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Abstract- Recent times, the assimilation of renewable energy (RE) based distributed generation (DG) units in power 

distribution system (PDS) have become a major research area in electric power systems to improve the overall efficiency of 

PDS by reducing power losses and voltage drops. But, it is desired to integrate DG units at optimal place(s) and size(s) in order 

to achieve the anticipated objective(s). In this work, a hybrid optimization method using loss sensitivity factor (LSF) and a 

cuckoo search (CS) meta-heuristic algorithm is implemented for optimizing multiple renewable energy DG units in radial PDS 

to minimize total real power losses (TRPL). The proposed hybrid technique locates the optimal sites for DG placement using 

LSF and computes the optimal sizes via CSA. Besides, the computation of LSF significantly curtailed the search area for CSA 

to optimize DG sizes. The suggested hybrid optimization method is executed on standard symmetrical IEEE radial PDSs with 

33 buses and 69 buses. The simulation study for the proposed technique is investigated for multiple Type I (solar photovoltaic 

system) and Type III (wind turbine) DG allocation. Furthermore, a numerical comparative analysis is performed between 

proposed and other optimization methods to assess effectiveness of proposed technique. The outcome of the comparative study 

highlighted that the proposed hybrid technique-based allocation of multiple RE-DGs achieved maximum power loss reduction 

and better voltage profile than other techniques. Furthermore, the outcome of this research work notified that Type III DG 

allocation has achieved more objective function minimization than Type I DG allocation.     

Keywords Distributed generation, power distribution system, loss sensitivity factor, cuckoo search algorithm. 

 

1. Introduction 

Distributed generation (DG) is a unique way of 

generating electrical power at the distribution network or the 

point of use. Moreover, DG injects cleaner electricity into 

distribution networks since most DG technology employs 

renewable energy resources. The incorporation of renewable 

energy DGs in the radial distribution system (RDS) results in 

power loss reduction, reliability enhancement, fuel cost 

minimization, power quality enhancement and efficiency 

improvement. The growth of power demand in recent times 

and the difficulties related to planning and commissioning of 

new transmission systems plus the environmental concern 

have created an interest in renewable energy based DG 

integration in distribution systems [1]. The recent 

advancement in small generators, storage devices and power 

electronics devices also significantly increased the 

accommodation of DGs in RDS [2]. But, inappropriate siting 
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of DGs in RDS ends up in undesirable outcomes such as high 

power losses, voltage deviation and energy costs. Therefore, 

DGs must be suitably allocated into RDS in order to get the 

anticipated benefit. 

In the literature, the researchers suggested many 

optimization techniques for finding the optimal site(s) and 

size(s) of DG units [3]. Such optimization techniques were 

categorized into three types [4] such as analytical 

approaches, heuristic algorithms and a combination of 

analytical and heuristic algorithms. 

In analytical methodologies, a mathematical expression 

is established to study the effect of DG placement on RDS. A 

few examples of such approaches are the efficient analytical 

(EA) method [5], iterative–analytical method [6] and 

analytical method [7]. Along with this, numerous indices 

(such as LSF) based methodologies were developed to locate 

candidate buses for integration of DSTATCOM [8]. 

Unfortunately, these methodologies have become ineffective 

whenever the complexity of the problem increases. Hence, 

these methods are not recommended for allocation of 

multiple DGs in RDS [9]. 

In order to overcome the setback of the analytical 

methods, the researchers have introduced the metaheuristic 

algorithms for solving complex multiple DG optimization 

problems since it solves the nonlinear optimization problems 

without getting into the complexion. Some of the familiar 

meta-heuristic optimization algorithms used for solving DG 

optimization problems are Particle swarm optimization 

(PSO) [10], Genetic algorithm (GA) [11], Ant lion optimizer 

(ALO) [12], Firefly algorithm (FA) [13], Grey wolf 

optimizer (GWO) [14], Bat algorithm (BA) [15], Krill herd 

algorithm (KHA) [16], Salp swarm algorithm (SSA) [17] and 

Backtracking search optimization algorithm (BSOA) [18].  

The DG location and capacity were optimized via GA to 

reduce real power losses (RPL) and to enhance the 

magnitude of bus voltage. The performance of GA has been 

verified on 33 bus and 69 bus distribution power networks. 

