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Abstract: The complexity of the power system increases as the hundreds of lines involved due to the penetration of conventional 

and renewable energy sources to meet the increased load demand. Transmitting the power for hundreds of kilometres long 

distances makes complexity in the network to locate the fault. Thus it is necessary to develop suitable algorithms to identify the 

location of the fault accurately in presence of large number of transmission lines. In this paper a novel Wavelet Artificial Neural 

Network (WANN) based method is developed where the Detailed coefficients (D1 coefficients) obtained from the current signals 

are used for training and testing ANN. The fault location is carried out in presence of renewable energy sources for various 

distances, fault impedances on 4-bus connected transmission system. A 4-bus transmission system is simulated using simulation 

software and the analysis of fault is done by using current signals of various faults with the help of wavelet multi-resolution 

analysis at both buses. This analysis is worked out almost within half cycle. The proposed wavelet based algorithm is tested for 

all fault conditions in presence of renewable energy sources with different power ratings at various distances and hence it is 

proved that the proposed method provided the best results for different fault impedances, fault generator capacities, fault 

inception angles (FIA). 

Keywords: D1 coefficients, Wavelet-ANN, Bior1.5 mother wavelet, fault inception angle, fault impedance. 

 
1. Introduction 

The power system is designed to supply continuous 

power to the end customers without changing voltage, current 

and frequency levels with minimal cost. But, due to huge 

penetration of loads to the existing power system, we need to 

identify the location of disturbances occurring during faults 

conditions as early as possible and to be cleared using circuit 

breakers [1]. Here some recent papers are discussed with 

various techniques for the fault location.  

Mahmood Parsia, et al proposes four fault location techniques 

namely, time-domain, impedance, visual inspection and a 

novel wavelet-based technique [2]. A new time domain 

method for fault detection and fault location multi-terminal 

transmission line wavelet correlated modes is discussed in 

this paper [3]. The electricity can be produced either directly 

from photovoltaic cells or indirectly from concentrated solar 

power technology [4]. Dr. H. V. Gururaja Rao et al a new, 

simple and dependable wavelet transform based fault location 

estimator for transmission lines deploying STATCOM 

integrating energy storage device [5]. Majid Jamila, Abul 

Kalama, A.Q. Ansaria, M. Rizwanba presented a novel 

method of wavelet transform along with a generalized neural 

network for fault location estimation 2-bus system 

transmission lines. The fault location accuracy is changing 

with respect to type fault and the error is more than 2.5% [6]. 

A. Salehi Dobakhshari and A. M. Ranjbar studied the a 
Linear Weighted Least-Squares (LWLS) method for fault 

location on transmission lines by synchronized measurements 

voltage western systems coordinating council on 9-bus, 22-

bus transmission system. The accuracy corresponds to line 

18–21 are least with 3% error [7]. Nabamita Roy and Kesab 

Bhattacharya proposed a method of fault location 

identification using frequency components of S-Matrices.  

These components are used as input for the ANN for training 

the network. A back propagation ANN is used to find fault 

location. It found the fault location with an error of 4.46% [8]. 

Alkım Capar, Aysen Basa Arsoy proposed a fault location 

method using fault voltage and currents vectors on both ends 
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of transmission line measurements and line parameters. It is 

found that if the fault is closed at the location of the capacitor 

the error becomes increasing [9]. Kunjin Chen, Caowei 

Huang, Jinliang He discussed fault detection techniques using 

feature extraction from the signal to be analyzed. A D1 

review of the methods is discussed for the fault detection, 

classification and location in transmission and distribution 

systems. The fault location maximum error was 5% [10]. J. 

Ren, Member, S. S. Venkata, and E. Sortomme proposed 

Synchrophasor measurements in distribution systems for the 

location of the fault in 14-bus distribution feeder. The 1% of 

change in current and voltage phasor will change the 

estimated distance value error by 2% [11]. Gaurav Kapoor 

proposed a scheme for determining the fault location on a 2-

bus transmission system using discrete wavelet transform 

using current signals on both ends of the lines.  The fault 

location error is a maximum of 2.5% [12]. From the above 

literature survey, few limitations have been observed in fault 

location. The identification of fault location is dependent on 

the distance at which the fault occurs in the transmission line. 

