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Abstract- The wind turbine generator power curve (WTGPC) gives the relationship between the wind speed and power output 

of the wind turbine at any given time. The power curves, which are usually provided by the manufacturer company, are mainly 

used in forecasting, energy planning and performance monitoring of wind turbines. The WTGPC model plays a significant role 

in the control and monitoring of wind farms as well as playing a role in the wind farms power injection to the grid. This paper 

presents a comprehensive analysis of several methods of modelling the WTGPC, with respect to four commercial wind turbines; 

330, 900, 2000 and 3050 kW. In the first step, the proposed method of the study, based on quadratic Gaussian function, is 

compared to several developed mathematical models by using error measurement techniques including the mean square error 

(MSE) and residual analysis. The accuracy of the proposed method has then been improved by means of the third version of the 

cultural algorithm (CA3) through the optimization of the proposed method coefficients. The ultimate performance of the 

compared methods has been investigated by the normalized root mean squared error (NRMSE), where the proposed method of 

the study shows an excellent performance for modelling of wind turbine power curves. 

Keywords third version of the cultural algorithm (CA3), error analysis, mathematical modelling, quadratic Gaussian function, 

wind turbine generator power curve (WTGPC). 

 

Nomenclature 

Indexes  

CA3 Third version of the Cultural Algorithm 

FA Firefly algorithm   

GA Genetic algorithm  

GAPSO Hybrid genetic algorithm and particle swarm 

optimisation  

PSO Particle swarm optimisation   

MAE Mean absolute error  

MSE Mean squared error  

NRMSE Normalised root mean square error  

mailto:swanson@ukzn.ac.za
mailto:goudarzia@ukzn.ac.za


INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
A. Goudarzi et al., Vol.7, No.3, 2017 

1341 
 

WTGPC Wind turbine generator power curve  

Variables 

Λ Minimum asymptote of a logistic function  

𝐴 Swept area of wind turbine generator  

𝑎1, … , 𝑎6 Coefficients of the polynomial functions  

B 

C 

Hill’s slope of a logistic function 

Inflection point of a logistic function 

D Maximum asymptote of a logistic function 

𝜌 Density of air  

E Asymmetry factor of a logistic function 

𝐼𝑗(𝑡) Closed interval of 𝑁(𝑡) 

𝑙, 𝑢  
The lower and upper bound which are 

initialized by the domain values 

𝐿𝑗(𝑡) Score of the lower bound at 𝑁(𝑡) 

𝑁(𝑡) 
Normative knowledge component of the 

cultural algorithm 

𝑁𝑖𝑗  
A normalized number for individual i and 

component j 

𝑛 Number of data points  

𝑛𝑠 
Number of variables of the situational 

component 

𝑛𝑥 
Number of variables of the normative 

component 

𝑃(𝑣) Power output of wind turbine generator  

𝑃𝑟𝑎𝑡𝑒 Power rate of wind turbine generator  

𝑣𝑖 Wind speed 

𝑣𝑐𝑖𝑛 Cut-in speed of wind turbine generator  

𝑣𝑐𝑜𝑢𝑡 Cut-out speed of wind turbine generator  

𝑣𝑟𝑎𝑡𝑒 Rated speed of wind turbine generator  

𝑆(𝑡) 
Situational knowledge component of the 

cultural algorithm 

𝛿𝑗 Step size of the belief interval 

𝛿𝑗
2(𝑡) The variance of normalized number 𝑁𝑖𝑗 

𝑈𝑗(𝑡) Score of the upper bound of 𝑁(𝑡) 

𝑋𝑗(𝑡) Dimension of belief space at component j 

𝑋𝑙(𝑡) An accepted response 

𝑥𝑖𝑗(𝑡) The mean of normalized number 𝑁𝑖𝑗 

𝑥𝑙𝑗(𝑡) An accepted response of the component j 

�́�𝑖𝑗(𝑡) Influence function 

𝑥𝑗
𝑚𝑖𝑛(𝑡) 

Minimum boundary of the closed interval at 

generation t 

𝑥𝑗
𝑚𝑎𝑥(𝑡) 

Maximum boundary of the closed interval at 

generation t 

𝑥𝑖
𝐴𝑐𝑡𝑢𝑎𝑙 Actual value (observed value) 

𝑥𝑖
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 Estimated value 

�̂�(𝑡) Best individual of the solution vector 

 

1. Introduction 

Renewable energy is an important alternative source to 

produce electricity not only due to the limited sources of fossil 

fuels but also due to their negative effects on the environment. 

