible, and the charging station connects with 

the grid to utilize conventional power in case of PV power 

unavailability. 

The 2 kW PV system is integrated with a DC-DC boost 

converter linked to the common DC bus through a DC link 

voltage. It functions through an Adaptive Neuro-Fuzzy 

Inference System-based MPPT algorithm for maximum 

power extraction. The grid links to the DC bus through a 

bidirectional Voltage Source Converter (VSC) with voltage 

and current control loops. The voltage control loop 

maintains desired DC link voltage and the current loop 

assists the voltage control loop in providing the desired 

reference current. The ESS links to the DC bus through 

buck-boost converter control to handle bidirectional power 

flow since it acts as a buffer system to mitigate grid 

congestion. The EV battery-discharging mode is not 

considered. Hence it consists of a DC-DC converter with 

only buck operation to maintain DC bus voltage with a 

unidirectional power flow. The VSC connected with the 

grid considers a dq0 reference frame to decouple active and 

reactive power control taking the direct axis component of 

current, 𝑖𝑑,𝑟𝑒𝑓, for the outer voltage control loop. Various 

conditions are studied based on PV radiation, SOC of ESS 

battery, and grid power availability. For the proposed 
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system, the test is carried out for two scenarios with EV and 

without EV under three different cases. 

Fig. 1. Proposed charging management system 

Case 1: PV stationary battery’s (ESS) SOC = 90% with 

variation in PV radiation. The EVCS utilizes maximum PV 

power through stored battery power in this case. 

Case 2: PV stationary battery’s (ESS) SOC = 40% with 

variation in PV radiation. In this case, the EVCS utilizes 

available battery power and conventional grid power. 

Case 3: PV stationary battery’s (ESS) SOC = 10% with 

variation in PV radiation. In this case, the ESS battery enters 

charging mode, and the EVCS utilizes maximum power 

from the conventional grid. 

2.2 Modelling and Control 

A. PV Model and Boost Converter Control 

The proposed PV model is a 2 kW solar PV array with 

eight series modules and one parallel string. The PV module 

data is provided in Table 1. 

 

Table 1. PV Module Data 

Open circuit voltage 𝑽𝒐𝒄 (V) 37.3 

Short circuit current 𝑰𝒔𝒄 (A) 8.66 

The voltage at maximum power point 𝑽𝒎𝒑 (V) 30.7 

Current at maximum power point 𝑰𝒎𝒑 (A) 8.18 

The mathematical equation of the PV output current 𝐼𝑝𝑣 

is denoted using the following equation (1), which is 

generally represented as a single diode with one controllable 

current source, one resistance in series 𝑅𝑠 and another 

resistance in parallel 𝑅𝑠ℎ. 
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𝐼𝑝𝑣 =  𝐼𝑝ℎ0(1 + 𝐾0(𝑇 − 300))𝐾1𝑇3 exp (𝑞 (
𝑉𝑝𝑣+𝑅𝑠𝐼𝑝𝑣

𝑁𝐾𝑏𝑇𝑝𝑣
−

 
𝑉𝑔

𝐾𝑏𝑇
)) − (

𝑉𝑝𝑣+𝑅𝑠𝐼𝑝𝑣

𝑅𝑠ℎ
)          (1) 

Since PV is intermittent in nature, an ANFIS-MPPT is 

implemented for varying irradiance and temperature to 

optimize maximum power extraction, as seen in Figure 2. 

The fuzzy controller implements a zero-order Sugeno fuzzy 

model taking solar irradiance and temperature as inputs, and 

the maximum voltage generated at a given instant is 

considered as output and fed to the duty cycle generator. 

The reference voltage generated by the ANFIS output is 

compared with the actual 𝑉𝑝𝑣 to produce the duty cycle for 

the PV boost converter. 

 Fig. 2. Boost Converter Control 

B. Energy Storage System Model and Buck-Boost 

Converter Control 

The influence of intermittent PV sources in the hybrid 

charging system makes ESS crucial in effectively 

integrating renewable PV sources. Among various 

dominating batteries, Lithium-ion battery is the most choice 

of interest. ESS not only improves demand continuity at any 

instant but also decreases the dependency on conventional 

grid usage. The mathematical model of a Lithium-ion 

battery is given by equation (2) below: 

𝑉𝐵𝐴𝑇 =  𝐸𝑇 + 𝑅𝑖𝐵𝐴𝑇𝐼𝑐ℎ     (2) 

In the above equation, 𝑉𝐵𝐴𝑇 represents the output voltage of 

the battery, 𝐸𝑇 represents the internal voltage of the battery, 

𝑅𝑖𝐵𝐴𝑇 refers to the internal battery resistance, and 𝐼𝑐ℎ refers 

the charging current. ESS connects to the system via a 

bidirectional DC/DC converter; hence, it must work on both 

charge and discharge modes, as in Figure 3. Therefore, 

based on the reference power flow direction, the DC/DC 

converter works on a buck or boost operation for 

bidirectional power flow. 

