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Abstract- In the realm of sustainable energy generation, Autonomous Squirrel Cage Generators (ASCGs) are indispensable due 

to their cost-effectiveness. However, ensuring precise DC-link voltage (V-DC) regulation in ASCGs, especially under varying 

conditions, remains a critical challenge. This study introduces a novel control strategy employing the Direct-Power-Controller 

(DPC) in conjunction with Type-2 Fuzzy-Logic Controller (T2FLC), augmented by the Flower-Pollination-Algorithm (FPA). 

Quantitative analysis reveals substantial enhancements in critical performance metrics under constant reference conditions, 

including a 1.1% reduction in rise time, a 5.03% decrease in settling time, a 0.06% increase in power factor (PF), and a 5.14% 

reduction in total harmonic distortion (THD). Moreover, under variable reference conditions, the proposed controller 

demonstrates exceptional responsiveness and establishes a linear relationship between V-DC and active power, with smooth 

transitions. In scenarios with variable wind speeds, the controller outperforms alternatives, exhibiting significant improvements 

in settling times. These findings underscore the efficacy of the T2FLC+DPC controller, optimized through FPA, for precise DC 

voltage regulation in ASCGs, presenting valuable implications for renewable energy systems and power electronics control. This 

study contributes quantitative insights that highlight the controller's potential to enhance ASCG performance, thus promoting 

the wider adoption of sustainable energy solutions. 

Keywords ASCGs, DPC, FPA, Iron losses, T1FLC, T2FLC, Wind power. 

 

1. Introduction 

Embracing renewable energy systems presents a practical 

and sustainable alternative to our current reliance on fossil 

fuels, The depletion of finite fossil fuel reserves, coupled with 

their detrimental impact on climate change, necessitates a shift 

towards renewable sources [1]. The incorporation of clean 

energy systems is therefore critical in addressing the growing 

demand for energy while reducing carbon emissions [2]. In 

recent times, there has been a surge in the adoption of 

renewable energy systems across the globe, driven by factors 

such as technological advancements, government incentives, 

and public understanding of ecological concerns [3]. Wind 

turbines and solar panels have gained popularity due to their 

ability to generate clean energy from renewable sources [4]. 

As a result, numerous nations and institutions have established 

ambitious goals aimed at enhancing the proportion of 

renewable energy within their energy portfolio, highlighting 
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the growing importance of renewable energy systems in the 

global energy landscape [5]. In the realm of renewable energy, 

wind power has emerged as a highly consequential player in 

recent years, capturing substantial attention due to its inherent 

potential to generate electricity in an environmentally friendly 

and sustainable manner [6]. Wind energy systems commonly 

encompass aerogenerators, specialized devices that harness 

the kinetic power of wind and convert it into usable electrical 

energy [7]. However, selecting the appropriate type of 

generator for a wind energy system is critical for its efficient 

and reliable operation. Autonomous Squirrel Cage Generators 

(ASCGs) have emerged as a promising solution for small-

scale wind energy applications, offering several advantages 

over other types of generators [8]. ASCGs are preferred for 

small-scale wind energy applications due to their low cost, 

simple construction, ability to operate in variable speed 

conditions, and high efficiency in power conversion [9]. 

However, the unstable DC-link voltage is a critical issue for 

the reliable and stable operation of ASCGs in wind energy 

systems [10].  