Also, the estimated error of fault location is very high.In this 

paper a novel WANN based method is developed where the 

wavelet multi resolution analysis is used to obtain D1 from 

the fault current signals and this data is used for training and 

testing ANN. The fault location is carried out in presence of 

conventional and renewable energy sources on 4-bus 

connected transmission system. A 4-bus transmission system 

is simulated using simulation software and the analysis of 

fault is done by using current signals of various faults. This 

analysis is worked out almost within half cycle of current 

signals. The proposed WANN based algorithm is tested for 

all fault conditions with different power ratings of 

conventional and renewable energy sources at various 

distances. Hence it is proved that the proposed method 

provided the best results for the fault location at different fault 

impedances, generator capacities, and fault inception angles. 

1. Solar Energy 

The PV cell equivalent circuit is shown in above Fig.1. 

The light energy absorbed by the solar cell is represented by 

its equivalent current source ‘I’ in parallel with an inverted 

diode ‘D’. It consists of series resistance Rs which represents 

the resistance due to the diode and metallic contacts and shunt 

resistance RSH represents the electron-hole recombination. 

The shunt resistance is having a high value; therefore, it can 

be neglected [13]. 

IL
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 Fig. 1 PV cell equivalent circuit. 

An I-V curve starts from a short circuit condition where 

voltage is minimum and current is at its maximum value and 

ends at an open circuit condition where the current is zero and 

voltage are at its maximum value shown in fig.2.. The 

frequency variation increased is less in case of solar cell 

compared to wind energy [14]. At which point cell generates 

the maximum power is known as MPP Technique. The main 

criterion to adapt MPP technique is its performance and 

implementation [15] 
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Fig. 2 I-V and P-V Characteristics of solar PV cell 

3. Wind Energy  

Maximum energy is captured by MPPT algorithm in which 

maximum mechanical energy is captured by indirect power 

controller and maximum electrical energy captured by direct 

power controller [16]. The mechanical power (Pm) extracted 

from the wind turbine is given as 

 

Pm =1/2CP ρV3
W A (W)      

There are two converter controls incorporated in the 

modelling one is  

i) Rotor Side Control Converter (RSCC) 

ii) Grid Side Control Converter (GSCC).  

The function of RSCC is to extract high amount of 

power from the wind source and controlling the reactive 

power inject into the grid. The function of GSCC is to keep 

DC-bus voltage constant and exchanging reactive power with 

the grid [17]. 

4. Technical Challenges in the Integration of Micro 

Sources 

Protection of micro sources connected system poses major 

technical challenges because of relay operation and 

coordination in the power system. When the system is 

operating in both modes of operation, the response of the 

protection system must be more effective for both internal 

faults and external faults [18]. During grid-connected mode, 

if any fault occurs on the MG the desired response is to isolate 

the micro sources from the MG to protect the loads. The 

stringent effect of DC off set current makes protection more 

difficult [19] 

5. Wavelets 

A wavelet is a small wave, which has finite energy 

concentrated over a time interval has scaling and shifty 

properties to suit any type of transient time-frequency varying 

signals which provides time-frequency localization of a 

signal having abrupt changes.  The mother wavelet is able to 

the translated and dilated discretely. However, the Wavelet 

Transform (WT) uses variable window widths (short for high 

frequencies and longs for low frequencies) and allows in 
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general obtaining adequate information combining the 

temporal event with the frequency spectrum [20]. Therefore, 

it has been selected as an analysis tool. Wavelets are used in 

the series expansion of functions or signals much similar to 

the Fourier series [21]. A wave and wavelet is shown in Fig.3. 

 
Fig.3. A wave and wavelet 

 

The various types of wavelets are shown in Fig.4. Among 

these wavelets, the Bior1.5 wavelet is considered because of 

its unique feature of producing symmetrical coefficients as 

output from the transient signals [22] 

 

 
Fig.4. Types of wavelets 

 

6. Artificial Neural Network Structure 
 

ANN’s are playing a very crucial role in electrical Power 

systems applications. Multilayer networks are one among 

them used for applications of Electrical Power systems. A 

multilayer neural network consists of more than one layer. 

Introduction of hidden layers improves the problem solving 

capability of the network. The general architecture of the 

Neural Network employed for the proposed fault location 

algorithm [23] is shown in fig.5. 

 

Fig.5. Neural Network Structure. 

