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Abstract; Wind power generation forecasting is a critical facet of efficient renewable energy management. This research presents 

a pioneering approach, the "Wavelet-Enhanced Recurrent Neural Network with Gated Linear Units" (W-RNN-GLU), designed 

to elevate the precision and insight of wind power forecasting. The model integrates wavelet transformation, recurrent neural 

networks (RNNs), and Gated Linear Units (GLUs) to capture intricate temporal dependencies and extract relevant features from 

wind power data. Through multiscale insights facilitated by wavelet transformation, the W-RNN-GLU model discerns fine-

grained details and overarching trends. The RNN component adeptly navigates dynamic temporal dependencies, while GLUs 

regulate feature extraction with precision.  Empirical evaluations demonstrate the model's superiority, achieving significantly 

improved forecast accuracy compared to traditional techniques. The proposed model stands as a trailblazing solution, bridging 

the gap between traditional time series methods and advanced machine learning algorithms. As renewable energy assumes greater 

prominence, the W-RNN-GLU model emerges as a pivotal tool in shaping the future of wind power generation forecasting. The 

effectiveness of the proposed W-RNN-GLU model is substantiated through rigorous empirical evaluations. In comparison to 

established methods such as Lasso and LightGBM, the W-RNN-GLU model showcases remarkable performance. For instance, 

the Mean Absolute Error (MAE) achieved by the W-RNN-GLU model is significantly lower than that of Lasso and LightGBM, 

signifying its enhanced predictive accuracy. Moreover, the Root Mean Square Error (RMSE) achieved by the W-RNN-GLU 

model underscores its ability to capture nuanced variations within wind power data. This tangible improvement in forecast 

accuracy positions the W-RNN-GLU model as a transformative solution for wind power generation forecasting, paving the way 

for more efficient and sustainable energy management practices. 
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1. Introduction 

 

In the dynamic realm of renewable energy, wind power 

generation forecasting emerges as a linchpin for efficient 

energy management and sustainable resource allocation [1]. 

The precision of such predictions holds the key to optimal 

decision-making, enabling stakeholders to navigate the 

volatile winds of energy supply and demand. In response to 

the growing significance of renewable sources, this study 

introduces a groundbreaking model – the "Wavelet-Enhanced 

Recurrent Neural Network with Gated Linear Units" (W-

RNN-GLU) – poised to redefine the landscape of wind power 

forecasting. By artfully weaving together the intricate threads 

of wavelet transformation, recurrent neural networks, and 

Gated Linear Units, the W-RNN-GLU model embarks on a 

journey to unlock the hidden patterns within wind power data 

and provide unparalleled insights. The W-RNN-GLU model 

encapsulates a symphony of advantages, each harmonizing to 

compose a compelling narrative of its capabilities: 

Temporal Symphony: The incorporation of recurrent 
neural networks empowers the model to decipher the temporal 

intricacies woven into wind power data [2]. This aptitude to 

capture temporal dependencies offers a panoramic view of 

evolving patterns and trends, enhancing the model's predictive 

precision. 

Elegance in Feature Extraction: Gated Linear Units emerge as 

the custodians of feature extraction, selectively nurturing the 

propagation of relevant information while orchestrating the 

suppression of extraneous noise [3]. This meticulous curation 

enhances the model's ability to identify and amplify the core 

signals within the data. Multiscale Insights: Wavelet 

transformation serves as a transformative lens, meticulously 

decomposing wind power data into a spectrum of scales. This 

process [4] unfurls a tapestry of insights, from the fine-grained 

intricacies to the grand overarching trends, enabling the model 

to comprehensively comprehend the wind power landscape. 

Holistic Forecasting: The harmonious fusion of wavelet 

transformation, recurrent neural networks, and Gated Linear 

Units bestows the model [5] with the ability to forecast wind 

power generation across diverse temporal dimensions, 

ensuring a comprehensive and nuanced predictive outlook. 

While the W-RNN-GLU model boasts a spectrum of 

strengths, it is not without its set of challenges and limitations: 

Navigating Complexity:The amalgamation of various 

techniques [6] introduces an intricate web of computational 

complexity. This may necessitate substantial computing 

resources and efficient algorithmic design to manage the 

increased processing demands. 

Hyperparameter Harmonization: Achieving optimal 

performance demands a careful symphony of hyperparameter 

tuning. This intricate process [7] requires meticulous 

experimentation and parameter adjustments to fine-tune the 

model. 

Data Quality Prelude: The model's [8] effectiveness 

hinges on the quality and integrity of the input data. The 

presence of noise, outliers, or missing values may hinder 

predictive accuracy, underscoring the importance of data 

preprocessing. 

Architectural Fusion: The W-RNN-GLU model seamlessly 

amalgamates wavelet transformation, recurrent neural 

networks [9], and Gated Linear Units, forging a novel and 

harmonious approach to capturing temporal patterns and 

extracting crucial features. 

Precision Amplification: By adeptly capturing both short-term 

fluctuations and long-term trends, the W-RNN-GLU model 

aspires to elevate the precision of wind power generation 

forecasting to unprecedented heights [10]. 

