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Abstract- This paper studies the effect of photovoltaic internal cell structure on the maximization of the overall panel output 

power. Photovoltaic (PV) power generation is one of the eco-friendly and sustainable electrical energy sources. On the other 

hand, due to the climate change harmful phenomena, the use of renewable energy resources is mandatory. Henceforward, the 

manuscript contribution is studying the influence of absorber layer thickness , buffer layer thickness , absorber layer 

doping  , and buffer layer doping  on the PV electrical energy management through examining their effect on cell 

efficiency and panel output power. The simulation is carried out using the SCAPS program. The maximum efficiency and 

output power are reached by applying three strategies of cell parameters variation ( , ,   and ). The simulation results 

are compared to a market-existing module. A Convolutional Neural Network (CNN) is used to model the PV behavior utilizing 

the SCAPS results. The obtained results indicate that the module area can be reduced by 22.39 % while maintaining the same 

power, thereby reducing the overall cost of energy production by the proportion of the land capital cost and maintenance. It 

indicates satisfying results. 

Keywords Convolutional Neural Network (CNN) – Maximum output power ( ) – Open circuit voltage ( ) –Renewable 

energy– short circuit current ( )– solar cell efficiency (ր). 

 

1. Introduction 

Every day, more solar energy hits the globe than the 

world’s current population can use in a year. Solar energy 

has multiple advantages; for example, that fact that it is 

environmentally friendly, as it has no greenhouse emissions. 

Thus, it is considered a pollution-free energy source. [1]. 

They are eager to apply the knowledge gained into their 

everyday lives. An application of that can be seen through 

the decrease in appeal to non-renewable energy sources due 

to their various disadvantageous effects on health [1]. Other 

benefits are economical as using solar energy does not 

require external energy sources; therefore, it decreases the 

dependence on foreign sources. Furthermore, it is cost-

effective because it requires low maintenance, as solar panels 

can last for 30 years [2]. In addition, it requires a lot of space 

to produce the same amount of energy produced by a smaller 

quantity of fossil fuels. 

Gaining expertise in semiconductor physics is essential 

for improving solar cell efficiency. While altering the 

electrical and physical properties of the semiconducting 

silicon material, simulation helps to understand the solar cell 

device performance [3]. Certain parameters, such as , ,  

 and , can be changed using simulation software, which 

depends on mathematical formulas to estimate the solar cell 

device performance [4-6]. The thickness of the constituent 
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material is one of the factors that influence the current 

density voltage properties of solar cells [7-8]. A simulation is 

used to find the numerical solution of the two-dimensional 

semiconductor equation, which represents the distribution of 

electron charge carriers and holes in the simulated solar cell 

device. It starts with finding the optimal thickness for each 

layer's performance. Each thickness variation is compared to 

the other for optimal performance [9]. 

In order to expand the share of PV electricity in the 

energy mix in the next years, continuous cost reduction and 

efficiency improvements of silicon solar cells are critical. 

While silicon solar cells are becoming more common, 

efficiency restrictions and improved margins are still present 

and will be in the future [10]. The characteristics of the a-Si 

solar cell are determined using a solar cell simulator [11].  

The parameters affect a cell's I–V characteristics at any given 

light intensity and unspecified cell temperature. As a result, 

they determine the value of performance metrics; such as the 

short circuit current ( , open-circuit voltage ( ), and the 

cell's efficiency (ր) [12-15]. 

Energy management describes the approach of regulating 

and optimizing energy-using systems and producers, to 

decrease energy consumption per unit of output while still 

lowering or maintaining the overall system costs [16-20]. 

Convolutional Neural Network leads to good achievements 

in some applications. It has evolved into one of the most 

prominent neural networks in deep learning [21-23]. A CNN 

is a type of neural network that consists of one or more 

convolutional layers, often with a subsampling layer, 

followed by one or more fully connected layers [24-26]. 

This manuscript illustrates the effect of the structure of 

Si-based PV technology on the improvement of electrical 

power generation through the relation between the variation 

of the PV cell internal parameters and the maximum output 

power of the module. This study presents a novel 

contribution in this field, as most of the previous research has 

studied the effect of ambient temperature and irradiance on 

photovoltaic performance [10-15] or the sizing and allocation 

of PV modules on the power system [16-20]. However, in 

micro-scale studies, most of the research investigates the 

effect of PV cell internal parameters on PV cell efficiency. 