 

This network is trained using error back propagation training 

algorithm. In this training algorithm inputs are presented to 

the network and outputs of all layers are calculated in the 

forward direction and error is calculated by comparing the 

output with the target output and then weights are updated in 

the backward direction that is weights of output layer are 

updated first then hidden layer weights based on the error 

value till the weights of neurons are stabilized. The number 

of training parameters and training sets is depending on the 

type of application. The parameter selection plays a vital role 

in the stabilization of weights. The main parameters to be 

selected are 

• Initial weights 

• Learning coefficient  

Weights initiation should be done properly to get the final 

weights to be stabilized with minimum error. If the initial 

weights are not selected properly the error may be trapped 

into local minima or sometimes the weights may not be 

converged so the training is to be restarted [24]. Similarly, 

the learning coefficient (usually small) is also to be selected 

at a small value so that weights will be converged with 

minimum error. The ANN parameters used for this work are 

➢ Input data: D1 coefficients of post fault current signals 

➢ Target data: Line distance 

➢ Number of layers:2 

➢ Training algorithm: Back-propagation 

➢ Number of Patterns: 5 × 4 × 4 × 9 = 720 

(Distances-5, Number of faults-4, Number of buss-4, FIA’s-9)  

Forward pass  

H1 =  Ia W1a + Ib W1b + Ic W1c + b1 

H2 =  Ia W2a + Ib W2b + Ic W2c + b1 

               ⋮                   ⋮         ⋮ 

Hn =  Ia Wna + Ib Wnb + Ic Wnc + b1 

 

Output= H1 × W1 + H2 × W2 + − − − − − − + Hn × Wn 

where, 

Ia,p−q =  D1 coefficients of phase-A on pth bus at qth FIA 

Ib,p−q =  D1 coefficients of phase-B on pth bus at qth FIA 

Ic ,p−q =   D1 coefficients of phase-C on pth bus at qth FIA 

 

Where, 

P = buss (B1, T2, T3, T4) 

q = FIAs (00, 200, 400, 600, 800, 1000, 1200, 1400, 1600) 

 

W1a , W1b, W1c, W2b , W2b, W3c, Wna, Wnb, Wnc and 

 

 W1, W2, − − −W𝑛 are initial weights  
 

Activation sigmoid function =
1

1+𝑒−H1
 

Total error et =  ∑ 1/2(target − output)2 

Weight update error at Wn =  
∂et

∂Wn
 

Location % error = [ 
AFL − EFL

TLL
 ] × 100 

AFL is Authentic Fault Location 

EFL is Evaluated Fault Location 

TLL is Total Line Length. 
 

7. Wavelet-Based Algorithm for the Preparation of 

Training and Testing Patterns 
 

 The proposed wavelet based algorithm is designed for 

obtaining training and testing patterns of D1 coefficients from 

the current signals at different distances 10km, 20km, 30km, 

40km, 50km for Bus1, Bus2 and 1km, 2km, 3km, 4km, 5km 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
S. Chandra Shekar et al., Vol.14, No.3, September, 2024 

 

9 554 

for Bus3, Bus4 at FIAs 0
0
, 20

0
, 40

0
, 60

0
, 80

0
, 100

0
, 120

0
, 140

0
, 

160
0
. After D1 coefficients are obtained, these values given 

as inputs for ANN and location of fault as target output. 

Further, the actual distance of fault location is compared with 

ANN distance. In this paper Bior1.5 wavelet horizontal D1 

coefficients of absolute values are used for the analysis.  
 

 

Designing algorithm 
 

Step-1: Set the bus numbers where the fault is to be analyzed. 

Step-2: Apply the fault and measure all the currents of all 

phases at both ends. 

Step-3: Decompose the current signals of each phase by 

applying the Bior1.5 mother wavelet for all the lines. 

Step-4: Obtain the D1 coefficients of current signals. 

Step-5: Obtain the absolute value of D1 coefficients. 

Step-6:  Set the threshold value. 

Step-7:  Training ANN with D1 coefficients. 
 

Fig.6. shown flowchart of the proposed algorithm.  

 
 

.  
 

Fig.6. Flowchart of Proposed algorithm. 

 

8. Wavelet-ANN Based Technique for Fault Location 
 

A 4-bus renewable energy sources connected 

transmission system is simulated with 3 different generating 

capacities show in Table.1. 