Strategic Insights: The model's inherent ability to unravel 

multiscale insights equips energy decision-makers with a 

profound understanding of the wind power generation 

landscape. This, in turn, empowers strategic planning and 

informed resource allocation. 

This research pioneers a novel approach to wind power 

forecasting by integrating diverse techniques, marking a 

significant methodological evolution in the field. The 

motivation stems from the pressing need for more precise and 

insightful forecasting models in renewable energy 
management. The study's contribution lies in introducing the 

Wavelet-Enhanced Recurrent Neural Network with Gated 

Linear Units (W-RNN-GLU) model, which synergistically 

combines wavelet transformation, recurrent neural networks, 

and Gated Linear Units.  

This innovative hybrid model aims to amplify forecasting 

capabilities by capturing intricate temporal dependencies, 

extracting nuanced features, and offering multiscale insights 

into wind power data. Through comprehensive mathematical 

formulations, empirical evaluations, and comparative 

analyses, the research endeavors to establish the W-RNN-

GLU model as a transformative force. Its potential impact 

spans global renewable energy management, promising more 

efficient and sustainable practices by significantly enhancing 

the precision and depth of wind power generation forecasting. 

The study starts with an Introduction in Section 1, 

outlining the importance of wind power forecasting. It then 

explores Related Works in Section 2 before detailing the 

Proposed Advanced Hybrid Model in Section 3. Following 

this, the Dataset Description is provided in Section 4, with 

Evaluating Model Performance shown in Section 5 and 

Results and Discussion in Section 6, presenting findings. 

Finally, the Conclusion and Future Works in Section 7 offer 

insights and potential directions in a concise flow. 

 

2. Related Works  

 

In the pursuit of enhancing wind power generation 

forecasting, the scholarly landscape has witnessed an array of 

pioneering efforts. Existing works often leverage a variety of 

methods, ranging from traditional time series techniques to 

more sophisticated machine-learning approaches. Notable 

studies [11] have employed autoregressive integrated moving 

average (ARIMA) models, artificial neural networks (ANNs), 

and ensemble methods to capture temporal dependencies and 

predict wind power output. While these approaches have 
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yielded commendable results, they are not devoid of 

limitations. ARIMA models, for instance, struggle with 

capturing nonlinear relationships and intricate patterns 

inherent in wind power data [12]. ANNs, on the other hand, 

may grapple with overfitting and require intricate tuning of 

hyperparameters. Moreover, both methods may struggle with 

effectively extracting features from complex datasets, limiting 

their ability to comprehensively capture wind power 

generation dynamics [13]. 

 

The proposed "Wavelet-Enhanced Recurrent Neural 

Network with Gated Linear Units" (W-RNN-GLU) model 

stands as a beacon of innovation amidst these limitations. Its 

unique fusion of wavelet transformation, recurrent neural 

networks [14], and Gated Linear Units [15] imparts a 

transformative edge over the existing paradigms. By 

incorporating wavelet transformation, the W-RNN-GLU 

model effortlessly disentangles the intricate scales within 

wind power data, enabling the capture of both fine-grained 

details and overarching trends [16]. The incorporation of 

recurrent neural networks transcends the limitations of linear 

modeling, adeptly capturing nonlinear temporal dependencies 

[17]. Gated Linear Units, acting as meticulous custodians, 

elevate feature extraction by nurturing relevant information 

while suppressing noise. These advancements synergistically 
equip the W-RNN-GLU model with the ability to provide 

more precise and nuanced wind power forecasts compared to 

traditional approaches [18][19]. Furthermore, the model's 

multidimensional outlook ensures comprehensive forecasting 

across various temporal dimensions, a feat not easily achieved 

by existing methods [20]. By bridging the gap between 

traditional time series techniques and cutting-edge machine 

learning, the W-RNN-GLU model emerges as a trailblazing 

solution poised to redefine wind power forecasting. 

 

3. Proposed Advanced Hybrid Model for Wind Power 

Generation Forecasting 

 

In our pursuit of precision and insight in wind power 

generation forecasting, we present an integrated approach that 

seamlessly combines wavelet transformation and recurrent 

neural networks (RNNs). At the heart of our innovative 

methodology lies the "Wavelet-Enhanced Recurrent Neural 

Network with Gated Linear Units" (W-RNN-GLU) model. 

 

3.1 Wavelet Transformation: Unveiling Multiscale 

Insights 

 

The foundation of our methodology rests on the deliberate 

application of wavelet transformation [21]. This 

transformative technique delicately dissects wind generation 

(𝑊), wind capacity (𝐶), and temperature (𝑇) data into a 

spectrum of distinct scales. This meticulous deconstruction 

allows us to extract key features, capturing the essence of the 

underlying phenomena. 

 

The wavelet transformation process involves convolving 

the original data with wavelet basis functions, denoted as 𝜑𝑗, 

at various scales (j). This convolution operation, as expressed 

in equations (1), (2), and (3), results in the generation of 

decomposed components - 𝑊𝑗, 𝐶𝑗, and 𝑇𝑗, respectively: 

 

𝑊𝑗 = 𝑊 ∗ 𝜑𝑗      (1) 

𝐶𝑗 = 𝐶 ∗ 𝜑𝑗      (2) 

𝑇𝑗 = 𝑇 ∗ 𝜑𝑗      (3) 

 

Here, W, C, and T represent the original wind generation, 

wind capacity, and temperature data, while 𝜑𝑗 denotes the 

wavelet basis function at scale j. Through this process, the 

decomposed components𝑊𝑗,𝐶𝑗,and𝑇𝑗, unveil fine-grained 

details and overarching trends within the data. 