To mitigate the aforementioned difficulties and reduce 

reliance on fossil fuels, deployment of renewable energies 

such as the wind, solar and tide energies has grown rapidly in 

recent years. Among those renewable energies, wind energy 

has been given attention by scientists and governments 

worldwide and its global installation reached nearly 370 GW 

at the end of the year 2014 [1]. The nature of intermittency and 

volatility of wind energy, however, presents challenges when 

the penetration of wind power into the conventional power 

grids is high [2].  

To overcome the issue of the integration of wind energy 

into power systems, having precise prediction models to 

estimate wind power are vital. This estimation can be obtained 

while converting the available wind speed into actual wind 

power by deploying a wind turbine performance power curve, 

from the manufacturer, and its nonlinear relationship with 

wind speed [3-4]. Generally, wind turbines are tested by the 

manufacturer under ideal weather conditions and therefore the 
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provided power curves do not consider the power output of 

wind turbines in any abnormal weather condition. Some 

important factors such as the location of the turbine, the 

velocity and the direction of wind could cause considerable 

differences between experimental power curves and 

theoretical power curves [5]. 

Precise estimation of wind energy potential needs detailed 

information about the location where the wind turbine will be 

installed. Wind speed varies according to geographical 

location and its variation can be described by different 

probability distribution functions (PDFs). Some of these 

functions are Weibull, Rayleigh, Gamma, Beta, Lognormal 

and Logistical functions. Due to the uncertain behaviour of 

wind speed, one of the best approaches is to apply statistical 

methods to consider the intermittency of wind variations in 

converting it to electrical power [6-7].  There are several 

statistical methods to model a wind turbine power curve, and 

they are classified into parametric and nonparametric 

methods. Parametric methods, which are based on 

mathematical functions, include polynomial regression, 

segmented linear and logistic distribution (that is based on 

probabilistic distributions).  Nonparametric methods include 

neural networks, fuzzy logic methods, and data mining 

methods. One of the advantages of nonparametric methods 

over parametric ones is that they do not require any pre-

specified models and they can precisely model a wide range 

of possible shapes of the power curve.  

In 2017, Ouyang et al. proposed a method based on the 

centres of data partitions and data mining [8]. To adopt the 

data partitions approach for modelling of the WTG power 

output, they have divided the wind power curve into unit 

intervals in which the values of each centre has been 

calculated. A support vector machine (SVM) technique was 

then used to reconstruct the wind power curve based on the 

captured field data. In 2016, Villanueva and Feijoo proposed 

a procedure based on the 4-parameter logistic function to 

model the wind the power curve parameters supplied by the 

manufacturer [9]. The proposed method has the capability to 

be converted to a 3-parameter logistic function in case of less 

complicated power curves, where a continuous function is 

employed to simplify the behaviour of the power curves in 

different classes of wind turbines.  

In 2014, Shokrzadeh et al. investigated the wind turbine 

power curve models according to four parametric and non-

parametric models [10]. The polynomial regression (PR) is 

considered as the benchmark in parametric modelling, and all 

the related problems with this method have been discussed. 

They have introduced a method according to locally weighted 

polynomial regression (LWPR) technique and compared its 

advantages over the PR. To elaborate their analysis a 

regression spline method was studied to obtain more 

flexibility in estimating any wind power curve. 

In 2009, Kusiak et al. developed three new power curve 

models based on the least squares method, maximum 

likelihood estimation method, and a non-parametric model 

[11]. All the coefficients and parameters of the least squares 

method and maximum likelihood estimation method have 

been defined by means of an evolutionary strategy algorithm, 

where a k-nearest neighbour (k-NN) algorithm has been used 

to evaluate the coefficients of the non-parametric model. Due 

to the excellent performance of the least squares model and 

the non-parametric for all the studied cases, they have been 

recommended for the on-line monitoring of the power curves. 