The author(s) in Ref. [19] implemented GA based 

optimization approach for DS reconfiguration to reduce RPL 

of 13 bus and 15 bus DS.  Solar energy storage system (ESS) 

was optimally sized and distributed using mixed-integer 

linear programming (MILP) technique in [20] to optimize the 

cost. PSO and DE algorithms-based optimization techniques 

were proposed to optimize multiple DG units in RDS. The 

DGs locations and capacities were optimized for RPL 

minimization and voltage improvement. The ideal bus 

location and sizes for DG units were optimized via BSOA 

for the objective of RPL reduction [18]. A multi-objective 

supervised FA-supported optimization method was proposed 

to optimize DG size and site in unbalanced RDS for an 

objective of RPL minimization. CSA-based optimization 

approach was presented in [21] to optimize site and size of 

single and multiple DG units for reducing RPL and 

improving voltage magnitude of IEEE 33 bus radial test 

system. A modified edition of PSO was implemented in [22] 

to optimize solar PV DG unit for power loss minimization. 

The author(s) proposed an Adaptive Quantum inspired 

Evolutionary Algorithm (AQiEA) based technique to 

optimize DG into large radial PDSs with 85 bus and 118 bus 

for reducing TRPL [23]. The proposed technique optimized 

the DG units into radial PDS with voltage dependent load 

model. Similarly, AQiEA based optimization technique was 

implemented in [24] to integrate DG units into a RDS for an 

objective of TRPL minimization.  The proposed 

methodology consider ZIP (impedance, current and power) 

load model for DG optimization problem. The optimal sites 

and sizes for DG and capacitor were optimized via AQiEA 

[25] to minimize power losses along RDS. The proposed 

methodology accounted load growth in radial PDS. In 

addition to above methodologies, hybrid optimization 

techniques such as TLBO-GWO [26], WIPSO–GSA [27], 

fuzzy-PSO [28] and analytical–PSO [29] were proposed by 

the researchers for solving DG optimization problem.       

As discussed above, different techniques including 

analytical, meta-heuristic algorithms and hybrid techniques 

were implemented by the researchers for optimizing DG 

units into RDS. These methodologies have given significant 

results. However, these methodologies often suffer from a 

slow convergence rate and also get stuck in local optima 

solutions when complexity of problem increased. Hence, 

considering the above problem statement, a hybrid 

optimization method using LSF and CSA is suggested in this 

work to optimally integrate multiple DG into radial PDS. 

CSA has distinctive and efficient random walks than other 

optimization algorithms. This has been effectively utilized 

for obtaining global optimal solution for various optimization 

problems. This distinct feature has made CSA superior over 

other algorithms. But, CSA also suffer from slow 

convergence rate. Therefore to increase the convergence rate, 

LSF approach has been integrated along with CSA. The 

inclusion of LSF effectively reduces the search area for CSA 

and increases the rate of convergence. The distinct advantage 

of LSF and CSA are integrated together to achieve global 

optimal solution at better convergence rate. The contributions 

of the work presented in this paper are listed below: 

• A hybrid technique has been developed using LSF 

and CSA algorithm for optimizing Type I and III 

multiple DG placements in RDS. 

• LSF for all buses of test system has been computed 

to locate optimal buses for DG placement. 

• The optimal DG sizes of Type I (solar PV) and Type 

III (WT) has been computed using CSA to cut down 

TRPL of radial PDS. 

• The impact of optimized multiple DG placement on 

the performance of radial PDS has been examined. 

• The outcome of the proposed hybrid optimization 

method has been related to other optimization 

techniques to evaluate its effectiveness.       

The remaining parts of the research work are presented 

as different sections as follows: Section 2 emphasizes the DG 

optimization problem formulation & constraints and DG 

modelling. Section 3 elaborates on the application of the 

proposed hybrid technique for multiple DG optimization 

problems. Section 4 details about the research findings of the 

proposed hybrid optimization method. Section 5 concludes 

the research outcome. 
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2. Problem Definition 

The objective of a multi DG allocation problem is to 

locate the optimal buses and to compute the optimal sizes for 

multiple RE-DGs that minimize TRPL without violating 

constraints of RDS. Therefore, the objective function for the 

multi-DG optimization problem can be formulated as below:         

2.1. Objective Function (OF) 

The DG sizes are optimized to minimize TRPL of RDS. 