These components encapsulate a harmonious fusion of high-

frequency and low-frequency elements, providing a 

comprehensive panoramic view of the wind power landscape. 

The convolution operation between the original data and 

the wavelet basis functions allows the separation of the data 

into different scales, capturing both localized and global 

variations [22][23]. High-frequency components, associated 

with rapid changes in the data, convey intricate details, while 

low-frequency components highlight broader trends and 

variations over time. The amalgamation of these components 

facilitates a holistic understanding of the dynamic interplay 

between wind generation, capacity, and temperature, essential 

for accurate forecasting. 

This meticulous deconstruction through wavelet 

transformation enables the extraction of salient features that 

contribute to the model's ability to discern nuanced patterns 

and anticipate complex dynamics within wind power data. The 

resulting amalgamation of fine-grained and overarching 

trends obtained from the decomposed components equips the 

model with a comprehensive perspective of the wind power 

landscape, enhancing its forecasting precision and depth. 

 

 

3.2 Recurrent Neural Networks: Capturing Temporal 

Symphony 

 

Embedded within the wavelet-transformed data is the 

neural heartbeat of a Recurrent Neural Network (RNN). This 

neural sentinel, embodied as either the Long Short-Term 

Memory (LSTM) or the Gated Recurrent Unit (GRU), 

assumes the sacred role of deciphering temporal 

dependencies. 

In the context of LSTM, its operational framework at a 

specific time instance (t) comprises several interconnected 

equations, delineating its sequential processing mechanism. 

These equations unfold the computations involved in LSTM's 

memory cell and gate operations: 

The LSTM equations at time t are as follows: 

 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)   (4) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)  (5) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)  (6) 

𝑔𝑡 = tanh(𝑊𝑥𝑔𝑥𝑡 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏𝑔)   (7) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡    (8) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡)     (9) 

In these equations, 𝑥𝑡 signifies the input data at time t, 

ℎ𝑡−1 denotes the hidden state at the preceding time step, and σ 

represents the sigmoid activation function. The variables 

𝑖𝑡 , 𝑓𝑡 , 𝑜𝑡 , 𝑔𝑡 , 𝑐𝑡  𝑎𝑛𝑑 ℎ𝑡  depict the input gate; forget gate, 

output gate, modulation gate, cell state, and hidden state, 
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respectively. Equations (4) to (9) embody the intricate 

computations within LSTM, delineating its input, output, 

forget and memory modulation mechanisms [24]. 

These equations collectively illustrate how LSTM 

navigates through temporal corridors by adjusting its memory 

cell and gates. Specifically, the input and forget gates regulate 

the flow of information into and out of the memory cell, while 

the output gate controls the information flow to the hidden 

state. The modulation gate governs the updating of the cell 

state, capturing the network's ability to retain or discard 

information over sequential time steps. This inherent 

architecture empowers the RNN to comprehend and encode 

temporal patterns within sequential wind power data, allowing 

it to discern enduring trends and recurrent patterns essential 

for accurate forecasting. The orchestrated interplay of LSTM's 

gates and memory cell operations forms the backbone of its 

capability to capture and retain temporal dependencies crucial 

for wind power generation prediction [25-28]. 

 

3.3 Gated Linear Units: Orchestrating Information 

Flow 

 

The pinnacle of our innovation is the integration of Gated 

Linear Units (GLUs) within the RNN architecture. These 

neural custodians, meticulous in their guardianship, oversee 
the flow of information, tending to the gardens of feature 

extraction. The vigilant gating mechanisms of GLUs discern 

the symphony of signals, nurturing the propagation of salient 

information while damping the noise [29]. 

 

The GLU operation is defined as: 

𝐺𝐿𝑈(𝑥) = 𝑥 ⊗ 𝜎(𝑊𝑔𝑥𝑥 + 𝑏𝑔)  (10) 

 

From Eq.(10),  𝑥 represents the input to the GLU, 𝑊𝑔𝑥  is the 

weight matrix, 𝑏𝑔 is the bias vector, and 𝜎 denotes the sigmoid 

activation function. 

 

In the realm of wind power generation forecasting, the 

integration of wavelet transformation, recurrent neural 

networks (LSTM) [30], and Gated Linear Units culminates in 

the W-RNN-GLU model. This intricate hybrid model 

facilitates accurate forecasting by extracting multiscale 

insights, capturing temporal dependencies, and enhancing 

information flow. The derivation offered here provides a 

glimpse into the mathematical symphony that underpins the 

model's ability to forecast wind power generation with 

precision and depth. As we conclude, the W-RNN-GLU 

model stands as a testament to the fusion of science and 

innovation in the pursuit of sustainable energy solutions. 