In 2015, Das and Mazumdar conducted a comprehensive 

study to investigate the performance of over 150 commercially 

available wind turbines according to their manufacturer data 

on wind speed variation and corresponding power outputs 

[12]. The study has considered a number of methods such as 

normalized expressions of the linear, cubic, quadratic, n-order 

and a two-parameter approach for modelling of wind power 

output. In order to assess the performance of the mentioned 

models, the two widely used methods for the goodness of fit 

evaluation (root mean square error (RMSE) and r-squared) 

have been used. 

In 2016, Xu et al.  developed a sophisticated local 

polynomial regression (LPR) algorithm to obtain an adaptive 

model of the time independent wind power curves for 

predicting applications [13]. They proposed a new approach 

based on the data-driven bandwidth selection method. The 

proposed method has been formulated through a combination 

of block-wise least-squares parabolic fitting and the 

probability integral transform. 

In 2015, Yip et al. presented a model to estimate the 

capacity factor of the wind turbines through a mathematical 

model according to curve fitting regression [14]. Thereafter, 

to verify the accuracy of the calculated energy output of the 

wind turbines, the obtained results have been compared with 

a commercial software namely WASP. They have used four 

different classes of Vestas’s wind turbines to validate the 

practicality of their methods. 

In 2013, Zarate-Minano et al. developed two approaches 

for implementing wind speed models based on stochastic 

differential equations (SDE) [15]. The developed models are 

expected to produce wind speed trajectories with the same 

statistical properties of the captured historical wind speed data 

which is available for a specific location. The developed 

models were very robust and simplified in such a way that they 

only used the observed autocorrelation information and 

marginal distribution of the wind speed data. As the developed 

models have used a continuous function, they had the ability 

to reconstruct the wind speed trajectories at any given time. 

This ability was however constrained to time frames as diurnal 

and seasonal properties were not taken into account. 

In this paper to the model power output of the selected 

WTG a new nonparametric method, which was based on 

quadratic Gaussian function, has been presented and 

compared with several developed mathematical models. To 

evaluate the performance and accuracy of the proposed 

method over the other studied methods in this literature, mean 

square error and residual analysis have been deployed. To 

improve the proposed method, the third version of the cultural 

algorithm (CA3) has been applied to obtain the optimal 

coefficients of the introduced method and the normalized root 

mean squared error (NRMSE) has been employed to find out 

the functionality of the proposed method and its accuracy over 

different methods. 
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The paper organized as follows. Section 2 includes 

mathematical modelling of WTG power curve and the 

goodness of fit evaluation. The conceptual and mathematical 

formulation of CA3 has been introduced in section 3. Section 

4 comprises of the results and discussions and is followed by 

the conclusion in section 5. 

 

 

2. Problem Formulation  

2.1. Mathematical Modelling of Wind Turbine Generator 

Power Curves 

The actual power output of wind turbine power curves is 

calculated based on the following model [16-17]: 

𝑃(𝑣) = {

0    ∶ 𝑣𝑖 < 𝑣𝐶𝑖𝑛  , 𝑣𝑖 > 𝑣𝐶𝑜𝑢𝑡

𝑃(𝑣)  ∶    𝑣𝐶𝑖𝑛 ≤ 𝑣𝑖 ≤ 𝑣𝑟𝑎𝑡𝑒

𝑃𝑟𝑎𝑡𝑒  ∶  𝑣𝑟𝑎𝑡𝑒 < 𝑣𝑖 < 𝑣𝐶𝑜𝑢𝑡

         (1) 

The above equation is used to solve and estimate the 

power output of wind turbines according to its manufacturer 

characteristics such that the calculation error is minimized. 