Proper charging and discharging control is required to 

ensure safe battery life. So, the battery management system 

maintains fair SOC between 10% and 90% to avoid 

excessive charge or deep discharge of the battery. SOC 

reflects the state of the battery and is represented by 

equation (3) below: 

𝑆𝑂𝐶 =  𝑆𝑂𝐶𝑖𝑛𝑡 [1 −
1

𝑄
∫ 𝑖. 𝑑𝑇

𝑇

0
]                              (3) 

Here in this equation, 𝑆𝑂𝐶 is the State of Charge of the 

battery; 𝑆𝑂𝐶𝑖𝑛𝑡 is the initial state of the battery; 𝑄 represents 

the total charging capacity of the battery and 𝑖 represents the 

charging current. It is often represented in percentage to 

indicate the charge level at a particular instant. 
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Fig. 3. Buck-Boost Converter Control 

C. AC Grid 

A single-phase AC grid with a single-phase inverter via 

an LCL filter is considered for this study, as seen in Figure 

4. The grid inverter is bidirectional, such that it can supply 

and receive power from the system. The inverter control is 

modeled in the 𝑑𝑞0 reference frame, where the generated 

reference current obtained through the smart charging 

system is converted 𝑖𝑑𝑞0, and the actual inverter current is 

compared and processed via a PID controller. The 

difference is then converted to 𝛼𝛽0; the 𝛼 quantity is then 

considered to generate a pulse for the inverter to control the 

desired current flow. 

Fig. 4. Grid inverter control 

3. Smart Energy Management 

To design and develop smart energy management for 

the hybrid charging station, a CNN-LSTM-based SOC 

prediction for the electric vehicle charging demand. This 

section presents the feature extraction process for the SOC 

prediction according to the changes in the PV irradiance and 

solar battery SOC. 

3.1 Feature Extraction for SOC Prediction for 

Energy Management in EV Charging Station 

This work developed a combined CNN-LSTM 

architecture to automatically classify the state’s battery 

SOC for smart energy management in an EV charging 

station. The CNN extracts complex features from images, 

and the LSTM is used as a classifier. As the emergence of 
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EV is very recent, we collect labeled data with images of 

three classes of SOC’s of the PV-integrated stationary 

battery with varying solar irradiance for two cases with EV 

and without EV as described in Table 2.  

Figure 5(a), (b), and (c) shows the feature extraction for 

2D image data collection to sort three different classes of 

battery states for the case with EV. Similarly, we perform 

the image data collection for the case without EV. 

 

 

 

 

 

Table 2. Dataset Collection 

Data/Cas

es 

Classes 

Class 1 Class 2 Class 3 Overa

ll 

𝑆𝑂𝐶𝑏𝑎𝑡

> 
=  𝑆𝑂𝐶𝑚𝑎𝑥 

𝑆𝑂𝐶𝑏𝑎𝑡

< 
=  𝑆𝑂𝐶𝑚𝑖𝑛 

𝑆𝑂𝐶𝑏𝑎𝑡

= 𝑆𝑂𝐶𝑜𝑝𝑡 

 

With EV 150 150 120 420 

Without 

EV 

150 150 80 380 

Total 

cases 

300 300 200 800 

 

(a) 
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(b) 

(c) 

Fig. 5. (a) Class 1 𝑆𝑂𝐶𝑏𝑎𝑡 > =  𝑆𝑂𝐶𝑚𝑎𝑥  (b) Class 2 𝑆𝑂𝐶𝑏𝑎𝑡 <=  𝑆𝑂𝐶𝑚𝑖𝑛 (c) Class 3 𝑆𝑂𝐶𝑏𝑎𝑡 =  𝑆𝑂𝐶𝑜𝑝𝑡 for case with EV 

3.2 CNN-LSTM Architecture 

The images are resized to a resolution of 224 x 224 

pixels to fit the 2D convolution layer of the CNN’s. There 

are 20 layers, with 12 convolution layers, five pooling 

layers, one fully connected layer, 1 LSTM layer, and one 

output layer with a Softmax function, as seen in Figure 6. 