This is particularly challenging because ASCGs operate 

at variable speeds and under varying load conditions, which 

can cause voltage fluctuations. Improving the voltage 

regulation of ASCGs is essential to prevent these instabilities 

and ensure efficient energy conversion [11]. Various control 

methods have been proposed in the literature [12] to ensure 

the stable and reliable operation of the ASCG. These control 

techniques aim to improve the DC-link voltage regulation of 

this machine in wind energy systems. These methods include 

fuzzy logic control [13], neural network-based control [14], 

adaptive control [15], and model predictive control [16], 

among others. Dewangan. S. [17] proposed a model for 

monitoring the autonomous excited squirrel cage Generator 

using indirect vector control. The system uses a two-level 

back-to-back converter to separately regulate torque, active 

power, reactive power, and DC voltage for distinct wind 

speeds. The application of a fuzzy logic controller as a 

substitute for a PI controller improves system response during 

changes in wind speed. Simulation results demonstrate the 

superiority of the FL controller over the PI controller for 

variable speed operations. Dagang. C [18] unveiled a 

revolutionary direct-fuzzy-control model for wind power 

generation systems. This pioneering model seamlessly 

incorporates the direct-fuzzy-torque and power control laws, 

thereby exhibiting a profound impact on the quality of energy 

produced. By employing the direct fuzzy torque control law, 

the control signal for the generator-side converter is derived, 

ensuring precise and adaptive control. Simultaneously, the 

utilization of the direct fuzzy power control law on the grid 

side endeavors to achieve an unparalleled level of power 

efficiency. Distinct from conventional direct control methods, 

this proposed approach transcends expectations by delivering 

exceptional trajectory tracking capabilities and unrivaled 

resilience to fluctuations in the generator's internal 

parameters.  

Bendjeddou. Y [19] introduces a novel virtual flux-based 

control (VFC) incorporating nonlinear super-twisting sliding 

mode control (STSMC) to optimize autonomous squirrel cage 

generators (ASCG) in wind energy plants. This strategy, 

coupled with space-vector modulation (SVM) integrated into 

pulse width modulation (PWM) rectifiers, improves system 

dynamics while reducing current distortions. Dyanamina. G 

[20] introduces a control model for standalone Pico-electric 

power plant generators. This model deploys a fuzzy logic 

controller (FLC) with a static compensator (STATCOM) to 

manage reactive power fluctuations in autonomous squirrel 

cage generators (ASCGs), ensuring voltage stability. 

MATLAB/Simulink simulations validate this innovative 

scheme. Esquivel-Sancho.L [21] has devised a sophisticated 

modeling approach within the port-Hamiltonian framework, 

tailored specifically for autonomous squirrel cage Generators. 

This comprehensive framework not only captures the intricate 

dynamics of these generators but also paves the way for a 

pioneering control law. This control strategy is meticulously 

designed to regulate voltage with unparalleled precision, and 

its foundation lies in an intricate trajectory-tracking strategy. 

This innovative approach promises to enhance the 

performance and stability of autonomous squirrel cage 

Generators, making significant strides in the field of 

renewable energy systems. Sombir.S [22] presents an 

advanced voltage-frequency (VF) controller tailored for 

autonomous squirrel cage Generators (ASCGs) in conjunction 

with a photovoltaic (PV) system at the DC link, 

accommodating diverse linear and nonlinear loads. This 

multifaceted VF controller features a sophisticated 4-leg 

IGBT-based current-controlled voltage source converter (CC-

VSC), complemented by a dump load and an integrated PV 

system. Its primary mission is to ensure uninterrupted 

operational stability, maintaining a constant voltage and 

frequency regardless of dynamic load fluctuations. Sombir.S's 

innovative approach not only promises to optimize energy 

generation and consumption but also underscores the pivotal 

role of precision control strategies in the dynamic landscape 

of renewable energy systems. Despite significant 

advancements in the field of ASCG control, achieving stable 

and efficient DC-link voltage regulation remains a persistent 

challenge, particularly in the face of variable load and speed 

conditions [23, 24]. This challenge stems from the intrinsic 

nonlinear and time-varying properties of ASCGs, as well as 

the uncertainties associated with wind speed and other 

operational parameters [25]. As a result, the development of 

effective control strategies to address these issues and ensure 

reliable power generation from ASCGs has recently gained 

significant traction as a dynamic field of research. Traditional 

PI controllers and Type-1 Fuzzy-Logic-Controllers (T1FLCs) 

have been extensively employed for ASCG voltage 

regulation, but they may not be able to handle the complexity 

and variability of ASCGs. Therefore, there is a need for 

advanced control techniques that can effectively manage the 

voltage generated by the DC-link.  

In the pursuit of reliable and sustainable energy solutions, 

Autonomous Squirrel Cage Generators (ASCGs) have gained 

prominence for their cost-effectiveness. Nevertheless, the 

challenge of maintaining stable operation, especially under 

dynamic load and speed conditions, remains a pressing 

concern. This paper presents an innovative and robust control 

methodology, uniting Direct-Power-Control (DPC), Type-2 

Fuzzy-Logic-Controller (T2FLC), and the Flower-

Pollination-Algorithm (FPA). Our primary objective is to 

advance the management of DC-link voltage in three-phase 
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ASCGs, effectively addressing the complex, non-linear 

dynamics of these systems and accounting for uncertainties in 

wind speed and operating loads. DPC provides precise and 

swift power control, while T2FLC excels in handling 

uncertainties and adapting to changing conditions. Leveraging 

the FPA to optimize T2FLC's membership functions further 

enhances control performance. Through rigorous simulation, 

we substantiate our proposed scheme's superiority over 

conventional PI and T1FLC controllers. This research not only 

optimizes ASCG performance but also signifies a promising 

stride toward efficient and adaptive energy generation. We 

believe these findings are instrumental in advancing the field 

of renewable energy systems and power electronics control, 

addressing key industry challenges, and promoting a more 

sustainable energy landscape. 