Generally, the P(v) can be modelled using several methods 

such as operational characteristics of wind turbine parameters, 

manufacturer power curve output modelling and physical 

characteristics of WTG. The first set of these techniques, 

which are based on the operational characteristics wind 

turbine parameters, can be formulated through the following 

models:  

2.1.1 Model No.1 (M1): This model calculates the power 

output of WTG through a linear equation: 

𝑀1 = 𝑃𝑟𝑎𝑡𝑒 ∗ (
𝑣𝑖 − 𝑣𝑐𝑖𝑛

𝑣𝑟𝑎𝑡𝑒 − 𝑣𝑐𝑖𝑛
) 

(2) 

 

2.1.2 Model No.2 (M2): This model represents the M1 in a 

quadratic form, where each of the wind turbine 

parameters have been individually squared. 

𝑀2 = 𝑃𝑟𝑎𝑡𝑒 ∗ (
𝑣𝑖

2 − 𝑣𝑐𝑖𝑛
2

𝑣𝑟𝑎𝑡𝑒
2 − 𝑣𝑐𝑖𝑛

2 ) 
(3) 

2.1.3 Model No.3 (M3): This model is another modified 

model of M1 where the fraction part of the equation has 

been cubed. 

𝑀3 = 𝑃𝑟𝑎𝑡𝑒 ∗ (
𝑣𝑖 − 𝑣𝑐𝑖𝑛

𝑣𝑟𝑎𝑡𝑒 − 𝑣𝑐𝑖𝑛

)
3

 (4) 

2.1.4 Model No. 4 (M4): This model can be assessed based 

on the ratio of the input wind speed at any given time 

over the rated wind speed of WTG. 

𝑀4 = 𝑃𝑟𝑎𝑡𝑒 ∗ (
𝑣𝑖

3

𝑣𝑟𝑎𝑡𝑒
3 ) (5) 

The second sets of the developed models are based on the 

mathematical relationship of the wind speed at different levels 

and the actual power output of WTG which has been captured 

by the manufacturer in the laboratory. These models are 

referred to as non-parametric models, as the characteristics of 

WTG do not have any effect on the determination of the power 

output of WTG. The coefficients of these models are derived 

according to least-square approximation at different degrees 

of polynomials [18]: 

2.1.5 Model No. 5 (M5): This model estimates the power 

output of WTG through the second degree of the 

polynomial: 

𝑀5 = (𝑎1𝑣𝑖
2 + 𝑎2𝑣𝑖 + 𝑎3) (6) 

subject to 

[
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 (7) 

Equation 6 demonstrates that the coefficients of M5 

(which is a quadratic equation) can be derived from the least-

square approximation method. It is significant to note that the 

coefficients of M5 can also be evaluated by means of a 

binomial process, where the power output of the binomial 

function is required to be multiplied by the power rate of the 

WTG. The binomial calculation of the coefficients can be 

illustrated based on the wind turbine parameters: 

𝑎1 =
1

(𝑣𝑖 − 𝑣𝑟𝑎𝑡𝑒)
2
[2 − 4

(𝑣𝑖 + 𝑣𝑟𝑎𝑡𝑒)
3

2𝑣𝑟𝑎𝑡𝑒
] 

 

(8) 

𝑎2 =
1

(𝑣𝑖 − 𝑣𝑟𝑎𝑡𝑒)
2
[4(𝑣𝑖 + 𝑣𝑟𝑎𝑡𝑒)

(𝑣𝑖 − 𝑣𝑟𝑎𝑡𝑒)
3

2𝑣𝑟𝑎𝑡𝑒

− 3(𝑣𝑖 + 𝑣𝑟𝑎𝑡𝑒)] 

(9) 

𝑎3 =
1

(𝑣𝑖 − 𝑣𝑟𝑎𝑡𝑒)
2
[𝑣𝑖(𝑣𝑖 + 𝑣𝑟𝑎𝑡𝑒)

− 4𝑣𝑖𝑣𝑟𝑎𝑡𝑒

(𝑣𝑖 − 𝑣𝑟𝑎𝑡𝑒)
2

2𝑣𝑟𝑎𝑡𝑒
] 

(10) 

Higher degrees of the polynomial can be achieved with the 

same procedure as explained in eq. 6, where the dimensions 

of the right and left-hand side of the matrix would be increased 
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with respect to the degree of the desired polynomial equation.  