 

4. Dataset Description 

 

In the realm of renewable energy forecasting, a dataset 

emerges as a testament to the pursuit of accurate wind power 

generation predictions. This dataset embarks on a journey to 

unravel the intricate tapestry of wind energy production, 

spanning the years from 2017 to 2019. With a primary 

objective of forecasting wind power generation on a daily 

scale, the dataset serves as a canvas upon which different time 

series and traditional machine learning models can craft their 

predictive prowess [31-34]. 

 

At its core, this dataset captures a trio of elemental 

attributes that intertwine to shape the wind power landscape: 

 

• utc_timestamp: A chronological sentinel, marking 

the passage of time in UTC. It is the rhythmic 

heartbeat that synchronizes the data's narrative. 

• wind_generation: A symphony in megawatts, 

encapsulating the daily wind power production. It 

unveils the dynamic interplay between nature's 

forces and human ingenuity. 

• wind_capacity: A reflection of electrical potential, 

quantifying the capacity of the wind to energize. It is 

a constant reminder of the reservoir of possibilities. 

The dataset embraces the atmospheric temperature, entwining 

it with the wind power narrative: 

 

• temperature: A numerical resonance that mirrors the 

daily temperature in degrees Celsius. It forms a 

backdrop against which the ebbs and flows of wind 

power are juxtaposed. 

 

The dataset reaches beyond the present, employing a 

symphony of time-shifted attributes to enrich its narrative: 

 

• lagged_power_1, lagged_power_12, 

lagged_power_24, lagged_power_48, 

lagged_power_72: These lagged power attributes 

carry echoes of past generations, echoing the legacy 

of power produced at various time intervals. Their 

harmonious interplay with the present encapsulates 

the time-woven influence. 

• rolling_4_power_mean, rolling_24_power_mean: 

The rolling means harmonizing the power chorus, 

offering a smoothed rendition of power generation 

over short and extended periods. They bring forth a 

subtle cadence, unveiling the underlying trends. 

 

The dataset introduces a suite of binary features, each a binary 

whisper that conveys the time of day: 

 

• feat_monthName, feat_isNight, feat_isDawn, 

feat_isMorning, feat_isAfternoon: These features 

unlock the chronicles of the time, unveiling the 

month and different periods of the day. They are the 

sunlit windows that illuminate the temporal shifts. 

 

In the grand tapestry of wind power forecasting, this 
dataset beckons researchers and analysts to embark on a 

journey of exploration. It is a treasure trove that invites the 

application of various time series and traditional machine 

learning models. As the sun rises and sets across the years, 

these data threads intertwine, painting a vivid portrait of wind 

power dynamics waiting to be deciphered [35-37]. 

 

The dataset stands as a testament to the potential of 

merging data and innovation, offering a glimpse into the 

captivating realm of renewable energy forecasting. 
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Fig.1. Resampled Hourly Power Generation  

 

Fig.1 presented here offers a valuable perspective on 

power generation, having undergone a resampling 

transformation that aggregates data to a granular hourly 

resolution. This resampled dataset holds the potential to 

unlock insights into the temporal dynamics of power 

generation, enabling researchers and analysts to unravel 

patterns and trends that might remain obscured in more finely-

grained data. 

 

By condensing the data to hourly intervals, it becomes 

feasible to grasp the overarching flow of power production 

over time. This temporal aggregation lends itself to various 

analyses, including the identification of diurnal patterns, shifts 

in energy demand, and the evaluation of capacity utilization. 

 

• timestamp: The "timestamp" column serves as the 

temporal anchor, marking each hourly interval with 

precision. This enables users to align observations 

across various attributes and time-based analyses. 

• power_generation: At the heart of the dataset lies the 

"power_generation" column, which quantifies the 

volume of generated power for each hourly interval. 

Expressed in units such as megawatts (MW) or 

gigawatts (GW), this attribute encapsulates the 

central theme of the dataset. 

 

The resampled hourly power generation dataset holds 

immense utility across multiple domains. Researchers in 

energy economics can employ it to study power demand 

variations over different times of the day or seasons. Grid 

operators might find value in assessing power generation 

trends to optimize distribution strategies. Climate scientists 

can correlate power generation with meteorological 

conditions, contributing to a deeper understanding of 

renewable energy sources' interplay with environmental 

factors [38]. 

 

Fig.2. Analysis of Power Generation Trends across Years 

 

Fig.2 offers a comprehensive vantage point to explore and 

dissect the fascinating trajectory of power generation across 

multiple years. By delving into the temporal evolution of 

power generation, we can uncover valuable insights into 

shifts, patterns, and potential drivers that have shaped the 

energy landscape. The analysis is framed within the context of 

the "power_generation" attribute, reflecting the magnitude of 

generated power in a specified unit (e.g., megawatts or 

gigawatts). 

 

• Yearly Fluctuations: One of the primary insights that 

emerges is the yearly oscillation of power generation. 

This phenomenon can be attributed to various factors 

such as seasonal changes, shifts in demand, and 

maintenance schedules. By comparing power 

generation across years, we can discern whether 

these fluctuations are consistent or subject to unique 

dynamics. 

• Long-Term Growth or Decline: Analyzing power 

generation trends across years allows us to identify 

overarching growth or decline patterns. A rising 

trend over the years could signify expanding energy 

demands or the integration of renewable energy 

sources, while a descending trend might point to 

efficiency improvements or shifts in energy sources. 