2. Autonomous Squirrel Cage Generator Modelling 

2.1. D-Q Axes ASCG Mathematical Model 

The ASCG mathematical model deviates from that of a typical 

induction motor due to the inclusion of a capacitor bank. 

Within the d-q reference frame, the equations governing the 

stator and rotor flux, voltage, and air gap flux are formulated 

and expressed as primary variables, distinguishing the ASCG 

from its traditional counterpart. The classic d-q model of the 

asynchronous machine can be presented as follows [26, 27]: 

usd = Rsisd +
dψsd

dt
− ωaψsq                                                   (1) 

usq = Rsisq +
dψsq

dt
− ωaψsd                                                   (2) 

urd = Rrird +
dψrd

dt
− (ωa − ω)ψrq                                      (3) 

urq = Rrirq +
dψrq

dt
− (ωa − ω)ψr4                                       (4) 

ψsd = Lsisd + Lmird                                                                   (5) 

ψsq = Lsisq + Lmirq                                                                   (6) 

ψrd = Lrird + Lmisd + ψrd0                                                      (7) 

ψrq = Lrirq + Lmisq + ψrq0                                                     (8) 

imd = isd + ird                                                                              (9) 

imq = isq + irq                                                                            (10) 

Tm =
3

2
p

Lm

Lr
(ψrdisq − ψrqisd)                                                (11) 

with: 

𝑢𝑠𝑑 , 𝑢𝑠𝑞 , 𝑢𝑟𝑑 , 𝑢𝑟𝑞: dq components of stator and rotor voltage 

vectors, 

𝑖𝑠𝑑 , 𝑖𝑠𝑞, 𝑖𝑟𝑑 , 𝑖𝑟𝑞: dq components of stator and rotor current 

vectors, 

𝜓𝑠𝑑 , 𝜓𝑠𝑞 , 𝜓𝑟𝑑 , 𝜓𝑟𝑞: dq components of stator and rotor 

magnetic flux vectors, 

𝜓𝑟𝑑0, 𝜓𝑟𝑞0 : are the rotor's remanent magnetic fluxes in the d 

and q axes, respectively. 

𝑖𝑚𝑑 , 𝑖𝑚𝑞: dq components of the magnetizing current vector, 

𝑅𝑠 , 𝑅𝑟 : stator and rotor resistance 

𝐿𝑚 , 𝐿𝑠 , 𝐿𝑟: Magnetizing stator and rotor inductances, 

respectively. 

𝑝: the pole pairs number. 

𝑇𝑚: electromagnetic torque. 

It is also necessary to introduce equations of the load and 

capacitor voltages and the current consumed. 

𝑢𝑐𝑑 =
1

𝐶
∫ 𝑖𝑐𝑑𝑑𝑡

𝑡

0

+ 𝑢𝑠𝑑0                                                          (12) 

𝑢𝑐𝑞 =
1

𝐶
∫ 𝑖𝑐𝑞𝑑𝑡

𝑡

0

+ 𝑢𝑠𝑞0                                                          (13) 

𝑢𝐿𝑑 = 𝑅𝐿𝑖𝐿𝑑                                                                                 (14) 

𝑢𝐿𝑞 = 𝑅𝐿𝑖𝐿𝑞                                                                                 (15) 

𝑖𝑠𝑑 = 𝑖𝐿𝑑 + 𝑖𝑐𝑑                                                                            (16) 

𝑖𝑠𝑞 = 𝑖𝐿𝑞 + 𝑖𝑐𝑞                                                                             (17) 

Where the terms 𝑢𝑠𝑑0 and 𝑢𝑠𝑞0 represent the initial voltages 

across the capacitor in the d and q axes, respectively. 

2.2. Development of ASCG mathematical model with iron 

loses. 