The convolution layer is set with a 3 x 3-kernel size for 

feature extraction with a ReLU-activated function to 

increase the non-linearity in feature maps. The max-pooling 

layer has a 2 x 2 kernel size and reduces the dimensions of 

the input image, followed by a 25% dropout rate. Towards 

the last part, the LSTM layer extracts time information from 

the function map of the convolution layers. After time 

characteristics extraction from the LSTM layer, the 

architecture sorts the images of the different classes through 

a fully connected layer to predict whether they belong under 

the three classes of battery SOC.  
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Fig. 6. Illustration of CNN-LSTM architecture 

3.3 Performance Metrics 

The performance of the proposed system is evaluated 

through assessment metrics like accuracy, precision, 

sensitivity, recall, and F1-score. Figures 7(a) and 7(b) show 

the confusion matrix of the proposed method for the case 

with EV and without EV for three different classes of 

battery states, and the figure shows the training accuracy 

plot for the two cases. The case with EV has a classification 

accuracy of 99.4%, and the case without EV has an accuracy 

of 99.1 %, as seen in Figure 8. Among the 420 data taken 

with EV, 418 data are correctly predicted and sorted in each 

class, while for 380 data without EV, 377 data are correctly 

predicted and sorted.  

The performance metrics represent a True Positive (TP) 

value that denotes the correctly predicted class 1 cases, and 

a False Positive (FP) value denotes the class 2 and class 3 

cases that are misclassified as class 1. Likely, True Negative 

(TN) indicates whether classes two and class 3 are correctly 

classified, and False Negative (FN) indicates whether class 

1 is misclassified as class 2 and class 3. 

Table 3. Performance Metrics Formulae 

S.No Performance 

metrics 

Formulae 

1 Accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

2 Sensitivity 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

=  
𝑇𝑃

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

3 Precision 
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

4 Recall 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

5 F1-score 𝐹1 − 𝑠𝑐𝑜𝑟𝑒

=  2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 Table 3 shows the performance metrics to be 

evaluated for the two cases with EV and without EV with 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
V. Shanmugapriya et al., Vol.13, No.3, September, 2023 

 

 1267 

three classes: Class 1 - 𝑆𝑂𝐶𝑏𝑎𝑡 > =  𝑆𝑂𝐶𝑚𝑎𝑥, Class 2 -  

𝑆𝑂𝐶𝑏𝑎𝑡 < =  𝑆𝑂𝐶𝑚𝑖𝑛 and Class 3 - 𝑆𝑂𝐶𝑏𝑎𝑡 =  𝑆𝑂𝐶𝑜𝑝𝑡 and 

Table 4 shows the performance evaluation for the individual 

classes in terms of accuracy, sensitivity, Precision, Recall, 

and F1-score. A comparative analysis of the existing SOC 

prediction approaches and the proposed method can be seen 

in Table 5. 

 

 

(a) 

 

                                               (b) 

Fig. 7. Confusion matrix (a) With EV (b) Without EV 

 

 

(a) 

 

                                                (b) 

Fig. 8. Training accuracy plot (a) With EV (b) Without EV 
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Table 4. Performance Evaluation of Classification for Cases with EV and without EV 

Class 

Label 
Case Accuracy Sensitivity Precision Recall F1-score FN FP 

Class 1 

With EV 

100 100 100 100 100 0 0 

Class 2 99.5 99.3 99.3 99.3 99.3 1 1 

Class 3 99.5 99.1 99.1 99.1 99.1 1 1 

Class 1 

Without 

EV 

99.4 100 98.6 100 99.2 0 2 

Class 2 99.4 98.6 100 98.6 99.2 2 0 

Class 3 99.4 98.7 98.7 98.7 98.7 1 1 

Table 5. Comparison with the State-of-the art Techniques 

SOC Prediction 

approaches 

 Training efficiency 

% Mean 

Computational Time 

(s) 

Prediction Accuracy 

% 

Bayesian optimization 

technique with ML [25] 

 
89.48 14.87 90.73 

Probabilistic prediction 

[26] 

 
91.45 15.04 93.26 

LSTM Model [27]  93.51 11.60 95.03 

Deep learning model 

[28] 

 
96.44 9.15 96.91 

EMD-AOA-DLSTM 

neural predictor [21] 

 
98.62 7.4 97.14 

Proposed CNN-LSTM 

SOC predictor 

With EV 

Without EV 

99.4 

99.1 

6.4 

6.8 

99.4 

99.1 

 

4. Simulation Results and Discussions 

Combined CNN-LSTM adaptive energy management 

is tested on a hybrid DC microgrid-based residential EVCS. 