 

 

Table.1. System Data 

 

Bus1 Conventional source 100MVA 

Bus2 Utility grid 2500MVA 

Bus3 Wind energy source 
No.of wind turbines:6, 

Power rating: 10MW  

Bus4 Solar PV source 
PV cell Power Rating: 

1MW 

  

The proposed 4-bus renewable energy sources connected 

transmission system is considered for the analysis and shown 

in fig.7. 

 
 

Fig.7. Single line diagram of 4-bus connected transmission 

system 
 

Line length for Bus1 and Bus2 is 60km line where as for Bus3 

and Bus4 is 6km. Symmetrical and unsymmetrical faults are 

applied to the lines at different distances. 

System frequency = 60Hz 

Time per cycle = 
1

 60
 =16.6 (msec) 

Sample time = 
1

60×36×100
 = 

1

216000
(sec) 

 

Total 216000 samples are considered per cycle. Bior1.5 

mother wavelet-based algorithm extracts D1 coefficients 

from current signals. The different types of faults are created 

at various distances with several fault inception angles in this 

section. The fault currents are obtained for all these cases and 

wavelet analysis has been carried out. The D1 coefficients 

obtained from the wavelet-based algorithm are used for 

training ANN. After the ANN is trained, it has been tested for 

different scenarios using the testing data. The testing data 

contains different faults occurring at several fault inception 

angles at various distances. The results are presented in 

section-6. 
9.  

9. Fault Analysis of 4-bus Renewable Energy Sources 

Connected Transmission System  
 

The fault analysis with LG, LLG, LL and 3-phase faults 

on Bus1, Bus2, Bus3 and Bus4 are discussed below.  

 

Training data at B1 with LG (AG) fault  
 

To prepare the necessary training and testing data an LG 

fault is applied on phase-A at B1 at different distances of 

10km, 20km, 30km, 40km, 50km with several FIAs such as 

0
0
, 20

0
, 40

0
, 60

0
, 80

0
, 100

0
, 120

0
, 140

0
, 160

0
and measured the 

all the phases current signals. The D1 coefficients of all phase 

currents have been computed as given in Table.2-4. From 

Table.2-4 it can be observed that the D1 coefficient values 

corresponding to phase-A have relatively higher compared 

with phase-B and phase-C. All these D1 coefficient values 

obtained at various distances and FIA’s with different faults 

are used to train ANN with target value as distance. An 

example of the training pattern is given below.  

Training patterns at B1 with LG (AG) fault  

Training patterns are formed with the help of data from 

Table.2-4. 
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Example: Consider a distance of 10km and FIA as 00
.
 From 

Table.2-4 take the D1 coefficients corresponding to phase-A, 

phase-B and phase-C currents. Thus the first training pattern 

is formed with Ia,B1-0 = 1052.7, Ib,B1-0 = 6.03, Ic,B1-0 = 1.681 as 

inputs and the distance 10km as target. Similarly, train ANN 

and corresponding training patterns are given in Table.5. The 

location error of actual distance and ANN distance using 

training data and training patterns is given in Table.6. The 

location absolute error between the AFL and EFL for LG, 

LLG, 3-phase and LL faults are 1.66 (max.), -1.64 (max.), 

1.66 (max.) and 1.33(max.). 

 

Table.2. D1 coefficients of phase-A current at various distances and FIA at B1

 

Table.3. D1 coefficients of phase-B current at various distances and FIA at B1 

 

Table.4. D1 coefficients of phase-C current at various distances and FIA at B1 

 