In order to have a precise investigation of the accuracy of the 

power output of WTG by increasing the degree of the 

polynomial equations, the study has considered four more 

models based on the third, fourth, fifth and sixth degree of 

polynomial regression. The considered models can be 

expressed as follows [16]: 

 

2.1.6 Model No. 6 (M6):  

𝑀6 = (𝑎1𝑣𝑖
3 + 𝑎2𝑣𝑖

2 + 𝑎3𝑣𝑖 + 𝑎4) (11) 

2.1.7 Model No. 7 (M7):  

𝑀7 = (𝑎1𝑣𝑖
4 + 𝑎2𝑣𝑖

3 + 𝑎3𝑣𝑖
2 + 𝑎4𝑣𝑖 + 𝑎5) (12) 

2.1.8 Model No. 8 (M8):  

𝑀8 = (𝑎1𝑣𝑖
5 + 𝑎2𝑣𝑖

4 + 𝑎3𝑣𝑖
3 + 𝑎4𝑣𝑖

2 + 𝑎5𝑣𝑖 + 𝑎6) (13) 

2.1.9 Model No. 9 (M9): 

𝑀9 = (𝑎1𝑣𝑖
6 + 𝑎2𝑣𝑖

5 + 𝑎3𝑣𝑖
4 + 𝑎4𝑣𝑖

3 + 𝑎5𝑣𝑖
2

+ 𝑎6𝑣𝑖 + 𝑎7) 

 

(14) 

Models M6, M7, M8 and M9 are based on the third, fourth, 

fifth and sixth degrees of polynomial regression respectively. 

The third set of the developed models are based on the 

logistic parameter functions, which can be considered as a 

sub-category of manufacturer power curve output modelling. 

The logistic parameter functions are formulated according to 

nonlinear regression modelling which is commonly used for 

curve-fitting analysis in bioassays, immunoassays or dose-

response curves. In general, the logistic parameter functions 

can be divided into three categories; three logistic parameter 

regression (LPR3), four logistic parameter regression (LPR4) 

and five logistic parameter regression (LPR5). Like the non-

parametric models, LPR3, LPR4 and LPR5 use the 

exponential form of least squares regression to evaluate the 

function coefficients. LPR3 is characterized by sigmoidal 

shape function that fits the top plateaus of the curve and the 

slope factor (Hill's slope). This curve is symmetrical around 

its inflection point [19]. Equation (14) represents the 

mathematical formulation of LPR3: 

2.1.10 Model No. 10 (M10): 

𝑀10 =
𝐷

(1 + (
𝑣𝑖

𝐶⁄ )
−𝐵

)
 (15) 

The LPR4 was developed to improve the performance of 

LPR3 by considering the minimum asymptotes of the given 

data. 

2.1.11 Model No. 11 (M11): 

𝑀11 = 𝐷 +
(Λ − 𝐷)

(1 + (
𝑣𝑖

𝐶⁄ )
𝐵
)
 (16) 

The LPR5 equation is equivalent to the LPR4 equation with 

an additional parameter added for asymmetry [20]. This 

additional parameter provides a better fit for LPR5 in 

comparison to the other models of logistic parameter 

functions. 

2.1.12 Model No. 12 (M12): 

𝑀12 = 𝐷 +
(Λ − 𝐷)

((1 + (
𝑣𝑖

𝐶⁄ )𝐵))𝐸
 (17) 

The study has proposed two new methods for modelling 

the WTG power curve based on a quadratic Gaussian function 

and a sine function. The detailed procedure for evaluating the 

coefficients of the model can be found in [21]. The proposed 

methods can be formulated as follows: 

2.1.13 Model No. 13 (M13): this model is based on a 

quadratic Gaussian function, where the formulation 

can be expressed as: 

𝑀13 = 𝑎1𝑒
[−(

𝑣𝑖−𝑏1
𝑐1

)
2

]
+ 𝑎2𝑒

[−(
𝑣𝑖−𝑏2

𝑐2
)
2

]
 (18) 

where 

a = Amplitude of the curve. 

b = Centroid (location) of the curve. 

c = Peak width of the curve. 