To increase the dynamic model's accuracy for an 

asynchronous machine, it becomes imperative to incorporate 

iron losses into the model. However, this inclusion inevitably 

results in increased complexity. Thus, it becomes crucial to 

strike a balance between simplicity and accuracy. In the case 

of the ASCG, representing iron losses as a constant parameter 

proves insufficient in attaining the desired level of accuracy. 

Instead, a resistance term, denoted as Rm, is introduced into 

the model [28]. This modification is visually depicted in Fig. 

1. To determine the equivalent circuit, the Thevenin 

transformation technique [29] is employed. By adopting this 

approach, the model successfully accommodates the effect of 

iron losses with a reasonable level of complexity, thereby 

ensuring accurate simulation results. 
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Fig. 1. Equivalent diagram of the autonomous squirrel cage 

generator in a dq reference frame with consideration of iron 

losses. 

The pre-existing equations will remain applicable to this 

model, given that the annotations are updated to incorporate 

the Thevenin transformation [30]. 

RsT = Rs ∥ Rm =
RsRm

Rs + Rm
                                                    (18) 

usTd = usd

Rm

Rs + Rm
                                                                (19) 

usTq = usq

Rm

Rs + Rm
                                                               (20) 

isTd = isd

Rs + Rm

Rm

+
usd

Rm

                                                       (21) 

isTq = isq

Rs + Rm

Rm
+

usq

Rm
                                                       (22) 

The equations governing the operation are as follows. 

sisTd =
1

σLsLr
(Lm

2 ωisTq − LrRsTisTd + LmωLrirq + LmRrird

− LrusTd − LmKrd)                                  (23) 

sisTq =
1

σLsLr

(−Lm
2 ωisTd − LrRsTisTq − LmωLrird

+ LmRrirq − LrusTq − LmKrq)             (24) 

sird =
1

σLsLr
(−LsLmωisTq + LmRsTisTd − LsωLrirq

− LsRrird + LmusTd − LsKrd)             (25) 

sirq =
1

σLsLr
(LsLmωisTd + LmRsTisTq + LsωLrird

− LsRrirq + LmusTq − LsKrq)              (26) 

The coefficient of dispersion of BLONDEL, denoted by σ, is 
computed using the subsequent formula: 

  𝜎 =
𝐿𝑠𝐿𝑟−𝐿𝑚

2

𝐿𝑠𝐿𝑠
                                                                              (27) 

Figure 2 shows Rm illustrated as function of both iron losses 

current iRm and frequency F, obtained through interpolation 

of the measurement points. 

 

Fig. 2. Evolution of iron losses resistance as function of 

current and frequency. 

3. Enhanced Intelligent DPC Approach for DC Voltage 

Control 

3.1. Type 2 Fuzzy Controller Model 

The Traditional Fuzzy Logic Controller (T1FLC) is a control 

structure utilized to deal with vagueness and ambiguity in 

nonlinear systems, but its crisp Membership-Functions (MFs) 

restrict its ability to model uncertainties directly. In contrast, 

the T2FLC is an extension of T1FLC, which can handle both 

numeric and linguistic uncertainties. T2FLC makes use of 

unlimited type-1 MFs throughout a particular band to 

effectively remove undesirable situations in the controlled 

setup. To make T2FLC less complex, the auxiliary 

memberships are set to 1 in interval type-2 fuzzy systems. This 

paper encompasses an in-depth analysis of the utilization and 

application of zero-ordered Type-2 Takagi-Sugeno Kang 

(TSK) fuzzy standards, as discussed in references [31-33], 

which effectively address the limitations of T1FLC. The 

T2FLC receives two inputs: the DC-link voltage’s error (e) 

and its change rate (Δe). For this research, the approach taken 

involves utilizing a type-2 fuzzy membership function of 

Gaussian form (Figure 3) with a standard deviation that has a 

level of uncertainty. The mathematical expression for a 

Gaussian-type membership function is as follows: 

𝜇
𝐵̃𝐼

𝐽 = 𝑒𝑥𝑝 [−
1

2
(

𝑥𝑖 − 𝑧𝑖
𝑗

𝜎𝑖
𝑗

)

2

]                                                 (28) 
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The equations utilize σ and z as symbols for the input vector's 

midpoint and breadth of the Gaussian membership functions. 

These parameters are restricted to particular intervals, and 

solely one of them is regarded as uncertain to avoid an overly 

extensive parameter space. Fig. 3 illustrates the membership 

functions forms applied to DC-link voltage’s error "e" and the 

variation in DC-link voltage’s error "Δe". 