TRPL minimization is succeeded by minimizing the power 

loss index (PLI) of RDS [21]. PLI is a ratio between the RPL 

of RDS with DG placement to the RPL of RDS without DG 

placement. 

           

Tloss

TlossDG,

P

P
PLI =                                                        (1) 

where, PDG,Tloss  is the RPL of RDS after the 

accommodation of DGs and PTloss is the RPL without DGs. 
Therefore, objective function (OF) is expressed as follows:  

            min(PLI)OF =                                                       (2) 

2.2. Constraints 

The fitness value of objective function (OF) is 

minimized by satisfying numerous constraints related to 

radial PDS. The constraints accounted for DG optimization 

in this work are defined below. 

2.2.1. DG Power Balance Constraint 

The total incoming power to a DN should be equal to the 

total outgoing power including the DG power rating [30]. 

       
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                     (3) 

where, Ps is the substation real power capacity; PDG is a 

real power capacity of a DG; Ploss is the real power loss along 

a line; P is the real power demand. NDG is a no. of DGs; L 

and n represents distribution lines and buses in RDS 

respectively. 

2.2.2. Voltage Constraint 

The voltage magnitude of buses need to be kept inside a 

quantified minimum (Vmini) and maximum (Vmax) limit for 

ensuring safe and stable operation. 

             maximini VVV                                                (4) 

2.2.3. DG Power Rating 

Total sizes of DGs accommodated in DN must not 

exceed substation capacity to avert power flow reversal [27]. 
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where, mini
TDGP and max

TDGP are the allowable total minimum 

and maximum real power injection capacity of DGs. 

Likewise, mini
TDGQ and max

TDGQ are the total minimum and 

maximum reactve power injection capacity of DGs.    

2.3. DG Modelling 

 Distributed generation (DG) is a distinctive approach 

employed for power generation near the load centre. DG 

technology deploys different energy resources including 

hydro, fuel cells, solar PV system, WT etc., for generating 
power locally. But, DG resources are typically grouped into 

four classes [18] as presented in Table 1.  

Table 1. DG Types 

Type Characteristics 

Type I Produce real power only 

Type II Produce reactive power only 

Type III Produce real  power and reactive power 

Type IV 
Produce real  power but consumes 

reactive power 

 

 The proposed hybrid method optimizes sizes and sites for 

Type I and Type III DGs. DG units are mathematically 

modeled as per IEEE 1547 standards [27].  

2.3.1. Type I DG: 

 A typical Type I DG unit (solar PV system) is 

characterized as a unity power factor model since it injects 

only real power into the radial PDS. Equation (9) 

mathematically describes the output power of a solar PV 

system.  
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 where Ppvr is the rated output power of solar PV units, ‘G’ 

is the solar radiation received at the selected optimal location 

in W/m2, and Gr is the rated solar radiation at the earth's 

surface in W/m2.  

2.3.2. Type III DG: 

 Type III DG is modelled as PQ model. The real power 

(Pwt) and reactive power (Qwt) injection of Type III DG unit 

is mathematically expressed in the following Eq. (10) and 

Eq. (11) respectively.  
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))(p.f.tan(cosPQ DG
1
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 where Pwr is the rated output power of Type III DG at the 

rated speed, and v and vr are the actual and rated Wind 

Speeds (WS) at the selected optimal location. vcin and vcout 

are the cut-in and cut-out WS; p.f.DG is the power factor of 

DG unit and is assumed as 0.866 p.f.   

3. Hybrid Optimization Technique using LSF and CSA 

 The suggested hybrid approach locates the optimal buses 

for DG placement via LSF and computes optimal sizes using 

CSA. This section details about the mathematical modelling 

and implementation of proposed methodology for optimizing 

multiple DG units. 

3.1. 
 
Loss Sensitivity Factor 

  The optimal choice of buses for DG accommodation in 

RDS is significant to attain desired objectives. However, 

inappropriate provision of DGs in PDS will lead to 

undesirable results [26]. In this work, a LSF based approach 

is adopted to locate optimal buses for DG placement. The 

computation of LSF not only identifies the suitable locations 

but also significantly minimizes the search space for CSA 

which in turn improves convergence rate. LSF for a two-bus 

RDS shown below (Fig.1) is calculated using Eq. (12). 

                 
2

1i

keff1,i
1i,i

V

R2Q
LSF

+

+
+ =                                         (12) 

 where, Rk denotes p.u line resistance and Xk corresponds 

to p.u line reactance. 