• Anomalies and Outliers: Examining year-to-year 

variations in power generation can unveil anomalies 

or outliers. These deviations might be indicative of 

unforeseen events, extreme weather conditions, or 

technological disruptions that significantly influence 

power generation during specific years. 
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The exploration of power generation trends across the 

years holds the promise of unveiling valuable insights into the 

energy landscape's evolution. By systematically analyzing 

yearly fluctuations, long-term patterns, and potential 

anomalies, we can enhance our understanding of the forces 

shaping power generation [39-41]. The findings of this 

analysis can guide policy decisions, infrastructure planning, 

and sustainable energy strategies, fostering a more informed 

and resilient energy future. 

 
Fig.3. Analysis of Yearly Average Power Generation 

 

In Fig.3, we focus on extracting insights from the dataset's 

"power_generation" attribute, with a specific emphasis on 

understanding the yearly average power generation. By 

aggregating and analyzing power generation data on an annual 

basis, we aim to uncover trends, variations, and potential 

factors influencing the energy landscape. 

 

• Yearly Trends: The analysis will reveal whether 

there are consistent yearly trends in power 

generation. Identifying upward or downward trends 

can provide insights into changing energy demands, 

technological advancements, or shifts in energy 

sources. 

• Seasonal Patterns: By comparing yearly averages, we 

can uncover potential seasonal patterns in power 

generation. Certain months or seasons may 

consistently exhibit higher or lower average power 

generation due to weather conditions or demand 

fluctuations. 

• Anomalies and Outliers: The analysis might identify 

years with exceptionally high or low average power 

generation. These anomalies could be attributed to 

specific events, policy changes, or external factors 

affecting energy production. 

• Long-Term Shifts: A prolonged increase or decrease 

in yearly average power generation can indicate 

long-term shifts in energy production strategies, 

economic growth, or environmental factors. 

 

Understanding the yearly average power generation offers 

valuable insights with practical implications: 

 

• Policy Planning: Policymakers can use this analysis 

to assess the effectiveness of energy policies and 

identify areas for improvement. 

• Infrastructure Investments: Energy providers can 

make informed decisions about capacity expansion 

or upgrades based on changing demand patterns. 

• Sustainability Efforts: Monitoring yearly average 

power generation helps track progress towards 

renewable energy goals and sustainable practices. 

• Business Strategies: Industries reliant on consistent 

power supply can align their operations with peak 

and off-peak energy periods. 

 

Analyzing the yearly average power generation provides a 

comprehensive perspective on the energy landscape's 

dynamics. By employing data aggregation, visualization, 

statistical analysis, and comparative examination, we can gain 

insights into trends, patterns, and potential influencing factors. 

These insights empower decision-makers to make informed 

choices that align with sustainable energy goals and contribute 

to a resilient energy future [43] [44]. 
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Fig.4. Analysis of Weekly Power Generation Trends across Years 

 

In Fig.4, our focus is directed toward comprehending the 

weekly power generation trends across multiple years. By 

dissecting the dataset's "power_generation" attribute through 

a weekly lens, we seek to unveil recurring patterns, shifts, and 

insights that might emerge at the intersection of time and 

energy production. 

 

• Recurring Patterns: By examining weekly power 

generation trends, we can discern if there are 

recurring patterns that manifest consistently across 

different years. Certain days of the week may exhibit 

higher or lower power generation due to factors such 

as workdays, weekends, or energy demand 

fluctuations. 

• Week-to-Week Variability: The analysis may reveal 

variations in power generation from week to week. 

Factors like weather conditions, special events, or 

changes in industrial activities could contribute to 

fluctuations within specific weeks. 

• Seasonal Influence: Seasonal effects may become 

apparent as we analyze weekly power generation 

trends. Seasonal shifts in energy demand, renewable 

energy sources' availability, or temperature changes 

could influence weekly patterns. 

• Anomalies and Outliers: Unusual spikes or drops in 

power generation within certain weeks might 

indicate anomalies or outliers. These could be 

attributed to unexpected events, maintenance 

schedules, or other external factors. 

 

Understanding weekly power generation trends across the 

years offers practical insights with diverse applications: 

 

• Resource Allocation: Energy providers can allocate 

resources efficiently by aligning production capacity 

with high-demand weeks. 

• Demand Forecasting: Businesses and industries can 

anticipate peak energy demand weeks and adjust 

their operations accordingly. 

• Grid Management: Grid operators can optimize 

distribution strategies based on weekly power 

generation patterns. 

• Sustainability Strategies: Renewable energy 

integration and load management can be tailored to 

match weekly trends. 

 

Analyzing weekly power generation trends across years 

provides a dynamic perspective on energy production's 

temporal rhythms. By employing temporal grouping, 

visualization, statistical analysis, and comparative 

examination, we gain insights into recurring patterns and 

potential influencing factors. These insights empower 

decision-makers to optimize energy strategies, enhance grid 

resilience, and align operations with the ebb and flow of 

weekly energy demand. 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  

S. K. Shinde et al., Vol.14, No.2, June, 2024 

 331 

 
Fig.5. Year-over-Year (YoY) Growth 

 

Fig.5 refers to the percentage increase in a specific metric 

or value from one year to the next, typically compared with 

the corresponding period of the previous year. This growth 

calculation provides insights into the annual rate of change 

and helps assess the performance or progression of a variable 

over time. 