2.1.14 Model No. 14 (M14): this model is based on the sine 

function, where the formulation can be represented 

as: 

𝑀14 = 𝑎1 sin(𝑏1𝑣𝑖 + 𝑐1) + 𝑎2sin (𝑏2𝑣𝑖 + 𝑐2) (19) 

where 

a = Amplitude of the curve.   

b = Frequency of the curve.  

c = Phase constant for each sine wave term. 

One of the most significant features of both of the proposed 

methods is that it considers every nonlinear behaviour or 

erratic movement of the given curve and this enables the 

method to handle the nonlinearity for the curve fitting 

purposes. 

The fourth set of the developed models are based on 

physical and mechanical characteristics of the WTG. These 

models are derived through to the fundamental theorem of the 

Betz model which simulates and converts the mechanical 

aspects of WTG into measurable power output.  Losses in 

efficiency for a practical WTG are caused by the viscous and 

pressure drag on the rotor blades, the swirl imparted to the air 
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flow by the rotor, and the power losses in the transmission and 

electrical system. In addition, uniformity is assumed over the 

entire swept area of the rotor, and the speed of the air beyond 

the rotor is considered to be axial. The ideal wind rotor is taken 

at rest and is placed in a moving fluid atmosphere [22]. The 

derivation of the Betz model can be expressed as follows: 

 

The initial step is from the kinetic energy: 

𝐸 =
1

2
𝑚𝑣2 (20) 

The power that can be harnessed from the wind is given by the 

rate of change of energy which is equal to the rate of change 

in mass: 

𝑃 = 𝑑𝐸
𝑑𝑡⁄ =

1

2
𝑣2 𝑑𝑚

𝑑𝑡⁄  (21) 

subject to 

{
𝑑𝑚

𝑑𝑡⁄ = 𝜌𝐴 𝑑𝑥
𝑑𝑡⁄

𝑑𝑥
𝑑𝑡⁄ =               𝑣

 (22) 

By equalizing the abovementioned relationships we have 

𝑑𝑚
𝑑𝑡⁄ = 𝜌𝐴𝑣 

 

(23) 

𝑃 =
1

2
𝜌𝐴𝑣3 

(24) 

Eq. 23 represents the basic form of the Betz method for the 

modelling of the WTG power output. This study has 

considered three scenarios for the Betz model through to its 

capacity ratios and wind speed exponents to present a more 

comprehensive investigation of the Betz concept. The 

considered scenarios of the Betz model can be described in the 

following models [16]: 

2.1.15 Model No. 15 (M15):  

𝑀15 =
1

2
𝜌𝐴𝐶𝑝,𝑒𝑞𝑣𝑖

3 (25) 

In M15 which is the cubic power curve of Betz model, a 

capacity equal ratio (𝐶𝑝,𝑒𝑞) has been considered where the 

ratio is equal to 0.45 and the air density (𝜌) is equal to 1.225. 

2.1.16 Model No. 16 (M16):  

𝑀16 =
1

2
𝜌𝐴𝐶𝑝,𝑚𝑎𝑥𝑣𝑖

3 (26) 

In this model, which is based on the approximated cubic 

power curve, the maximum capacity (𝐶𝑝,𝑚𝑎𝑥) ratio is equal to 

0.5. 

2.1.17 Model No. 17 (M17):  

𝑀17 =
1

2
𝜌𝐴𝐾𝑝(𝑣𝑖

𝛽
− 𝑣𝑐𝑖𝑛

𝛽
) (27) 

The constant ratio of kinetic energy (𝐾𝑝) is equal to 0.889 and 

wind speed exponent (β) is equal to 3. This model is called the 

exponential power curve of the Betz model. 

2.2. The goodness of fit evaluation 

In statistical analysis and studies, the performance of a 

mathematical method or distribution model to fit a given curve 

is assessed through the goodness of fit analysis. The goodness 

of fit analysis provides detailed information about the 

capability of a considered method to predict the observed or 

actual data. 