Table.5. Training patterns 

Bus(p)-FIA(q) Ia,p-q Ib,p-q Ic,p-q Target distance 

B1-00 1052.7 6.03 1.681 

10 

B1-200 1061.9 8.362 2.508 

B1-400 939.32 2.028 3.869 

B1-600 999.59 9.904 8.834 

B1-800 1032.8 9.468 8.934 

B1-1000 929.19 6.453 7.79 

B1-1200 892.69 7.195 6.551 

B1-1400 946.96 5.838 5.845 

B1-1600 1065.73 5.802 4.639 

FIA/Km 0
0
 20

0
 40

0
 60

0
 80

0
 100

0
 120

0
 140

0
 160

0
 

10 1052.7 1061.9 939.32 999.59 1032.8 929.19 892.69 946.96 1065.3 

20 773.49 793.01 700.37 764.4 820.98 731.32 697.35 735.75 820.0 

30 694.71 692.04 682.22 685.35 732.52 654.65 620.94 648.86 723.7 

40 653.38 651.87 667.89 667.68 725.18 656.29 622.11 641.98 712.2 

50 628.98 640.54 638.08 720.49 771.52 690.42 656.80 687.57 769.8 

FIA/Km 0
0
 20

0
 40

0
 60

0
 80

0
 100

0
 120

0
 140

0
 160

0
 

10 6.03 8.362 2.028 9.904 9.468 6.453 7.195 5.838 5.802 

20 5.05 7.615 6.021 6.989 5.654 4.490 5.368 5.394 3.726 

30 4.12 9.559 3.929 3.454 3.448 3.581 3.613 2.879 2.716 

40 2.91 7.016 6.201 5.355 3.804 5.265 5.885 5.654 7.251 

50 9.97 1.617 6.013 4.297 3.602 3.780 4.015 2.935 3.094 

FIA/Km 0
0
 20

0
 40

0
 60

0
 80

0
 100

0
 120

0
 140

0
 160

0
 

10 1.681 2.508 3.869 8.834 8.934 7.790 6.551 5.845 4.639 

20 2.458 5.993 3.071 7.671 5.811 6.528 6.296 6.440 5.118 

30 7.340 6.536 4.990 3.445 3.254 3.006 3.062 3.326 3.353 

40 1.352 2.514 3.504 6.275 3.414 1.844 2.038 2.710 3.732 

50 6.374 1.438 2.325 4.782 4.123 3.934 3.336 3.020 3.718 
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B1-00 773.49 773.49 2.458 

20 

B1-200 793.01 793.01 5.993 

B1-400 700.37 700.37 3.071 

B1-600 764.4 764.4 7.671 

B1-800 820.98 820.98 5.811 

B1-1000 731.32 731.32 6.528 

B1-1200 697.35 697.35 6.296 

B1-1400 735.75 735.75 6.44 

B1-1600 820.01 820.01 5.118 

B1-00 694.71 4.12 7.34 

30 

B1-200 692.04 9.559 6.536 

B1-400 682.22 3.929 4.99 

B1-600 685.35 3.454 3.445 

B1-800 732.52 3.448 3.254 

B1-1000 654.65 3.581 3.006 

B1-1200 620.94 3.613 3.062 

B1-1400 648.86 2.879 3.326 

B1-1600 723.75 2.716 3.353 

B1-00 653.38 2.91 1.352 

40 

B1-200 651.87 7.016 2.514 

B1-400 667.89 6.201 3.504 

B1-600 667.68 5.355 6.275 

B1-800 725.18 3.804 3.414 

B1-1000 656.29 5.265 1.844 

B1-1200 622.11 5.885 2.038 

B1-1400 641.98 5.654 2.71 

B1-1600 712.23 7.251 3.732 

B1-00 628.98 9.97 6.374 

50 

B1-200 640.54 1.617 1.438 

B1-400 638.08 6.013 2.325 

B1-600 720.49 4.297 4.782 

B1-800 771.52 3.602 4.123 

B1-1000 690.42 3.78 3.934 

B1-1200 656.8 4.015 3.336 

B1-1400 687.57 2.935 3.02 

B1-1600 769.87 3.094 3.718 

 

Table.6. Wavelet-ANN based fault location 

 

Actual Distance (km) 

ANN Distance (km) 
 

% error 
B1 

10 
LG (AG) fault LG (AG) fault 

9.68 0.53 

20 21 -1.66 

30 30.96 -1.6 

40 39.2 1.33 

50 49.7 0.5 

10 
LLG (ACG) fault LLG (ACG) fault 

9.72 11 0.46 -1.64 

20 19.8 19.58 0.2 0.7 
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Training data at B1 with LLG (ACG) fault  

Apply LLG fault on phase-A and phase-C at B1 with 

different distances 10km, 20km, 30km, 40km, 50km and 

FIAs 0
0
, 20

0
, 40

0
, 60

0
, 80

0
, 100

0
, 120

0
, 140

0
, 160

0
and 

measure current signals as D1 coefficients at all phases as 

given in Table.7-9. 