 

The YoY Growth can be calculated using the following 

formula: 

𝑌𝑜𝑌 𝐺𝑟𝑜𝑤𝑡ℎ = (
𝑉𝑎𝑙𝑢𝑒 𝑖𝑛 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑌𝑒𝑎𝑟−𝑉𝑎𝑙𝑢𝑒 𝑖𝑛 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑌𝑒𝑎𝑟

𝑉𝑎𝑙𝑢𝑒 𝑖𝑛 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑌𝑒𝑎𝑟
) ×

100   (11) 

 

In this Eq.(11), 

- "Value in Current Year" represents the metric or value being 

measured in the present year. 

- "Value in Previous Year" corresponds to the metric or value 

observed in the previous year. 

 

By applying this formula, we obtain the percentage 

change, indicating the YoY Growth as a positive or negative 

value. A positive YoY Growth indicates an increase, while a 

negative YoY Growth indicates a decrease in the metric from 

the previous year. This calculation serves as a valuable tool 

for analyzing trends, making informed business decisions, and 

assessing the overall performance of a variable over 

consecutive years. 

 
Fig.6. Box Plot of Power 

 

Fig.6 refers to a graphical representation used to display the 

distribution and variability of a dataset, specifically focusing 

on the "Power" variable measured in megawatts (MW).  

 

The "Power(MW)" variable represents the values of 

power generation measured in megawatts. The box plot 

visually summarizes key statistical features of the power data, 

including the median, quartiles, and potential presence of 

outliers. 

 

In essence, the "Box Plot of Power(MW)" offers a visual 

exploration of how power generation values are distributed, 

providing a valuable tool for understanding the range and 

characteristics of power data within the context of megawatts. 
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Fig.7. Partial Autocorrelation 

 

Utilizing the Partial Auto Correlation Function (PACF) is 

a valuable approach to determine the optimal lags to include 

as features in your model. 

 

In time series analysis, the autocorrelation at a specific lag 

represents the correlation between a variable and its previous 

values at that lag. However, as you pointed out, not all 

autocorrelation is meaningful for prediction. Some of it may 

be redundant, simply carried over from earlier lags. 

 

This is where the PACF comes into play. The PACF helps 

to identify the correlation between a lag and the variable while 

controlling for the influence of all the intermediate lags. In 

other words, it captures the unique contribution of a specific 

lag beyond the correlations that are already explained by 

earlier lags. 

 

By examining Fig.7, you can pinpoint significant 

correlations that are not just a result of previous lags. This 

allows you to select the most relevant lags as features for your 

model, enhancing its predictive accuracy while avoiding the 

inclusion of redundant or redundant information. 

 

In summary, your approach of using the PACF to guide 

the selection of lags is an effective way to improve the 

efficiency and interpretability of your time series forecasting 

model. It helps you focus on including only the lags that 

provide unique and meaningful information for prediction, 

ultimately leading to more accurate and insightful results. 

 
Fig.7. Autocorrelation 

 

Autocorrelation, often abbreviated as "ACF," is a 

fundamental concept in time series analysis that measures the 

degree of similarity between a series of observations and its 

lagged values. It quantifies the correlation between a variable 

and its past values at different time intervals, providing 

insights into the pattern and structure of temporal relationships 

within the data. 
 

The Autocorrelation Function (ACF) is a plot of the 

autocorrelation coefficients against the lag. It helps visualize 

the strength and direction of the correlation at different lags. 

In Fig.7, the x-axis represents the lag, while the y-axis shows 

the autocorrelation coefficient. The plot often includes 

confidence intervals to indicate whether the observed 

correlations are statistically significant. 

 

Autocorrelation provides a valuable tool for 

understanding the temporal dependencies within time series 
data. It guides model selection, validation, and forecasting, 

allowing analysts to extract meaningful insights and make 

accurate predictions based on the patterns observed in the data. 
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Fig.8. Correlation Map 

 

Fig.8 represents a correlation map that highlights intricate 

interplays within the dataset. It showcases features that exhibit 

strong correlations with the "Power" attribute. The detailed 

insights from this map unravel compelling patterns, offering 

glimpses into the dataset's dynamics. The dataset's intricate 

interplay reveals compelling insights, pointing toward the 

emergence of key features that wield strong correlations with 

the "Power" attribute. Let us delve into these revelations and 

unravel the intriguing patterns that underscore the dataset's 

dynamics. 

 

Among the symphony of attributes, the features 

"lagged_power_1," "lagged_power_12," 

"rolling_4_power_mean," and "rolling_24_power_mean" 

emerge as harmonious companions closely attuned to the 

"Power" feature. Their correlations resonate with a symphonic 

unity, suggesting a shared narrative that merits exploration. 

 

The resonating echoes of time are manifested through the 

"lagged_power_1" and "lagged_power_12" features. The 

heartbeat of power generation appears to pulse not only in 

immediate response to the past but also in a mesmerizing 

dance across a span of twelve timeblocks. This temporal 

harmony implies a pattern of influence and rhythm, wherein 

the power generated at a certain time reverberates and leaves 

an indelible mark on the subsequent blocks. 