In this study, to have a very precise and comprehensive 

investigation of proposed methods, four statistical methods 

have been used to evaluate their performances. Mean squared 

error (MSE) has been used to measure the difference between 

the observed data and the estimated values. In this study, it has 

been used as the objective function to reduce the errors of 

estimated values during the optimization process for evaluating 

the optimal coefficients of the proposed model. The mean 

absolute error (MAE) has been used as the second method to 

provide an overall comparison for all methods. The third 

method which has been used to measure the performance of the 

proposed method is the residual analysis. The residual analysis 

tells us about the location of estimated values in comparison to 

actual data. The fourth and the last method is the normalized 

root mean squared error (NRMSE). The models that have 

values closer to zero represent a better performance [23]. The 

formulation of all three methods can be expressed as follows: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑥i
𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑥𝑖

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 
(28) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑥𝑖

𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑥𝑖
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)

2
𝑛

𝑖=1

 
(29) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑖

𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑥𝑖
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)

2
𝑛

𝑖=1

 

(30) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑥𝑖
𝑚𝑎𝑥 − 𝑥𝑖

𝑚𝑖𝑛
 

(31) 

 

3. The Third Version of Cultural Algorithm (CA3) 

Cultural Ecology refers to the study of the interaction of 

culture in the environment where cultural information can be 

transmitted to the future generations through an inheritance 

mechanism. In 1994, Reynolds adapted this concept to 

develop Cultural Algorithm [24] for use as an optimization 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
A. Goudarzi et al., Vol.7, No.3, 2017 

1346 
 

technique. The objective of the algorithm is to process 

information at population and cultural (i.e. knowledge) level 

to improve the convergence of an evolutionary algorithm. At 

the population level, individuals represent candidate solutions, 

while at the cultural level, information acquired by individuals 

is stored and shared with the current generation [25]. 

The process of the selection of the individuals is based on 

many factors such as knowledge, physical appearance, and 

wealth. The generalization will take place from these 

individuals. Next is the adoption of the distilled knowledge by 

the population. The knowledge obtained by the individuals 

will be passed to the next generation to direct the behaviour of 

the population agents. As a result, we can say that CA 

implementation is based on two main components which are 

population space and the belief space. The population space is 

responsible for storing the information that is generated by the 

individuals, and the belief space maintains and distils this 

information during the process of evolution. 

The general framework of CA is depicted in Figure 1. The 

general framework of CA is based on two spaces; population 

space and belief space. The population space contains all the 

possible individuals the can be considered for the optimization 

process. The belief space comprises a set of experience and 

knowledge structure of the individuals. The main tasks of the 

population space are to select, fit and variate the individuals 

of the population space, where the belief space is dedicated to 

adjusting of the accepted individuals. CA can be categorized 

into different versions based on their influence functions. The 

responsibility of the influence function is to affect the 

population according to the regulation of beliefs to determine 

the mutational step size and the direction of changes. 

 

Fig. 1. General framework of cultural algorithm 

Goudarzi, et al proposed four versions for CA, where the third 

version (CA3) was found as the most efficient version for the 

optimization purposes [26]. CA3 is based on two knowledge 

components; the situational knowledge and the normative 

knowledge. The situational knowledge component is in charge 

of finding the best possible solution in a generation, 

formulated as: 

𝑆(𝑡 + 1) = {�̂�(𝑡 + 1)} (32) 

where 

�̂�(𝑡 + 1)

= {
𝑚𝑖𝑛𝑙{𝑋𝑙(𝑡)}  𝑖𝑓 𝑓(𝑚𝑖𝑛𝑙=1,…,𝑛𝐵(𝑡){𝑋𝑙(𝑡)}) < 𝑓(�̂�(𝑡))

�̂�(𝑡)                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(33) 

subject to 

𝑋𝑙(𝑡), 𝑙 = 1, 2, 3, … , 𝑛𝐵(𝑡)  (34) 

𝑛𝐵(𝑡) = [
𝑛𝑝𝑜𝑝𝛾

𝑡
] ,       𝛾 ∈ [0,1] (35) 

The normative knowledge is the component which prepares 

different scales for each individual behaviour in order to direct 

them towards their mutational adjustments. The normative 

knowledge can be mathematically expressed as: 

𝑥𝑗
𝑚𝑖𝑛(𝑡 + 1)