 

Fig. 1. Two bus radial PDS 

3.2. Optimal bus selection using LSF  

The algorithm for the selection of optimal buses for DG 

placement based on LSF is illustrated as a flowchart in Fig.2. 

The LSF for radial PDS is computed using the power flow 

assessment result. LSF and Vnorm for IEEE 33 bus and 69 bus 

radial PDS displayed in Fig.3 and Fig.4, respectively. 

According to LSF and Vnorm, 21 number of buses were 

identified as suitable locations for DG placement for both 

radial PDSs. Computation LSF has noticeably reduced the 

search space by 36.36% and 69.56% for 33 bus and 69 bus 

radial PDS respectively. Furtherrmore, the decision to pick 

the optimal bus location has been made in accordance with 

respective normalized voltage of the buses. For 33 bus radial 

PDS (fig.3), bus numbers 30, 13 and 10 are found as optimal 

locations for DG integration. Likewise, for 69 bus radial PDS 

(fig.4) buses 61, 17 and 65 are located as optimal points for 

DG allocation.          

 

Fig. 2. Algorithm for optimal bus identification for DG 

placement  

 

Fig. 3. LSF and normalized voltage for IEEE 33 bus 

radial PDS 

 

Fig. 4. LSF and normalized voltage for IEEE 69 bus 

radial PDS 

3.3. Power flow/load flow in radial PDS 

The power flow assessment (PFA) is important for 

transmission and distribution networks to compute line 
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flows, line losses and bus voltages. The popular PFA 

approaches applied in transmission power networks are not 

appropriate for RDS since it do not provide effective solution 

because of its radial structure, high R/X ratio, more number 

of buses & lines and asymmetrical loads [21]. Moreover, it 

demands more memory and convergence requirements.  

Therefore, to overcome the above said problems in power 

flow assessment, backward/forward sweep (BFS) algorithm 

based power flow calculation technique is implemented for 

radial PDS [31]. PFA using BFS technique is executed in 

two phases. 

First phase is known as backward sweep in which 

magnitude of branch current is calculated. The calculation 

begins from far end node of the PDS and proceeds in a 

backward direction to the head node by keeping bus voltage 

constant. 

Second phase is known as forward sweep where 

magnitude of bus voltage is computed. The computation is 

initiated from head bus and moves forward to far-end node 

by keeping current constant. The algorithmic representation 

of BFS power flow assessment technique is presented as 

flowchart in Fig.5. 

 

Fig. 5. Flowchart for BFS power flow assessment technique 

3.4. Cuckoo Search Algorithm: An Overview 

Xin-She Yang and Suash Deb established a nature-

inspired optimization algorithm known as Cuckoo search 

algorithm (CSA) in the year 2009 [32] to solve complex and 

non-linear problems in diverse domains. The aggressive 

brooding parasitism between the cuckoo and other species 

(host) of birds for laying an egg in the nets has been 

mimicked in the CS algorithm. 

The egg laid by the Cuckoo will be quite similar to that 

of the host species in regard to size and color. This 

characteristic creates an arms race system between the 

Cuckoo and Host bird. Chances for the Host bird to find and 

abandon Cuckoo’s egg from the nets can be represented with 

a probability of pa. 
If n is considered as the number of eggs, then xi is a 

vector that represents the position of an egg for an 

optimization problem. The similarity between Cuckoo’s (xi) 

and Host egg (xj) can be found in their difference (xj-xi). For 

a given optimization problem, the egg position at iteration t 

can be updated [33] by   

           )x(x)H(pαsxx t
k

t
ja

t
i

1t
i −−+=+                       (13) 

where, H is a Heaviside step function used to represent 

the probability of discovery along with the aid of a random 

number ϵ and s indicates step size and is scaled by a factor α. 

Naturally, animals and species look for food in a random 

manner. Here, Cuckoo also searches for the Host bird nest 

randomly for laying an egg. Lévy flights pattern of search 

mechanism is adopted in CS. This is due to the fact that the 

Host bird might fly away by abandoning the nets once they 

get to know the eggs were contaminated or swapped by the 

Cuckoo. CS will function more efficiently in exploration 

with Lévy flights [33]. The step size variation by Lévy 

flights can be mathematically expressed as [34]: 

          λ)αL(s,xx t
i

1t
i +=+                                               (14) 

where, 

            
λ1s

1

π

λ/2)λΓ(λ)sin(π
λ)L(s,

+
  and 0)(s              (15) 

CS follows three idealized rules for any optimization 

problem [35]. 