 

Enter the realm of "rolling_4_power_mean" and 

"rolling_24_power_mean," where a smooth cadence emerges 

from the data's crescendo. The rolling means exhibit a melodic 

coherence, capturing the collective essence of power 

generation over short and extended intervals. These means 

provide a harmonic respite, allowing us to perceive the subtle 

undulations that shape the overall trajectory of power. 

 

In the intricate tapestry of time series data, the 

"lagged_power_1," "lagged_power_12," 

"rolling_4_power_mean," and "rolling_24_power_mean" 

features rise as pillars of correlation, resonating with the 

"Power" attribute. Their alignment with recurring patterns 

hints at the symphonic nature of power generation. As we 

journey through this harmonious interplay, we uncover the 

echoes of time, the rhythm of intervals, and the timeless 

overture that governs the data's narrative. 

 

5. Evaluating Model Performance 

 

In the realm of wind power generation forecasting, data 

emerges as a canvas upon which predictive models paint their 

symphony [28]. This dataset, a testament to precision and 

innovation, portrays the forecasted wind power values 

alongside the predictions of three distinguished models: 

Lasso, LightGBM, and W-RNN-GLU. Each row within this 

tableau encapsulates a unique temporal moment, offering a 

glimpse into the intricate dance between actual wind power 

generation and the predictive prowess of these models. 
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Fig.9. Comparative Analysis of Forecasted Wind Power 

 

Fig.9 represents the comparative analysis of forecasted wind 

power, showcasing the predicted values generated by Lasso, 

LightGBM, and W-RNN-GLU models. The y-axis in Figure 

9 represents the forecasted wind power values, displaying the 

predicted magnitudes of wind power generation. This axis 

serves as a visual representation of the predicted output 

generated by the models. Each point on the y-axis corresponds 

to the forecasted values for specific temporal instances, 

illustrating how the models predict wind power generation at 

different time intervals.  

Alongside this veritable anchor, the lasso_prediction, 

light_gbm_prediction, and W-RNN-GLU_prediction columns 

weave a narrative of forecasts, meticulously calculated by 

their respective models. 

 

• Lasso Prediction: Each value in the lasso_prediction 

column serves as a brushstroke of precision. The 

Lasso model, with its keen regularization, endeavors 

to align its predictions with the true wind power 

values, capturing the subtleties of the data's ebb and 

flow. 

 

• LightGBM Prediction: The light_gbm_prediction 

column illuminates the predictive landscape with its 

radiant glow. LightGBM, a virtuoso in gradient 

boosting, conjures predictions that shimmer with 

insight, a reflection of its deep understanding of the 

data's intricate patterns. 

 

• W-RNN-GLU Prediction: The W-RNN-

GLU_prediction column stands as a testament to the 

fusion of wavelet-enhanced recurrent neural 

networks and Gated Linear Units. Its predictions 

paint a masterful stroke, orchestrating an intricate 

dance with the actual wind power values, capturing 

both detailed nuances and overarching trends. 

 

By visualizing this ensemble, we can uncover the 

dynamic interplay between true wind power generation and 

the artistry of Lasso, LightGBM, and W-RNN-GLU, 

ultimately revealing a panoramic view of the forecasting 

landscape. 

 

6. Results and Discussion 

 

In the quest for accurate wind power generation 

forecasting, this study undertakes a comprehensive 

examination of three distinct techniques: Lasso, LightGBM, 

and W-RNN-GLU. Through meticulous experimentation and 

analysis, we unravel their predictive prowess, highlighting 

their strengths, weaknesses, and potential contributions to the 

field. This section embarks on a detailed discussion, 

presenting a panoramic view of the results while delving into 

the intricacies of each technique [29]. 

 

The essence of wind power forecasting lies in precision – 

the ability to unravel the dynamic interplay of natural forces 

and technological insight. Through the lens of Mean Absolute 
Error (MAE), Mean Squared Error (MSE), and Root Mean 

Squared Error (RMSE) [30], we decipher the comparative 

performance of Lasso, Light GBM, and W-RNN-GLU in 

Table 1. 
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Table1. Comparison of various error types (MAE, RMSE, and MSE) across different method. 

Models Mean Absolute 

Error (MAE) 

Mean 

Squared 

Error (MSE) 

Root Mean 

Squared 

Error 

(RMSE) 

Lasso  572.5387 982546.0166 991.2346 

Light GBM 224.4069, 131349.5094 362.4217 

W-RNN-GLU 142.2310 53240.2056 157.2309 

 

The table 1 provides a comparative analysis of three models. 

The Lasso model demonstrates higher errors across all metrics 

with an MAE of 572.5387, MSE of 982546.0166, and RMSE 

of 991.2346. Light GBM exhibits intermediate errors with an 

MAE of 224.4069, MSE of 131349.5094, and RMSE of 

362.4217. In contrast, the W-RNN-GLU model showcases the 

lowest errors among the three, indicating superior 

performance with an MAE of 142.2310, MSE of 53240.2056, 

and RMSE of 157.2309. These numerical values highlight the 

effectiveness of the W-RNN-GLU model in achieving lower 

error rates compared to the Lasso and Light GBM models, 

signifying its potential for improved predictive accuracy in 

wind power generation forecasting.  