The time domain simulation is conducted in 

MATLAB/Simulink R2021b environment on an AMD 

Ryzen 5 3500U core processor of 8GB physical memory 

with a 64-bit operating system. The image classifier block 

converts the signals from battery SOC to spectrum images 

from the Deep Learning toolbox that loads a pre-trained 

network and performs prediction for image classification 

based on the trained CNN-LSTM model. The classified 

label is then converted to generate the reference signal to 

modify the reference current to perform the energy 

management within the hybrid DC microgrid-based EV 

charging station. Figure 9 shows the control flowchart for 

energy management with EV charging and without EV 

charging in the hybrid DC microgrid-based residential EV 

charging station. The energy management control strategy 

is tested for three cases under two different scenarios, i.e., 

with EV and without EV. 

Case (i) PV stationary Battery 𝑆𝑂𝐶𝐵𝐴𝑇  90% with EV 

Figure 10 shows the case with EV and PV stationary 

battery 𝑆𝑂𝐶𝐵𝐴𝑇  90%. When EV is plugged into the 

charging station, PV stored in stationary PV battery 

discharges to charge the EV battery. Excess power 

generated in the PV is fed to the grid. Figure 10(f) shows 

EV under charging mode. The below equation (4) 

represents the power flow within the charging station. 

𝑃𝐺𝑟𝑖𝑑 =  𝑃𝑃𝑉 − 𝑃𝐸𝑉        (4) 
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Fig. 9. Control Architecture 

 

(a)                (b)                                                 
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(c)                                                                                           (d)  

  

                                         (e)                                                                                                      (f) 

Fig. 10. Case with EV for PV Stationary Battery 𝑆𝑂𝐶𝑏𝑎𝑡 = 90% (a) PV parameters (b) Standby PV battery parameters (c) 

SOC of standby PV battery and EV battery (d) Grid real and reactive power (e) Grid side parameters (f) EV battery charging 

parameters 

Case (ii) PV Stationary Battery 𝑆𝑂𝐶𝐵𝐴𝑇  10% with EV 

Figure 11 shows the case with EV and stationary PV 

battery𝑆𝑂𝐶𝐵𝐴𝑇  10%. When EV is plugged into the charging 

station, the PV battery enters charging mode. PV supplies 

power to charge stationary PV batteries, while Grid 

provides power to charge EV batteries. The below equations 

(5) and (6) denotes the power flow within the charging 

station. Figure 11(e) EV battery still under charging mode. 

𝑃𝐺𝑟𝑖𝑑 =  𝑃𝑃𝑉 − 𝑃𝐵𝐴𝑇     (5) 

𝑃𝐺𝑟𝑖𝑑 =  𝑃𝐸𝑉      (6) 
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(a)                                                                                    (b) 

 

(c) 

 

                                        (d)                                                                                      (e) 

Fig. 11. Case with EV for PV Stationary Battery 𝑆𝑂𝐶𝑏𝑎𝑡 = 10% (a) SOC of standby PV battery and EV battery  (b) Grid real 

and reactive power (c) Grid side parameters (d) Standby PV battery parameters (e) EV battery charging parameters 
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(a)                                                                                   (b) 

 

(c) 

 

                                              (d)                                                                               (e) 

Figure 12. Case with EV for PV Stationary Battery 𝑆𝑂𝐶𝑏𝑎𝑡 = 40% (a) SOC of standby PV battery and EV battery  (b) Grid 

real and reactive power (c) Grid side parameters (d) Standby PV battery parameters (e) EV battery charging parameters 
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Case (iii) PV Stationary Battery 𝑆𝑂𝐶𝐵𝐴𝑇  40% with EV 

Figure 12 shows the case with EV and stationary PV 

battery 𝑆𝑂𝐶𝐵𝐴𝑇  40%. Figure 12(a) shows that the stationary 

PV battery discharges to charge the EV battery, and PV 

supplies the remaining power to the grid. When 𝑆𝑂𝐶𝐵𝐴𝑇 <
𝑆𝑂𝐶𝑚𝑖𝑛, the grid supplies power to charge the EV battery 

while PV charges the stationary battery. Figure 12(e) shows 

the EV battery still in charging mode. 