 

Table.7. D1 coefficients of phase-A current at various distances and FIA at B1 

FIA/Km 0
0
 20

0
 40

0
 60

0
 80

0
 100

0
 120

0
 140

0
 160

0
 

10 928.3 984.90 945.00 992.21 1039.4 1163.16 1077.62 987.96 990.44 

20 839.7 889.16 782.12 735.74 765.7 854.32 808.05 736.54 731.59 

30 678.7 711.05 710.26 586.96 612.0 686.45 651.93 592.55 587.96 

40 655.2 692.38 651.09 476.87 512.5 565.15 538.79 479.88 481.89 

50 654.0 611.57 624.42 427.97 450.0 505.49 471.74 431.03 429.31 
 

Table.8. D1 coefficients of phase-B current at various distances and FIA at B1 

FIA/Km 0
0
 20

0
 40

0
 60

0
 80

0
 100

0
 120

0
 140

0
 160

0
 

10 4.284 3.8295 4.2658 6.5004 6.3729 5.0435 6.12 5.77 6.013 

20 2.574 2.521 3.2096 9.4736 8.1494 8.3832 7.16 6.32 8.205 

30 3.588 2.5518 3.9864 11.6215 8.5848 8.0602 4.74 4.24 6.745 

40 8.503 2.5822 9.2304 5.4278 5.2256 3.7492 5.07 5.36 5.647 

50 8.534 4.5822 2.2304 8.6158 7.9212 8.1636 7.14 6.39 7.853 
 

Table.9. D1 coefficients of phase-C current at various distances and FIA at B1 

FIA/Km 0
0
 20

0
 40

0
 60

0
 80

0
 100

0
 120

0
 140

0
 160

0
 

10 955.18 962.59 973.23 1003.76 1110.11 988.25 932.27 961.31 1064.07 

20 737.27 816.71 908.54 775.06 861.96 801.14 739.65 745.83 810.09 

30 645.08 680.98 755.25 663.87 729.02 710.79 648.93 638.47 680.79 

40 634.6 671.56 677.63 622.13 682.49 686.60 630.76 619.39 656.15 

50 604.8 603.36 659.42 661.33 720.56 725.43 663.35 647.26 677.39 
 

Table.7-9 it is observed that the D1 coefficient values 

correspond to phase-A has relatively higher values compared 

with phase-B and phase-C. All these D1 coefficient values 

obtained at various distances, various FIA’s with different 

faults are used to train ANN with target value as distance. 

Training patterns at B1 with LLG (ACG) fault  

Example: Consider a distance of 10km and FIA as 00
.
 From 

the Table.7-9 take the D1 coefficients corresponding to phase-

A, phase-B and phase-C. Thus the first training pattern is 

formed with Ia,p-q = 928.3, Ib,p-q = 4.2848, Ic,p-q = 955.18 as 

inputs and the distance 10km as target. Similarly, train ANN 

with all data given in Table.10 gives the fault location. 

30 29.6 30.65 0.66 -1.08 

40 39 40.80 1.66 -1.33 

50 49 49.76 1.66 0.4 

10 
3-phase fault 3-phase fault 

10.7 11 10.8 -1.3 -1.6 -1.33 

20 19.6 19.4 19.2 0.6 1 1.33 

30 29.6 31.1 30.2 0.6 -1.8 -0.33 

40 40.5 41.8 38.2 -0.9 -0.3 0.93 

50 49 49.8 49.1 1.6 0.33 1.5 

10 
LL (AB) fault LL (AB) fault 

9.68 10.8 0.53 -1.33 

20 19.72 19.4 0.46 1 

30 29.2 30.8 1.33 -1.33 

40 39.3 39.5 1.16 0.833 

50 9.68 10.8 0.53 -1.33 
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Table.10. Training patterns for 10km distance 