CNN is trained to estimate efficiency and maximum output 

power. Based on these studies, this paper contributes to the 

state-of-the-art by two main ideas. The first one is the 

integration between the solar cell internal parameters and the 

module power. The second one is the involvement of CNN 

that provides accurate modelling results for a variety of 

applications. It is used to model the nonlinear behavior of PV 

internal parameters. The two ideas are not applied in the 

previous studies that have been illustrated [10-15], and [16-

20]. 

The present paper is organized as follows: Section 1 

includes the Introduction, section 2 presents the 

mathematical model and device structure, section 3 discusses 

the Simulation study, and section 4illustrates the intelligent 

CNN model. Finally, section 5 concludes the paper. 

 

2. Mathematical Model 

The Solar cell CAPacitance Simulator SCAPS-1D 

(V.3.3.07) is used to execute the simulation, which has been 

developed by Pr. Marc Burgelman.et al. [27].  The technique 

is primarily based on three fundamental equations, including 

the Poisson equation, the Hole-Continuity equation, and the 

Electron-Continuity equation [28-30]. The silicon solar cell 

parameters are shown in Table 1. Conventional Solar cells 

consist of three layers the absorber layer, the emitter, and the 

anti-reflecting coating layer, as shown in Fig. 1. The absorber 

layer is made from P-type silicon. In the p-type absorber 

layer, the minority and the majority carriers are electrons and 

holes, respectively. The purpose of this absorber layer is to 

absorb light. Consequently, minority and majority charge 

carriers are formed. The emitter layer is essential for charge 

carrier separation and collection. The emitter layer is made 

from n-type silicon. The emitter and the absorber layers are 

linked to form a p-n junction. By diffusion, Electrons flow to 

the absorber layers, holes move to the emitter layer and a 

built-in electric field is formed in the junction region. This 

field causes negatively charged particles to travel one way 

and positively charged particles to move the other. Thus, one 

can say that the emitter layer functions as a selective 

membrane that allows minority charge carriers to move 

through. The membrane resists the movement of the majority 

carriers. Without the emitter layer, generated charge carriers 

would simply roll around in the absorber layer until they 

recombine. An anti-reflection coating is placed at the front of 

the cell to reduce the front surface reflection and maximize 

the transmission probability into the cell. Finally, metallic 

contacts, or electrodes, are needed at both sides of the solar 

cell to collect these carriers and send them to an external 

circuit. Up to 500µm is the maximum size of an ideal silicon 

solar cell with excellent light trapping (base) and up to 1.5 

µm for n-layer. Up to 500µm is the maximum size of an 

ideal silicon solar cell with excellent light trapping (base), 

and up to 1.5 µm for n-layer. The main parameters that are 

used to characterize the performance of solar cells are the 

open circuit voltage  , the short-circuit current density  

and power conversion Efficiency. 

                                                            (1)                                

Where (  is the photocurrent density; and (  is the 

diode current density. 

                                                        (2)                                                                                                                 

                                              (3)                                                                                    

                                                    (4)                                                                                       

Where  is the light generated current, the open-circuit 

voltage corresponds to the amount of forward bias on the 

solar cell due to the bias of the solar cell junction with the 

light generated current. Selecting a material with a higher 

band gap ( ) the reverse saturation current can be reduced.  

                                                                 (5)                                                                                
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Where  is the fill factor and  is the input power, 

the solar cell is designed at Standard Test Condition (STC) 

where the irradiance (  ) is 1000W/m², cell temperature is 

25°C, and Air Mass (AM1.5).  

                                              (6) 

                                   (7)                                                                                                

     (8)                                                                                                

Where  is the module voltage,  is the 

number of series cells, is the module current,  

is the module power,  is the power of existing 

module; and  is the maximum power for each strategy. 

 

 
Fig. 1. Basic structure of the solar cell. 