 

(a) (b)

(c) 

Fig. 13. Case without EV (a) SOC of PV standby battery (b) Grid real power (c) Standby PV battery parameters 

Case (iv) PV stationary battery 𝑆𝑂𝐶𝐵𝐴𝑇  90% without EV 

Figure 13 shows the case without EV. From Figure 

13(a), the stationary PV battery can be seen in charging 

mode when 𝑆𝑂𝐶𝐵𝐴𝑇 > 𝑆𝑂𝐶𝑚𝑎𝑥 , excess PV power is 

supplied to the grid. The below equation denotes the power 

flow within the charging station when there is no arrival of 

the EV. 

  𝑃𝐺𝑟𝑖𝑑 =  𝑃𝑃𝑉 − 𝑃𝐵𝐴𝑇                 (7) 

 Similarly, the other two cases (v) and (vi) without 

EV for 𝑆𝑂𝐶𝐵𝐴𝑇  40% and 𝑆𝑂𝐶𝐵𝐴𝑇  10% are tested on the 

Hybrid DC microgrid based EVCS which shows that 

without EV the stationary PV battery enters Charging mode 

and the excess power is shared among the various sources. 

Table 6 shows the power-sharing within the hybrid DC 

microgrid-based EVCS and their inferences. 
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Table 6. Power Sharing Within The Hybrid DC Microgrid-based EV Charging Station 

Cases States of Stationary PV Battery 

𝑺𝑶𝑪𝑩𝑨𝑻 = 𝟗𝟎% 𝑺𝑶𝑪𝑩𝑨𝑻 = 𝟒𝟎% 𝑺𝑶𝑪𝑩𝑨𝑻 = 𝟏𝟎% 

Grid Real Power Flow (W) 

With EV -2200, -500, +0, +400, +700 -1000, +500, +1000, +1500, 

2000 

+600, +1200, +1500, +1800, 2000 

Comments The grid takes power from solar 

PV and stationary PV batteries. 

Stored PV power is supplied to 

charge the EV battery as PV 

irradiance decreases. Grid supplies 

power to DC bus to charge EV 

battery. 

Battery and PV supply power to 

the grid until minimum SOC. PV 

recharges the stationary battery, 

and Grid feeds power to charge 

the EV and PV batteries. 

PV battery enters charging mode. 

PV recharges the stationary 

battery. Grid feeds power to 

charge EV battery and PV battery 

Without 

EV 

-2200, -600, +0, +600, +800 -900, +450, +900, +1400, +1900 +500, +1200, +1400, +1600, 

+1900 

Comments The SOC of Stationary PV battery 

in charging mode. PV charges the 

battery and supplies excess power 

to the grid. As solar irradiance 

decreases, Grid feeds the PV 

battery. 

The SOC of Stationary PV 

battery in charging mode. PV 

charges the battery and supplies 

excess power to the grid. 

The SOC of stationary PV battery 

in charging mode. As solar 

irradiance decreases, Grid feeds to 

charge PV battery 

5. Conclusion 

The proposed smart energy management could be 

integrated with A Hybrid DC microgrid-based EV charging 

station. For a residential charging system with one large 

Energy storage system and multiple charging outlets, the 

power flow control strategy could be executed through the 

CNN-LSTM-based classification model. The overall 

classification accuracy shows 99.4% for scenarios with EV 

and 99.1% for without EV under different cases tested, and 

the individual classification for each of the cases also has an 

accuracy of approximately 99%. The developed model 

predicts the SOC of the stationary battery according to 

prediction classes with high accuracy and effectively 

allocated resources for the EVCS requirements. 

The simulation results justify that the classification 

for the different cases with EVs and without EVs has been 

performed, and the energy management within the hybrid 

charging station solves the energy demand for the EV and 

also enhances the optimized use of Grid and PV sources. 

The smart coordination between the PV source, the grid, and 

the ESS maintains the EV charging station requirements. 

Moreover, in the absence of EVs, the coordinated control 

strategy between the power sources resolves energy demand 

and effectively shares power, enhancing the utilization of 

PV. 
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