Terminal(p)-FIA(q) Ia,p-q Ib,p-q Ic,p-q Target distance 

B1-00 928.3 4.2848 955.18 

10 

B1-200 984.9 3.8295 962.59 

B1-400 945 4.2658 973.23 

B1-600 992.21 6.5004 1003.76 

B1-800 1039.45 6.3729 1110.11 

B1-1000 1163.16 5.0435 988.25 

B1-1200 1077.62 6.1257 932.27 

B1-1400 987.96 5.7767 961.31 

B1-1600 990.44 6.0138 1064.07 

B1-00 839.7 2.5747 737.27 

20 

B1-200 889.16 2.521 816.71 

B1-400 782.12 3.2096 908.54 

B1-600 735.74 9.4736 775.06 

B1-800 765.75 8.1494 861.96 

B1-1000 854.32 8.3832 801.14 

B1-1200 808.05 7.1476 739.65 

B1-1400 736.54 6.3622 745.83 

B1-1600 731.59 8.2054 810.09 

B1-00 678.7 3.5887 645.08 

30 

B1-200 711.05 2.5518 680.98 

B1-400 710.26 3.9864 755.25 

B1-600 586.96 11.6215 663.87 

B1-800 612.7 8.5848 729.02 

B1-1000 686.45 8.0602 710.79 

B1-1200 651.93 4.7574 648.93 

B1-1400 592.55 4.8924 638.47 

B1-1600 587.96 6.7455 680.79 

B1-00 655.2 8.5034 634.6 

40 

B1-200 692.38 2.5822 671.56 

B1-400 651.09 9.2304 677.63 

B1-600 476.87 5.4278 622.13 

B1-800 512.35 5.2256 682.49 

B1-1000 565.15 3.7492 686.6 

B1-1200 538.79 5.5207 630.76 

B1-1400 479.88 5.6636 619.39 

B1-1600 481.89 5.6477 656.15 

B1-00 654 8.5034 604.8 

50 

B1-200 611.57 4.5822 603.36 

B1-400 624.42 2.2304 659.42 

B1-600 427.97 8.6158 661.33 

B1-800 450 7.9212 720.56 

B1-1000 505.49 8.1636 725.43 

B1-1200 471.74 7.6314 663.35 

B1-1400 431.03 6.5339 647.26 

B1-1600 429.31 7.8531 677.39 
 

Table.11 is shown the location error of actual distance and ANN distance using the training patterns. The location error between 

the AFL and EFL is -1.64 (max.). 
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Table.11. Wavelet-ANN based fault location 

Type Fault Actual Distance (km) 
ANN Distance (km) 

B1 % error 

LLG (BCG) 

10 9.72 11 0.46 -1.64 

20 19.88 19.58 0.2 0.7 

30 29.6 30.65 0.66 -1.08 

40 39 40.80 1.66 -1.33 

50 49 49.76 1.66 0.4 
 

 

Training data at B3 with LLG (BCG) fault  

The location error of actual distance and ANN distance using training data and training patterns is given in Table.15 with the 

help of data from Table.12-14 at B3. 

Table.12. D1 Coefficients of Phase-A current at Various Distances and FIA at B3 

FIA/Km 0
0
 20

0
 40

0
 60

0
 80

0
 100

0
 120

0
 140

0
 160

0
 

10 6.8975 5.4701 7.7936 3.7530 3.9093 3.5245 3.2712 3.4286 5.3056 

20 7.7802 9.2221 1.8856 3.6631 3.7689 3.5722 3.7710 3.3902 3.1100 

30 3.1311 2.7897 4.0879 3.7910 4.1962 3.9509 5.0422 4.1357 4.3891 

40 2.0868 8.7518 3.4168 3.6941 3.5451 3.9366 5.0278 3.7992 4.0208 

50 2.4795 5.7869 3.6041 6.3056 6.1226 7.6875 7.7588 7.3832 5.9715 
 

Table.13. D1 Coefficients of Phase-B Current at Various Distances and FIA at B3. 

FIA/Km 0
0
 20

0
 40

0
 60

0
 80

0
 100

0
 120

0
 140

0
 160

0
 

10 746.85 667.91 684.52 699.91 792.87 707.97 653.26 663.39 732.63 

20 683.81 648.82 650.72 568.25 642.54 583.38 535.19 538.80 592.07 

30 647.02 664.85 648.97 479.62 542.78 497.08 454.02 454.18 497.44 

40 621.77 698.27 631.24 411.16 466.06 429.16 390.93 389.81 426.17 

50 615.98 641.93 630.17 354.68 401.91 371.56 337.62 335.65 366.29 

 

Table.14. D1 Coefficiets of Phase-C Current at Various Distances and FIA at B3. 