 

Fig. 3. Membership Functions for e and Δe Variables 

3.2. Flower Pollination Optimization Method 

Although it is true that each plant typically produces numerous 

flowers, and each floral patch has the potential to produce 

millions or even billions of pollen reproductive cells. To 

simplify, we suppose every single plant contains one blossom 

producing one pollen gamete, which we equate to a solution. 

The FPA is based on flowers and has two key steps: global 

and local pollination. Insects transport pollens during global 

pollination, which helps reproduce the fittest individuals (g∗). 

The first criteria and floral consistency are described as 

follow: 

xi
t+1 = xi

t + L(xi
t − g∗)                                                            (29) 

In the context of a given iteration t, 𝑥𝑖
𝑡 represents either the 

pollen i or the solution vector 𝑥𝑖, while g∗ refers to the best 

solution found. To simulate the efficient movement of insects, 

we introduce the pollination strength parameter L. To 

effectively mimic this characteristic, a Levy flight distribution 

is used. Specifically, we use equation 30, which represents the 

probability density function of the symmetric Levy 

distribution with a characteristic exponent λ = 1.5, where s is 

a random variable. 

L ~  
λΓ(λ) sin πλ 2⁄

π

1

|s|λ+1
                                                     (30) 

The second rule may be stated as: 

xi
t+1 = xi

t + ϵ(xj
t − xk

t )                                                            (31) 

𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  are designations given to pollens that come from 

distinct flowers of a particular plant species. 

To provide an accurate depiction of the intricacies of 

pollination, the phenomenon of flower constancy, and the 

foraging patterns of pollinators, we can establish a set of 

definitive rules: 

1) Pollen-carrying pollinators engaging in Lévy flights 

contribute to a global pollination process, 

encompassing both biotic and cross-pollination 

mechanisms. 

2) Local pollination, on the other hand, is a result of 

abiotic and self-pollination and is considered as a 

local process. 

3) Flower-constancy can be viewed as the likelihood of 

successful reproduction being directly related to the 

degree of similarity between two flowers. 

4) The switch probability (p), which represents the 

degree of control over local and global pollination, 

ranges from 0 to 1. 

The aforementioned pair of rules, in conjunction with the 

transition condition, could be consolidated into the following 

pseudo code, as depicted below. 

Flower Pollination Algorithm (FPA) 

 Define the membership function to be optimized 

 Create n solutions with d dimensions  

 Generate a n-by-d matrix of  values between 0 and 1 

 Identify optimal solution g* in the starting 

population 

 Evaluate objective function for each solution 

 Set MaxGeneration), p (global pollination) 

 Initialize the iteration counter t to 1 

 while t <= MaxGeneration 

  Initialize the flower/pollen gamete index i to 1 

  while i <= n (Iterate over all the flowers/pollen) 

   if rand < p 

    L = levy (d, 1.5) Draw a d-dim Lévy 

step  

    Calculate the new solution using global 

pollination 𝒙𝒊
𝒕+𝟏 = 𝒙𝒊

𝒕 + 𝑳(𝒙𝒊
𝒕 − 𝒈∗) 

   else 

    Draw two distinct random indices j and 

k  

    Calculate the new solution using local 

pollination  𝒙𝒊
𝒕+𝟏 = 𝒙𝒊

𝒕 + 𝝐(𝒙𝒋
𝒕 − 𝒙𝒌

𝒕 )  

   end 

   if obj < bestObj 

    Replace current with new solution. 

   end 

   Increment the flower/pollen gamete index i 

(i = i + 1) 

  end 

  Get best objective value and index in population 

  Set current best as best in population 

  Increment the iteration counter t (t = t + 1) 
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 end 

3.3. Optimization of T2FLC using flower pollination 

algorithm 

The optimization of the T2FLC using the FPA is an important 

step towards improving the efficiency and reliability of wind 

power plants. 

Objective function 

The choice of objective function will depend on the specific 

problem being solved and the goals of the optimization. It is 

important to define the objective function carefully so that it 

captures all the important factors that need to be optimized. In 

the case of optimizing the T2FLC for voltage regulation of 

ASCG in wind power conversion plants, the objective 

function is designed to balance various factors such as: 

1) Minimizing the DC-link voltage deviation from the 

desired set-point to guarantee the system's steady 

operation. 

2) Maximizing performance tracking of the machine 

output voltage to ensure it follows the reference 

voltage accurately and quickly. 

3) Minimizing the control effort to ensure efficient use 

of the system resources. 