• Every Cuckoo lays an egg inside a randomly 

selected nest. 

• High quality eggs in the nests will have higher 

probability of chances to get into next generation. 

• Number of Host bird nets is fixed and probability of 

chances for host bird to discover the Cuckoo’s egg 

is pa ϵ (0, 1). 

3.5. Implementation of hybrid optimization technique  

Step 1: Get the line data and load data of RDS. 

Step 2: Execute power flow using BFS method and 

compute TRPL of RDS without DG placement. Now, set 

TRPL as a initial standard fitness value. 

Step 3: Initialize the necessary parameters for CSA. Set 

maximum iteration count as 50, pa as 0.25 and number 

of Host nets as 30. 

Step 4: Randomly initialize the solutions (nest) as 

follows: 

    ))Lrand(size(*)L(UL:)nest(i, bbbb −+=               (16) 

where, (Lb and Ub) is a lower and upper boundary for 

DGs position and size. Set the current solution as the 

best fitness value for OF. 

Step 5: Run power flow with DG units and find the 

TRPL to compute the initial fitness value.  

Step 6: Begin iterative process. 

Step 7: Find the new solution by initiating Lévy Flights 

Random Walk (LFRW).    

Step 8: Now for the updated value (DG sizes) obtained 

via LFRW, implement PFA and determine TRPL.  
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Step 9: Relate the obtained fitness value with the 

initially set value in order to discover the best solution 

thus far.   

Step 10: Now discover a new nest and again initiate a 

random process.   

Step 11: Run PFA again to compute TRPL of RDS with 

updated solution (DG sizes). Consider this TRPL as the 

second fitness value. 

Step 12: Now discover the best objective function (OF) 

value (TRPL) computed thus far.   

Step 13: Check the iteration count and increase it by 1 if 

maximum iteration count is not reached. Otherwise go to 

step 10.    

Step 14: Run the program till the maximum iteration 

count and print the best solution that gives the least 

OF value. 

Fig. 6 illustrates the flowchart for the propsed hybrid 

optimization method. 

4. Test Results and Discussion 

 The simulation outcome for the proposed hybrid method 

is obtained for optimal allocation of multiple Type I and Type 

III DG units on IEEE 33 bus and 69 bus radial PDS. For 

simulation study, IEEE 33 bus and 69 bus radial PDS are 

referred as test system-1 and test system-2, respectively. The 

necessary programs are executed in MATLAB software 

version 2020a. The control parameter of CSA is listed in 

Table 2. The simulation is executed for 50 independent run 

considering following assumptions: 

• Symmetrical test systems is considered  

• Type I and III DGs are modelled as constant P and PQ 

model, respectively. 

• The reactive power injection of Type I DG is 

neglected. 

• The stochastic nature of solar irradiance for Type I 

DG and wind velocity for Type III DG is neglected. 

Table 2. Control parameter of CSA 

Parameter Values 

Number of host nets  30 

pa 0.25 

Number of iterations 50 

Number of DGs  3 

DG capacity 

(Min.) 

Type - I 60 kW 

Type -III  60 kVA 

DG capacity 

(Max.) 

Type - I 3000 kW 

Type - III  3500 kVA 

4.1. Test System-1: IEEE 33 bus radial PDS  

4.1.1. Test System-1 without DGs 

Initially, power flow assessment (PFA) for the IEEE 33-

bus radial PDS without accommodating DG units has been 

executed to compute TRPL and bus voltages. The required 

data needed for PFA of test system-1 illustrated in Fig.7 is 
taken from [36]. The PFA outcome for test system-1 without 

DG placement is presented in Table 3. 

 

Fig. 7. Test system – 1: IEEE 33 bus radial PDS 

Table 3. PFA results for test system-1 without DG  

Parameter Values 

Total active power 

demand (APT)  

3.72 MW 

Total reactive power 

demand (RPT)  

2.3 MVAr 

TPRL  210.98 kW 

Vmini  0.9038p.u 

Vmax  0.9970p.u 

The test system-1 with no DG placement recorded 

210.98 kW of TRPL with 0.9038p.u magnitude of minimum 

bus voltage (Vmini) and 0.9970p.u magnitude of maximum 

bus voltage (Vmax) at bus 18 and 2, respectively. Fig.8 

illustrates the voltage magnitude of test system-1 with no DG 

placement. 