 

Table 1. Parameters of SI solar cell 

Description Value 

Bandgap (eV) 1.13 

Electron affinity (eV) 4.5 

Dielectric permittivity 11.9 

Conduction band (CB) ( ) 2.890E+19 

Valence band (VB) ( ) 3.140E+19 

Electron velocity (cm/s) 2.030E+7 

Hole velocity (cm/s) 1.670E+7 

Electron mobility (cm²/Vs) 1.410E+3 

Hole mobility (cm²/Vs) 4.770E+2 

 

3. Simulation Study 

 The aim of this paper is to study the factors that limit the 

performance of Si-based solar cells. The influence of the , 

 and  are examined. The results are compared with 

a market-existing module (TALLMAX), in which the 

parameters of the practical module are shown in  

Table 2. 

 

Table 2. Parameters of the particle module 

Description Value 

Cell orientation 72 cells 

Solar cell (mm) 156.75 × 156.75 

Module Dimensions (mm) 1956 × 992 × 40 

Open Circuit Voltage-  (V) 46.3 

Short Circuit Current  (A) 9.39 

Maximum Power Voltage  (V) 37.6 

Maximum Power Current (A) 8.91 

Maximum Power (W) 335 

Module Efficiency ր (%) 17.3 

 

 The work is progressed through three strategies as shown 

in Fig.2.  

 

1.  The first strategy: in which the impact of the solar cell 

parameters’ variation on the module maximum Power 

( ) and module efficiency (ր) is tested starting from 

, ,  to . 

2.The second strategy: in which the impact of the solar cell 

parameters’ variation is tested starting from ,  ,  to 

 (versa vice the first strategy sequence). 

3.The third strategy: in which the parameters are varied to 

find the optimum arrangement that gives . 

 

 

 

 

 

Studying Strategies

First Strategy Second Strategy Third Strategy

tn à tp à NA àND ND àNA à tp à tn

tn

tp NA

ND

Other Variables 

Best Values

AI (CNN) 

Module
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Fig. 2. Three strategies of cell parameters variation.

 

A. The First strategy: 
 

I. Buffer layer thickness  

The thickness of buffer layer is varied from 0.1  up to 

2  with constant  and 

. Fig. 3 shows the relation between the 

buffer layer thickness (in  and Efficiency ր (%) and 

maximum power (  in W). It is obvious from Fig.3 that 

the efficiency decreases linearly as the buffer layer thickness 

increases.   decreases linearly with  until . 

It is cleared that the maximum efficiency and maximum 

power are reached at , which are fixed in the 

other parameters test. 

 

 
Fig. 3. Buffer layer thickness vs Efficiency and maximum 

power. 
 

II. Absorber layer thickness (  
 

 The thickness of the absorber layer ranges from 50   

to 1000  with constant , 

and . The relation between the absorber 

layer thickness (in   and efficiency ր is presented in 

Fig.4. It is perspicuous that  and ր increase almost 

exponentially with . The range of 250-350  is the 

preferred and the optimal .  

 

 

Fig. 4. Absorber layer thickness vs maximum power and 

efficiency. 
 

III. Absorber layer doping (  
 

 The absorber layer doping ranges from to 

 with constant   and 

. Fig. 5 represents the absorber layer doping 

(in  ) vs ր and .  and ր increase linearly with 

till  .  As  is greater than  , ր and  

become saturated. It is cleared that     gives 

the maximum values of ր and . 

 

 
Fig. 5. Absorber layer doping vs efficiency ր and maximum 

power. 
 

IV. Buffer layer doping (  
 

 The buffer layer doping is varied from  up to 

 with constant   and 

. Fig. 6 shows the buffer layer doping (in 

 ) vs ր and .  and ր increase linearly with 

untill ; afterward, they become nearly saturated. The 

maximum value of   and ր are reached as   

.   It is noticed that there is a similarity in the variation 

behavior of the four parameters ( , and with 

both  and ր. 
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Fig. 6. Buffer layer doping vs efficiency ր and maximum 

power. 
 

 The P-V and I-V curves for this case are shown in Fig.7 

(a & b) compared to those of the market module. The 

maximum power  increases to 380 W. Table 3 clarifies 

the parameters of the studied module. 
 

Table 3. Parameters of the first strategy module                  

Open Circuit Voltage-  (V) 50.9 

Short Circuit Current  (A) 8.85 

Maximum Power Voltage  (V) 44.65 

Maximum Power Current (A) 8.476 

Peak Power (W) 380 

Module Efficiency ր (%) 21.5 

 

 
(a) 

 
(b) 

Fig. 7. (a) Module current vs voltage, (b) Module power vs 

voltage. 