4) Minimizing the output voltage's total harmonic 

distortion (THD) to ensure high-quality power 

output. 

The process of defining a suitable function is crucial for the 

implementation of the Flower Pollination Algorithm. In this 

study, a new performance criterion has been introduced and 

presented in (32). 

 

func =  ω1ε1
2 + ω2(1 − ε2

2) + ω3ε3
2 + ω4ε4

2                      (32) 
 
With: 

 

ε1 =
Vdc − Vdc

∗

Vdc
max  ;   ε2 =

Vout − Vref

Vref
max  ;  ε3 =

u

umax

 ;  ε4

=
THD

THDmax
                                                 (33) 

Where: 

 

𝑉𝑑𝑐 : the actual DC-link voltage. 

𝑉𝑑𝑐
∗  : the desired set-point for the DC-voltage. 

𝑉𝑑𝑐
𝑚𝑎𝑥 : the maximum allowable DC-voltage. 

𝑉𝑜𝑢𝑡 : the actual generator output voltage. 

𝑉𝑟𝑒𝑓 : the reference voltage for the generator output. 

𝑉𝑟𝑒𝑓
𝑚𝑎𝑥 : the maximum allowable generator output voltage. 

𝑢 : the control effort required to maintain the DC voltage. 

𝑢𝑚𝑎𝑥 : the maximum allowable control effort. 

𝑇𝐻𝐷 : the output voltage's total harmonic distortion (THD)  

𝑇𝐻𝐷𝑚𝑎𝑥  : the maximum allowable THD. 

𝜔1, 𝜔2, 𝜔3, 𝜔4 : the weighting coefficients that determine 

the relative importance of each objective function. 

 

 

 

 

4. Comparative Matlab Simulation Analysis 

This study introduces an inventive strategy for the regulation 

of the three-phase DC voltage rectifier, employing a type-2 

fuzzy logic regulator based on Direct Power Control (DPC). 

To optimize the controller's performance, the antecedent and 

consequent parameters are determined using the flower 

pollination optimization method. Figure 4 showcases the 

recommended control structure. To assess its effectiveness, a 

comprehensive simulation model of the entire system is 

developed using MATLAB/Simulink. 

 

Fig. 4. The suggested framework for regulating a three-phase 

rectifier. 

The Simulink model shown in Fig.5 consists of the ASCG 

machine that considers iron losses, an AC-DC converter, DC 

load, and a control block. Table 1 provides the parameters for 

this model. 

Table 1. Simulation parameters for this study. 

Parameters Value 

Angular velocity 314 rad/s 

Excitation capacitors 70 μF 

Inductance 1 mH 

Resistance 0.1 Ω 

DC- capacitance 4000 μF 

DC loads 100 Ω 

 

 

Fig.5. MATLAB/Simulink model of the entire system 

An evaluation of the rectifier's performance is conducted 

using the suggested controller under three distinct operating 

circumstances. Numerous indicators are considered during the 

assessment: such as response time, stabilization time, excess 

amplitude, overall harmonic distortion, and power factor (PF). 

The designated operational requirements are enumerated 

underneath: 
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1. Condition 1: states that the input reference for this 

operating state remains fixed, with a reference 

command of 600 V being set before the rectifier 

begins functioning. 

2. Condition 2: the rectifier's step response is analyzed 

while the DC voltage reaches a stable value. The DC 

voltage’s reference is then altered from 600V to 

800V, followed by a subsequent shift from 800 V 

back to 600 V. 

3. Condition 3: wind change 

4. Condition 4: investigates the effect of reducing the 

load by 50% (from 40Ω to 20Ω) on the rectifier's DC 

side. 

4.1. Condition 1: Fixed VDC input reference   

 
Fig. 6. The results from a simulation with a fixed target value. 

 

Comparative results are provided for the DC-link voltage 

among three different controllers: DPC-T2FLC-FPA, DPC-

FLC, and DPC-PI. However, only the DPC-T2FLC-FPA 

controller is evaluated for the other results. The response of 

the DC-link voltage, active and reactive powers, as well as the 

output voltage and current of the ASCG, to a constant input, 

is illustrated in Fig.6. Once the rectifier begins operating, all 

three controllers can achieve the DC-voltage reference value 

without any steady-state error or overshoot. Nevertheless, the 

DPC-T2FLC-FPA controller achieves the reference value for 

the DC-link voltage at a quicker pace. Furthermore, all three 

controllers ensure the continuity of a sinusoidal rectifier’s 

input across transient and sustained modes, guaranteeing the 

smooth and uninterrupted flow of current. 