 

Fig. 8. Voltage profile of 33 bus radial PDS before DG 

placement 

4.1.2. With Multiple DGs  

Table 4 presents the outcome of test system-1 with 

optimized Type I and Type III DGs placement. The TRPL of 

test system -1 is reduced to 70.98 kW and the Vmini is 

improved to 0.9793p.u with optimized Type I DG 

placements at buses 30, 13 and 10. The test system 

experienced 0.0755p.u enhancement in Vmini after the 

inclusions of Type I DG units. Likewise, optimal inclusion of 

Type III DG units has decreased TRPL to 16.89 kW and 

enhanced Vmini to 0.9863p.u. However, Vmini is recorded at 

bus no. 25 after DG placements. Fig.9 showcase the 
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improvement in bus voltage profile of test system-1 after the 

multiple DG allocations. Similarly, Fig.10 illustrates the 

variation in the voltage magnitude of weaker buses after the 

DG placements. Refering to Fig.9 and Fig.10, the test system 

has seen a substantial improvement in the bus voltage 

magnitude particularly, at the weaker buses after the 

integration of multiple DGs. However, the optimized Type 

III DG placements has given better results over Type I DGs 

since Type III DGs provides both real and reactive power 

support to radial PDS. The CSA took 26 iterations for Type I 

DGs placement and 21 iterations in the case of Type III DGs 

placement to converge optimal solution. The convergence 

curve of CSA for test system-1 is illustrated in Fig.11. 

 

Fig.  6. Flowchart for LSF-CSA hybrid technique

Table 4. Optimized outcome for 33 bus radial PDS after 

DG inclusion 

Parameter 
Multiple Type I 

DGs 

Multiple Type 

III DGs 

Optimal bus 

locations 
30, 13, 10 30, 13, 10 

Optimal sizes of 

DGs (kW/kVA) 

1304.1 

468.2  

633.1 

1402.1  

586.8  

695.3 

PDGTloss in kW 70.98 16.89 

Vmini in p.u. 0.9793  0.9863 

 

Fig. 9. Voltage profile of test system-1 with and 

without multiple DG 
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Fig. 10. Voltage profile of weaker buses of 33 bus 

radial PDS without and with DGs 

 

Fig. 11. Convergence curve of CSA for test system -1 

4.1.3. Comparative Analysis  

The outcome of proposed hybrid optimization 

approach is related to different optimization approaches 

including GA, PSO, BSOA and CSA  available in the 

literature for comparison study. Table 5 and Table 6 

presents the numerical comparison of different 

optimization techniques. The proposed technique achieved 

66.35% of TRPL reduction for optimized Type I DG 

allocation and 91.99% for optimized Type III DG 

allocation. And, the Vmini of the test system has been 

enhanced to 0.9793p.u for Type I DG placement and 

0.9863p.u for Type III DG placement. But, the literature 

outlined  that GA, PSO, BSOA and CSA optimization 

methods achieved 49.61%, 50.06%, 57.38% and 64.21% 

TRPL reduction with corresponding Vmini 0.9809p.u, 

0.9806p.u, 0.9705p.u and 0.9712p.u for multi Type I DG 

placement. Similarly, CSA and BSOA have reportedly 

achieved TRPL reduction of 90.60% and 82.06% with 

corresponding Vmini 0.9891p.u and 0.9802p.u for multi 

Type III DGs placement. The comparative report presented 

in Table 5 and Table 6 epitomized that the proposed 

method significantly minimized the TRPL with 

considerable voltage profile enhancement. Furthermore, a 

statistical report for the aforementioned comparative study 

is shown graphically in Fig.12. The report highlighted that 

the proposed hybrid DG optimization technique 

outperformed GA, PSO, CSA and BSOA techniques by 

providing a maximum percentage of TRPL reduction. 

Table 5. Test results comparison of different technique for 

multiple Type I DG placement 

Parameters 

Optimization Techniques 

PSO 

[10] 

GA 

[11] 

BSOA 

[18] 

CSA 

[21] 
Proposed 

Optimal bus 

location 

13 

32 

8 

11 

29 

30 

14 

18 

32 

24 

13 

30 

30 

13 

10 

Optimal DG 

size (kW) 

981.6 

829.7 

1176.8 

1500 

422.8 

1071.4 

652.1 

198.4 

1067.2 

1201.9 

776.1 

1302.6 

1304.1 

468.2 

633.1 

PTloss (kW) 210.98 

Vmini 

without 

DGs (p.u.) 