B. Second strategy: 

Using the same behavior as the first strategy, but in 

reverse sequence, the results of the second strategy are 

determined. 
 

I. Buffer layer doping (  
 

 The buffer layer doping is changed with constant  

 and . Fig. 8 

exhibits vs .  increases linearly with untill 

 then it becomes nearly saturated. The maximum value 

of   is reached at   , which is considered 

in the rest of the strategy steps.  
 

 
Fig. 8. Buffer layer doping vs maximum power. 

 

II. Absorber layer doping (  
 

 The absorber layer doping is varied with constant 

and . Fig. 9 

shows  vs .  increases linearly with till it 

reaches its maximum value at  .  
 

 
Fig. 9. Absorber layer doping vs maximum power. 

 

III. Absorber layer thickness (  
 

 The thickness of the absorber layer ranges from 50  

to 500  with constant   

and .  Fig. 10 illustrates the relation 

between  and . The range of  is 

the preferred absorber layer thickness.  becomes 

saturated after  300 . 
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      Fig. 10. Absorber layer thickness vs maximum power. 

IV. Buffer layer thickness  
 

 The thickness of buffer layer is varied with constant  

 and . Fig. 

11 represents the relation between  and . It is obvious 

that  decreases linearly with . It is clearly that 

reaches its maximum value at . 

 
       Fig. 11. Buffer layer thickness vs maximum power. 

 Fig. 12 (a & b) clarifies the P-V curve and I-V curve for 

the second strategy compared to the market module. The 

maximum   equals 363 W.  It decreases compared to the 

first strategy, while both are greater than the original panel 

value.  Table 4 indicates the parameters of the studied 

module. 
 

 
     (a) 

 
    (b) 

Fig. 12. (a) Module current vs voltage, (b) Module power vs 

voltage. 

 

Table 4. Parameters of the second strategy module 

 

 

 

 

 

 

 

 

 

C. Third strategy: 
 

I. Buffer layer thickness  
 

 By selecting the best values of   and 

 from the first strategy and assigning 

 it is found that the maximum .  is at 

.The variation of  with the buffer layer 

thickness  is shown in Fig.13. 
 

 
  Fig. 13. Buffer layer thickness vs maximum power. 

 

II. Absorber layer thickness (  

 The thickness of the Absorber layer (  is varied with 

constant   and 

. Fig. 14 illustrates that 250  is the 

optimized . The variation after this value  of  causes 

unconsidered increase in . 

Open Circuit Voltage-  (V) 49 

Short Circuit Current  (A) 8.86 

Maximum Power Voltage  (V) 43.2 

Maximum Power Current (A) 8.4 

Peak Power (W) 363 

Module Efficiency ր (%) 20.57 
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Fig. 14. Absorber layer thickness vs maximum power.  

 

III. Absorber layer doping (  
 

As the absorber layer doping (  is changed with 

constant   and , 

the maximum  is observed at   as 

presented in Fig.15.  
 

 
Fig. 15. Absorber layer doping vs maximum power.  

 

IV. Buffer layer doping (  
 

As the buffer layer doping (  is varied with constant  

 and , the 

highest  is observed at   as clarified in 

Fig.16 . The P-V and I-V curves for the third strategy relative 

to the market module are shown in Fig.17 (a & b). The 

maximum  increases to 410 W. Table 5 shows the value 

of the studied module. 
 

 
       Fig. 16. Buffer layer doping vs maximum power. 

 

 
(a) 

 
(b) 

Fig. 17. (a) Module current vs voltage, (b) Module power vs 

voltage. 
 

Table 5. Parameters of the third strategy module 
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Table 6 and Fig.18 illustrate a comparison between the 

parameters of the existing module and the output 

performance of the three strategies. For the same module 

area, the best cell efficiency (ր) is obtained from the third 

strategy to be 23.18% instead of 17.3% of the existing 

market module. Furthermore,   is improved from 335 W 

to 410 W with an increased power percentage equal to 

22.39%. It means that for the same power, the module area 

can be reduced by 22.39% to reduce the overall cost of 

electricity generation by the share of land capital cost and the 

maintenance of the reduced area. 