FIA/Km 0
0
 20

0
 40

0
 60

0
 80

0
 100

0
 120

0
 140

0
 160

0
 

10 657.74 654.41 684.37 772.21 690.57 640.26 654.75 726.78 739.77 

20 636.60 629.81 681.11 617.68 557.15 515.27 525.25 582.15 597.43 

30 626.20 623.38 653.09 513.81 462.59 427.88 436.06 483.95 497.03 

40 613.07 619.95 645.20 436.78 390.51 362.19 370.57 412.66 421.60 

50 603.20 605.60 630.72 372.78 329.83 307.22 316.61 354.04 356.07 
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Table.15. Wavelet-ANN Based Fault Location 

 

Similarly, training data and training patterns are computed for 

bus B2, and B4 under different fault conditions. The location 

error of actual distance and ANN distance using training data 

and training patterns. The location absolute error between the 

AFL and EFL for LG, LLG, 3-phase and LL faults are 1.66  

(max.), 1.8 (max.), 1.73 (max.) and 1.66 (max.). The D1 

coefficients at random distances at B1 is also considered as 

testing data for the fault location error given in Table.16.  

Comparison of proposed method with existing method of fault 

location is given in Table.17.

Table.16. Testing Data 
 

 

Actual Distance (km) 

ANN Distance (km) 
 

% error 
B3 

1 
LG (AG) fault LG (AG) fault 

0.9 1.67 

2 1.92 1.33 

3 2.98 0.33 

4 4.02 -0.33 

5 5.04 -0.66 

1 
LLG (ACG) fault LLG (ACG) fault 

0.92 1.02 1.33 -0.33 

2 2.03 1.98 -0.5 0.33 

3 2.98 3.05 0.33 -0.83 

4 3.92 3.90 1.33 1.67 

5 4.96 4.92 0.66 1.33 

1 
3-phase fault 3-phase fault 

1.02 0.98 1.04 -0.33 0.33 -0.66 

2 1.9 2.08 2.04 1.66 -1.33 -0.66 

3 2.98 3.02 3.08 0.33 -0.33 -1.33 

4 3.98 3.9 4.10 0.33 1.67 -1.67 

5 4.96 5.02 5.08 0.66 -0.33 -1.33 

1 
LL (AB) fault LL (AB) fault 

0.92 1.05 1.33 -0.83 

2 1.90 2.10 1.67 -1.66 

3 2.90 3.04 1.66 -0.66 

4 3.95 4.10 0.83 -1.66 

5 4.90 5.10 1.66 -1.66 

 

Actual Distance (km) 

ANN Distance (km) 
 

% error 
B1 

12 
LG (AG) fault LG (AG) fault 

11.5        0.83 

23 22.3 1.16 

34 33.1 1.5 

45 44.2 1.33 

48 48.5 -0.83 

8 
LLG (ACG) fault LLG (ACG) fault 

7.8 8.5 0.33          -0.83 

18 18.5 18.6 -0.83 -1 

32 31.8 32.2 0.33 --0.33 

43 42.5 43.2 0.83 -0.33 

54 53.8 54.6 0.33 -1 

9 
3-phase fault 3-phase fault 

8.8 9.2 9.8 0.33 -0.33 -1.33 

23 22.6 23.4 22.8 0.66 -1 0.33 

32 31.2 31.6 31.8 1.33 0.66 0.33 
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Table.17. Comparison of Proposed Method with Existing Method of Fault Location. 

 

10.  Conclusion 

From the above analysis we can summarize the 

conclusions as follows 

Fault location analysis of 4-bus renewable energy 

sources connected transmission system at distances 10km, 

20km, 30km, 40km, 50km for conventional and  1km, 2km, 

3km, 4km, 5km for Non-conventional sources at various faults 

and FIAs for various faults has been carried out and compared 

with existing methods. In this method the current signals are 

measured at both ends after the fault occurrence and the 

signals are decomposed by Bior1.5 mother wavelet with 

wavelet milt-resolution analysis and these decomposed 

signals further converted into D1 coefficients. These D1 

coefficients are in the form of numerical values. These values 

(higher or lower) depend on magnitude of the fault current 

signals. After the D1 coefficients are obtained, ANN will be 

trained with these values. ANN is an ultimate tool for the 

location of fault using D1 coefficients. Testing data at various 

random distances like 12km, 23km, 34km, 45km, 48km etc. 

of 60km line and 1.2km, 2.1km, 3.5km, 4.6km 5.3km etc. with 

different faults is also developed and tested with ANN. It is 

found that the fault distance obtained from ANN is very closer 

to actual distance and the absolute error is maximum of 2% 

irrespective of fault impedance, fault generator capacities, 

fault inception angle. So that, the proposed method has shown 

best results for the detection of fault location of renewable 

energy sources integrated power transmission system. 
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