0.9038  

PDG,Tloss 

(kW) 
105.35 106.30 89.90 75.16 70.98 

Power loss 

reduction 

(%) 

50.06 49.61 57.38 64.21 66.35 

Vmini with 

DGs (p.u.)  
0.9806 0.9809 0.9705 0.9712 0.9793 

Table 6. Test results comparison of different techniques 

for multiple Type III DG placement 

Parameters 

Optimization Techniques 

BSOA 

[18] 

CSA 

[21] 
Proposed 

PTloss (kW) 210.98 

Vmini without DGs (p.u.) 0.9038 

Optimal bus location 

14 

18 

32 

13 

 30 

24 

30 

13 

10 

Optimal DG size (kVA) 

784.8 

150.7 

1279.8 

620.2  

1441.3 

1367.6 

1402.1 

586.8 

695.3 

PDG,Tloss (kW) 37.85 19.7443 16.89 

Power loss reduction 

(%) 
82.06 90.60 91.99 

Vmini with DGs (p.u.)  0.9802 0.9891 0.9863 

 

Fig. 12. Statistical comparison of different optimization 

algorithms for IEEE 33 bus RDS 
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4.2. Test System-2: IEEE 69 bus radial PDS 

4.2.1. Test System-2 without DGs 

The essential data for PFA of test system – 2 shown in 

Fig.13 is gathered from [36]. The PFA result for 69 bus 

radial PDS without accommodating DG units is presented 

in Table 7. Fig.14 presents the voltage magnitude of test 

system-2 with no DG placement. 

 
Fig. 13. Test system-2: IEEE 69 bus RDS 

Table 7. PFA results of 69 bus radial PDS with no DG 

placement 

Parameter Values 

Total active power demand 

(APT)  

3.802 MW 

Total reactive power 

demand (RPT)  

2.694 MVAr 

PTloss  225 kW 

Vmini  0.9092p.u. 

Vmax  0.9999p.u. 

 

Fig. 14. Voltage profile of 69 bus radial PDS with no 

DG placement 

4.2.2. Test System-2 with DGs 

Based on LSF, the bus numbers 61, 17 and 65 are 

found to be the multiple optimal positions for DG 

placement in test system-2. The optimal DG sizes at the 

optimal buses are computed via CSA. The simulation test 

results after optimized multiple DG placements are 

presented in Table 8. The addition of multiple Type I DGs 

has reduced the TRPL of test system-2 to 74.56 kW from 

225 kW. Besides power loss reduction, the Vmini has been 

enhanced to 0.9856p.u. To be precise, the Vmini of the test 

system-2 is enhanced by 0.0764p.u from the base case. In 

the same way, the optimal inclusion of multiple Type III 

DGs decreased TRPL to 10.60 kW and increased Vmini to 

0.9912p.u. Fig.15 illustrates a variation in bus voltage 

profiles of test system -2 after the inclusion of optimized 

DG units. Additionally, Fig. 16 exemplifies the voltage 

profile variation at potentially weaker buses before and 

after multiple DG placements. The optimized DG 

integrations have resulted promising improvements in the 

voltage magnitude of weaker buses. The optimal solution 

for the test system-2 is converged at 28th iteration for Type 

I DG placements and 22nd iteration for Type III DG 

placements. The convergence characteristic of CSA for 

test system-2 is shown in Fig.17. 

Table 8. Optimized test results of test system-2 after DG 

accommodation   

Parameter 
Multiple Type 

I DGs 

Multiple Type 

III DGs 

Optimal bus locations 61, 17, 65 61, 17, 65 

Optimal sizes of DGs 

(kW/kVA)  

1289.3  

520.4  

273.1  

1583.8  

498.6  

259.5  

PDGTloss in kW 69.56 10.60 

Vmin in p.u. 0.9856  0.9912  

 

Fig. 15. Voltage profile of 69 bus radial PDS after 

multiple DG placements 
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Fig. 16. Voltage profile of weaker buses of test 

system-2 after DG placement 

 

Fig. 17. Convergence characteristics curve of CSA for 

test system-2 

 

2.1.1. Comparison Analysis 

In order to realize the efficacy of the proposed hybrid 

method, the optimized test results of test system-2 are 

related to GA, PSO and BSOA optimization methods. 