 

 
(a) 

 
(b) 

 

(c) 

 

(d) 

Fig. 18. (a) Solar panel open circuit voltage for different strategies, (b) Solar panel short circuit current for 

different strategies, (c) Solar panel efficiency for different strategies and (d) Solar panel maximum power for 

different strategies 

Table 6. Different modules parameters comparative table                   

 Market module First strategy  Second strategy  Third strategy 

 (V) 46.3 50.9 49 53.28 

 (A) 9.39 8.85 8.86 8.8 

 (V) 37.6 44.65 43.2 47.52 

(A) 8.91 8.476 8.4 8.63 

Area ( ) 1956 × 992  1956 × 992  1956 × 992  1956 × 992  

Efficiency ր (%) 17.3  21.5 20.57 23.18 

(W) 335 380 363 410 

Increase of power (%) - 13.43 8.36 22.39 

Open Circuit Voltage-  (V) 53.28 

Short Circuit Current  (A) 8.8 

Maximum Power Voltage  (V) 47.52 

Maximum Power Current (A) 8.63 

Peak Power (W) 410 

Module Efficiency ր (%) 23.18 
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4. Intelligent CNN Model 

CNN fulfills good modelling results for different 

applications, it is used to model the non-linear PV internal 

parameters behavior.  The system is built with four input data 

features ( , ,  and )  and two output variable layers 

( ). The dataset used to train and test the proposed 

system is created using SCAPS. The system is trained and 

tested using 350 and 50 samples respectively. 

The developed CNN consists of 11 layers which are the 

image input layer, the convolution 2-d layer, fully connected 

one, and the output layer as illustrated obviously in Fig.19. 

The convolution layer is the fundamental component of a 

CNN. It bears the bulk of the network's computational strain. 

This layer performs a dot product between two matrices, one 

of which represents the set of learnable parameters. The 

Swish layers illustrate the relevance of activation functions. 

The fully connected layer facilitates the mapping between the 

input and output representations. Fig. 20 (a, b) shows the 

values of predicted and original efficiency and power 

respectively. The Root Mean Square Error (RMSE) for 

efficiency is 0.08 and RMSE for maximum power is 0.95.  

Referring to the fact that CNNs typically perform well with 

grid-like datasets or structured data formats, it is the main 

initiative behind utilizing it in this study. CNNs can also take 

advantage of local connectivity and shared weights in the 

input, by using convolution layers that apply filters to very 

small local regions of the dataset, which allow them to 

capture small local regions of the input data that are relevant 

to the regression analysis. 
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Fig. 19. The convolution neural network architecture.

 

(a) 

 

(b) 

Fig. 20. (a) The predicted and original efficiency variation with the test samples using CNN, (b) The predicted and original 

power variation with the test samples using CNN. 

 

5. Conclusion  

 According to the integration of studies in renewable 

energy field, this research connects the micro-scale studies of 

the PV cell parameters with the macro-scale energy 

management systems. The contribution of this work depends 

on two main points, which are: 1- studying the impact of the 

variation of the solar cell internal parameters on the module 

overall output power, and 2- emulating the system using 
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CNN. The investigation fact of PV cell internal parameters 

effect on maximizing the output power and minimizing the 

unit cost. The simulation is verified within three strategies,  

 

 

all strategies depend on the variation of ( , ,  and ) 

sequentially using SCAPS program.  

 

i. The first strategy arranges the variation of the 

parameters as ( , ,  and ) to increase  

by 13.43% at .  
ii. The second strategy is opposite to the first 

strategy according to the parameter sequence to 

boost  by 8.36% at . 

 

iii.  The third strategy involves varying the 

parameters logically and sequentially to obtain the 

optimum arrangement to give the highest efficiency 

and the highest maximum output power, which is 

 raised by 22.39% at . 

 The obtained results show that the module area can be 

minimized by 22.39% for the same power as described in the 

third strategy. As a result, lowering the overall cost of energy 

generation by the proportion of the land capital cost and 

maintenance. CNN is designed to model the relation between 

the PV internal parameters ( , ,  and )  and the 

maximum output power and efficiency. Furthermore, the 

intelligent network error percentage ranges between 0.25% - 

0.27%. 
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