 

 

 

 

 

 

 

 

 

Table 2. Controller Performance under Constant Reference. 

Indicator of 

Performance 

DPC-

T2FLC-FPA 

DPC-

FLC 

DPC-PID 

Tr (s) 1.2349 1.2483 1.2581 

Ts (s) 1.3071 1.3764 1.3813 

Mp (%) 0 0 0 

Cos phi 0.9998 0.9992 0.9989 

THD (%) 2.77 2.92 3.19 

Performance results for constant reference operation are 

presented in Table 2 for each controller. According to the 

table, the proposed controller improved the rise time, settling 

time, power factor (PF) and total harmonic distortion (THD) 

by 1.1%, 5.03%, 0.06%, and 5.14%, respectively, for the 

DPC-FLC controller. For the DPC-PID controller, the 

proposed controller also increased these parameters by 1.84%, 

5.37%, 0.09%, and 13.16%, respectively. These 

enhancements are particularly valuable in scenarios with fixed 

V-DC input references, where rapid response times and 

improved power quality translate into more stable grid 

integration, reduced operational costs, and increased 

economic viability for renewable energy systems. 

 

4.2. Condition 2: Varied input reference of VDC 
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Fig. 7. Simulation outcomes of DC voltage variation. 

 

The results of the system's response to a sudden voltage 

change are presented in Fig.7. The rectifier was in a stable 

state when the DC voltage’s reference was raised from 600 

Volt to 800 Volt at t = 2 s, then changed back to 600 V at t = 

4 s. All three controllers successfully adjusted the voltage 

across the DC link to the chosen reference without making an 

equilibrium oversight or overshooting. The DPC-T2FLC-FPA 

controller exhibited a faster response in maintaining the 

reference value of the DC voltage than the other controllers. 

The results showed a linear relationship between the V-DC 

and the active power. Specifically, the DC-link voltage 

increased as more input power was drawn and decreased as 

less input power was drawn. Initially, the rectifier consumed 

5000 W of active power within 2 seconds. At the 2-second 

mark, the reference V-DC was raised to 800 Volt, causing the 

rectifier to temporarily increase its active power usage to 

achieve the elevated V-DC. Once the V-DC reached its 

reference target, a new active power equilibrium was 

established for the ASCG. At t = 4 sec, the converter drew 

reverse active power to reduce the V-DC. This indicated that 

the DC-link capacitor was discharging, causing a proportional 

decrease in the V-DC. Furthermore, no reactive power 

variation during transient and steady states. Moreover, the 

three controllers maintain a sinusoidal shape of the converter 

input current and ensure a superior cos phi in both transitory 

and permeant modes. Table 3 outlines the performance 

requirements for every controller during a step change 

operation. In summary, our research results in the context of 

varying V-DC input references provide substantial practical 

insights, showcasing the controller's adaptability, reliability, 

and its direct applicability to a diverse range of industries and 

real-world scenarios. 

Table 3. Controller Performance under Variable Reference.  

Performance 

Criteria 

DPC-

T2FLC-FPA 

DPC-

FLC 

DPC-

PID 

Ts (s) (600V to 

800V) 
1.2349 1.2483 1.2581 

Ts (s) (800V to 

600V) 
1.3071 1.3764 1.3813 

Mp (%) 0 0 0 

PF(cos phi) 1 0.9997 0.9992 

 

4.3. Condition 3: Varied wind speed 

 

Fig. 8. Simulation outcomes of wind speed variation. 
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Figure 8 illustrates the outcomes of the system functioning in 

a scenario with fluctuating wind speeds. The wind speed 

undergoes changes between t = 2 s and t = 4.5 s while the 

rectifier is in a stable state. In all cases of the controller, the 

results indicate that the DC-link voltage fluctuates, and a 

minor static error is observed. Upon comparing the outcomes 

of all the controllers, it is evident that the error is minimized 

in the scenario where the DPC-FLC-FPA controller is utilized. 

The reactive power is found to be negligible, signifying a 

high-cos phi.  After the fluctuation subsides, it’s observed that 

the rectifier utilizing the DPC-FLC-FPA controller achieves a 

faster recuperation time for the V-DC. Table 4 displays the 

performance of each controller in the context of operation 

under varying wind speeds. 