Table 9 and Table 10 present the comparative study of 

different optimization methods. The proposed hybrid 

method has reduced TRPL by 69.08% and 95.29% for 

optimized multi Type I and Type III DG placements, 

respectively. Furthermore, the Vmini of the test system-2 

has been increased from 0.9092p.u to 0.9856p.u and 

0.9912p.u for Type I and Type III DG placements, 

respectively. Whereas, for the multi Type I DG allocations 

GA, PSO and BSOA optimization techniques reported 

TRPL reduction of 60.44%, 63.02% and 66.56%, 

respectively with corresponding Vmini 0.9936p.u, 

0.9901p.u and 0.9808p.u. Likewise, for the optimized 

Type III DG integration BSOA reported 94.26% of TRPL 

reduction. The statistical report for the comparative study 

of different optimization techniques for test system-2 is 

graphically presented in Fig.18. 

Table 9. Comparison of test results for multiple Type I DG 

allocations 

Parameters 

Optimization Techniques 

PSO 

[10] 

GA 

[11] 

BSOA 

[18] 
Proposed 

Optimal bus 

locations 

61 

63 

17 

21 

62 

64 

61 

65 

27 

61 

17 

65 

Optimal size of 

DG (kW) 

1199.8 

795.6 

992.5 

929.7 

1075.2 

992.5 

1345.1 

447.6 

295.4 

1289.3 

520.4 

273.1 

PTloss (kW) 225 

Vmini without DGs 

(p.u.) 
0.9092 

PDG,Tloss (kW) 83.20 89.00 75.23 69.56 

Power loss 

reduction (%) 
63.02 60.44 66.56 69.08 

Vmini with DGs 0.9901 0.9936 0.9808 0.9856 

(p.u.)  

Table 10. Comparison for test results for multiple Type III 

DG allocations 

Parameters 
Optimization Techniques 

BSOA [18] Proposed 

Optimal bus locations 

61 

65 

27 

61 

17 

65 

Optimal size of DG (kVA) 

1542.7 

379.3 

436.5 

1583.8 

498.6 

259.5 

PTloss (kW) 225 

Vmini without DGs (p.u.) 0.9092  

PDG,Tloss (kW) 12.90 10.60 

Power loss reduction (%) 94.26 95.29 

Vmini with DGs (p.u.) 0.9896 0.9912  

 

 

Fig.18. Statistical comparison of different optimization 

algorithms for IEEE 69 bus RDS 

3. Conclusion 

A hybrid optimization method using LSF and CSA has 

been implemented in this work for optimizing Type I and 

Type III multiple renewable energy DG units into IEEE 33 

bus (test system-1) and IEEE 69 bus (test system-2) radial 

PDS. The DG sites and sizes are optimized to reduce 

TRPL. The proposed hybrid method has optimized Type I 

DGs into IEEE 33 bus radial PDS at the bus locations 30, 

13 and 10 with capacities of 1304.1 kW, 468.2 kW and 
633.1 kW respectively. Similarly, Type III DGs have been 

optimized with capacities 1402.1 kVA, 586.8 kVA and 

695.3 kVA. The optimized allocation of multiple Type I 

and Type III DGs via the proposed methodology has 

yielded 66.35% and 91.99% of TRPL reduction 

respectively in test system -1. Likewise, multiple Type I 

DG allocations in IEEE 69 bus RDS at the bus locations 

61, 17 and 65 with sizes 1289.3 kW, 520.4 kW and 273.1 

kW, respectively have resulted 66.86% of TRPL reduction. 

Whereas, for optimized Type III DG placement with 

capacities 1583.8 kVA, 498.6 kVA and 259.5 kVA 

95.29% of TRPL reduction has been achieved. The 

optimized test outcome of the proposed hybrid method has 
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been compared to PSO, GA, CSA and BSOA methods. 

The comparison study witnessed a maximum percentage 

of power loss reduction in the proposed method. Also, 

inclusion LSF approach significantly improved 

convergence rate of CSA. This shows the superiority of 

proposed method over other methods. Therefore, the 

suggested hybrid method can be recommended for 

effective DG allocation in RDS. 
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