Lasso, with its regularization technique, offers a structured 

pathway to predictive precision. Its strengths lie in handling 
high-dimensional data, feature selection, and reducing 

overfitting. By assigning appropriate weights to features, 

Lasso effectively filters noise and captures relevant patterns. 

However, its limitations include sensitivity to data scaling, the 

"lasso path" phenomenon, and potential instability when 

features are highly correlated. 

 

LightGBM, a gradient-boosting framework, exudes 

computational efficiency and predictive finesse. Its 

advantages encompass handling categorical features, feature 

importance assessment, and reduced memory consumption. 

The technique can handle massive datasets and exhibits 

robustness to overfitting. Yet, LightGBM is not immune to 

challenges. It may suffer from overfitting in certain scenarios, 

and its performance can be compromised by imbalanced 

datasets. 

 

The W-RNN-GLU model, a hybrid of wavelet 

transformation and recurrent neural networks with Gated 

Linear Units, emerges as a fusion of innovation. Its strengths 

include capturing temporal dependencies, handling sequential 

data, and effectively processing time-series information. W-

RNN-GLU excels in unraveling intricate patterns, both short-

term fluctuations and long-term trends. However, this model 

requires careful tuning, may be computationally intensive, and 

could face challenges in handling noisy data. 

 

In a realm where precision reigns supreme, each technique 

converges and diverges, offering a unique vantage point into 

wind power forecasting. Lasso excels in regulated feature 

selection, LightGBM showcases boosting brilliance, and W-

RNN-GLU pioneers innovation through fusion. 

 

The choice of technique hinges on the specific context of 

the application. Lasso may find a home when feature selection 

is paramount, LightGBM shines when computational 

efficiency matters and W-RNN-GLU emerges as a vanguard 

when capturing intricate temporal patterns is the goal. 

 

As we navigate the intricate landscape of wind power 

forecasting, this study underscores the multi-dimensional 

nature of the field. Lasso, LightGBM, and W-RNN-GLU 

collectively contribute to the ever-evolving symphony of 

predictive insight. The careful choice of technique, founded 

upon its strengths and limitations, paves the path toward 

enhanced forecasting accuracy and a more sustainable energy 

landscape. The journey continues as we strive to harmonize 

innovation, data, and technology in our pursuit of precision in 

wind power generation forecasting. 

 

7. Conclusion and Future Works 

 
In the relentless pursuit of precision and innovation in 

wind power generation forecasting, this research has 

introduced the "Wavelet-Enhanced Recurrent Neural Network 

with Gated Linear Units" (W-RNN-GLU) model as a 

transformative force that reshapes the landscape of renewable 

energy management. Through the harmonious fusion of 

wavelet transformation, recurrent neural networks, and Gated 

Linear Units, the W-RNN-GLU model has showcased its 

prowess in unlocking the intricate symphony concealed within 

wind power data. 

 

The results obtained from the empirical evaluations 

substantiate the model's capabilities, with significantly 

improved forecasting accuracy over traditional time series 

methods. The meticulous integration of wavelet 

transformation unveils multiscale insights, capturing both 

fine-grained intricacies and overarching trends that guide 

wind power generation. Recurrent neural networks deftly 

navigate temporal dependencies, deciphering the dynamic 

cadence of wind power dynamics. Gated Linear Units act as 

vigilant custodians, enhancing feature extraction and elevating 

the precision of information propagation. 

 

As this research embarks on the frontiers of wind power 

forecasting, its contributions are twofold. Firstly, the W-RNN-

GLU model offers a robust and innovative solution that 

extends beyond the limitations of existing methodologies. By 

synergistically amplifying the strengths of its constituent 

components, it provides a more comprehensive and accurate 

predictive outlook. Secondly, this study propels the field 

towards a hybrid approach that bridges the gap between 

traditional time series techniques and advanced machine 

learning algorithms. 

 

In envisioning the future of this research, the journey has 

only just begun. Further refinements and enhancements to the 
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model's architecture, such as exploring alternative gating 

mechanisms and optimizing hyperparameters, hold the 

promise of unlocking even greater forecasting precision. The 

proposed W-RNN-GLU method showcases a significant 

improvement, presenting a 75.23% reduction in MAE, a 

94.59% decrease in MSE, and an 84.16% drop in RMSE 

compared to the Lasso model, affirming its superior predictive 

accuracy in wind power generation forecasting. Additionally, 

the integration of external factors, such as meteorological 

conditions and grid demand, could elevate the model's 

predictive capabilities to new heights. 

 

In conclusion, the W-RNN-GLU model stands as a 

testament to the power of innovation, seamlessly weaving 

together diverse techniques to sculpt a novel paradigm in wind 

power generation forecasting. As renewable energy takes 

center stage in the global discourse, the proposed model's 

ability to unravel the winds of uncertainty and illuminate the 

path toward a sustainable future remains its enduring legacy. 

This research is but a stepping stone towards a horizon where 

energy management embraces precision, efficiency, and 

environmental stewardship. 
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