 

Table 4. Controller Performance under Variable Wind speed. 

Performance 

Criteria 

DPC-

T2FLC-FPA 

DPC-

FLC 

DPC-PID 

Ts1 (s) 3.1804 3.2145 3.4862 

Ts2 (s) 4.7059 4.7439 4.7605 

Mp (%) 0 0 0 

ess (V) 1 2 4 

PF 1 0.9991 0.9988 

The data presented in Table 4 indicates that all the 

controllers exhibit a notable power factor, indicating a high 

level of performance in this aspect. When contrasting the 

suggested controller with the remaining controllers (DPC-

FLC and DPC-PID), the settling time (Ts1) enhancements for 

this specific condition are 1.1%, 9.61% respectively, and 

0.8%, 11.6% respectively for (Ts2). In summary, our research 

on varied wind speeds offers practical benefits for renewable 

energy. Improved power factor and faster settling  

 

times enhance efficiency and cost-effectiveness in wind 

energy applications, benefiting industries like wind farms and 

remote installations. Our controller's adaptability and 

scalability make it a versatile solution for projects of all sizes, 

advancing sustainable wind energy systems. 

 

4.4. Condition 4: Varied load on the DC side 

 

 

Figure. 9. Simulation outcomes of load variation. 

 

Figure 9 displays the outcomes of the system when subjected 

to variations in load on the DC side. At t = 2 s, the DC- 

impedance load has undergone a decrease, shifting its 

resistance from 40 Ω to 20 Ω., and then at t = 3.5 s, it is raised 

back up from 20 Ω to 40 Ω. Each controller guarantees that 

the DC-V has no steady-state error. The converter's DC-

voltage experiences both over and under-shoots when 

controlled by the DPC-T2FLC-FPA, DPC-FLC, and DPC-

PID controllers. However, these over and under-shoots are 

comparatively smaller when using the DPC-T2FLC-FPA 

controller compared to the other two. Reducing the DC 

impedance load to 20 Ω at t = 2 s causes an increase in the 

current and active power drawn by the load, while maintaining 

a constant DC voltage. Between 2 s and 3.5 s, the rectifier 

draws a higher amount of active power from the self-excited 

induction generator, approximately 8500 W, compared to the 

5000 W drawn up to      2 s. Furthermore, the DPC-T2FLC-

FPA controller exhibits a shorter recovery time in comparison 

to the other controllers. In summary, our research on variable 

DC load conditions has practical implications. The controllers' 

improved power factor and reduced settling times offer energy 

efficiency gains and cost savings potential in applications with 
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dynamic loads, such as renewable energy and manufacturing. 

Rapid response to changing DC loads ensures stable power 

supply, crucial for operational efficiency and grid stability. 

The controller's adaptability and scalability make it versatile 

for various projects, enhancing power system reliability and 

efficiency in dynamic load scenarios. 

 

5. CONCLUSION  

The presented research introduces a novel and 

sophisticated control approach aimed at precise regulation of 

the DC-link voltage in three-phase Autonomous Squirrel Cage 

Generators (ASCGs). This cutting-edge approach combines 

the Direct Power Controller (DPC) with the advanced Type-2 

Fuzzy Logic Controller (T2FLC), meticulously optimized 

through the implementation of the Flower Pollination 

Algorithm (FPA). Through extensive MATLAB simulations, 

the proposed controller surpasses the conventional 

Proportional-Integral (PI) and Type-1 Fuzzy Logic Controller 

(T1FLC) counterparts in various dynamic scenarios 

encompassing varying load and speed conditions. This 

superior performance observed in the ASCG's responses 

indicates a significant advancement in its overall operational 

efficiency. 

The FPA optimization technique employed in this 

research plays a pivotal role in elevating the controller's 

performances (Tr, Ts, Mp, Cos phi, THD) to unprecedented 

levels, as it effectively enhances the regulation of the DC-link 

voltage. This optimization process, inspired by the fascinating 

mechanisms of flower pollination in nature, demonstrates its 

ability to extract optimal solutions by mimicking the natural 

phenomenon. The comprehensive findings of this study shed 

light on a highly promising and forward-thinking approach for 

DC-link voltage regulation in ASCGs integrated within 

renewable energy systems. These insights are expected to 

significantly benefit researchers and practitioners engaged in 

the dynamic and ever-evolving fields of power electronics and 

green energy plants, paving the way for further advancements 

in this domain. 
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