= {
𝑥𝑙𝑗(𝑡)        𝑖𝑓𝑥𝑙𝑗(𝑡) ≤ 𝑥𝑗

𝑚𝑖𝑛(𝑡)  𝑜𝑟  𝑓(𝑋𝑙(𝑡)) < 𝐿𝑗(𝑡) 

𝑥𝑗
𝑚𝑖𝑛(𝑡)                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(36) 

For updating 𝐿𝑗(𝑡) 

𝐿𝑗(𝑡 + 1)

= {
𝑓(𝑋𝑙(𝑡))   𝑖𝑓𝑥𝑙𝑗(𝑡) ≤ 𝑥𝑗

𝑚𝑖𝑛(𝑡)  𝑜𝑟  𝑓(𝑋𝑙(𝑡)) < 𝐿𝑗(𝑡) 

𝐿𝑗(𝑡)                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(37) 

𝑥𝑗
𝑚𝑎𝑥(𝑡 + 1)

= {
𝑥𝑙𝑗(𝑡)        i𝑓𝑥𝑙𝑗(𝑡) ≥ 𝑥𝑗

𝑚𝑎𝑥(𝑡)  𝑜𝑟  𝑓(𝑋𝑙(𝑡)) < 𝑈𝑗(𝑡) 

𝑥𝑗
𝑚𝑎𝑥(𝑡)                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(38) 

For updating 𝑈𝑗(𝑡) 

𝑈𝑗(𝑡 + 1)

= {
𝑓(𝑋𝑙(𝑡))  𝑖𝑓𝑥𝑙𝑗(𝑡) ≥ 𝑥𝑗

𝑚𝑎𝑥(𝑡)  𝑜𝑟  𝑓(𝑋𝑙(𝑡)) < 𝑈𝑗(𝑡) 

𝑈𝑗(𝑡)                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(39) 

In this version, the step size would be defined by means of 

situational knowledge where the changes in direction would 

be carried out by normative knowledge. CA3 can be described 

as: 

�́�𝑖𝑗(𝑡)

= {

𝑥𝑖𝑗(𝑡) + |𝜎𝑖𝑗(𝑡)𝑁𝑖𝑗(0,1)|     𝑖𝑓 𝑥𝑖𝑗(𝑡) < �̂�𝑗(𝑡)

𝑥𝑖𝑗(𝑡) − |𝜎𝑖𝑗(𝑡)𝑁𝑖𝑗(0,1)|     𝑖𝑓 𝑥𝑖𝑗(𝑡) > �̂�𝑗(𝑡)

𝑥𝑖𝑗(𝑡) + 𝜎𝑖𝑗(𝑡)𝑁𝑖𝑗(0,1)                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(40) 

subject to 

𝜎𝑖𝑗(𝑡) = 𝛼[𝑥𝑗
𝑚𝑎𝑥(𝑡) − 𝑥𝑗

𝑚𝑖𝑛(𝑡)],     0 < 𝛼 < 1 (41) 
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4. Results and Discussion  

In this study, the proposed method was used to model the 

output of the WTG power curve and included an improvement 

of the efficiency of the proposed method by the use of CA3 to 

optimize its coefficients. To examine the effectiveness of the 

proposed method, it has been tested on four different class of 

wind turbines. All comparison cases were performed to 

validate the suitability of the methodology of the study. All 

the mathematical formulation and algorithms have been 

implemented on MATLAB 2015a. They have been executed 

on a personal computer with the following specifications, 

Intel® Core™ i5-3210M (3.1 GHz), 6.00 GB RAM (DDR3) 

and win 8.1 operating system (OS). The study performed 20 

trials for each class of WTG to produce reasonable results and 

the consideration of any associated error in calculations, while 

the maximum number of iterations for all the trials were fixed 

at 300. In this study, the adjusting parameters of the CA were 

as follows: 

 Population size: 50 

 Acceptance ratio: 0.15 

 Strategy parameter: 0.25 

 Scaling coefficient: 0.5 

 

To demonstrate the practicality of the proposed method in 

the modelling of the WTG power curve, four statistical 

methods have been used to investigate the performance of the 

proposed method in comparison to the others. This section can 

be divided into two parts; the first part has attempted to show 

the superiority of the proposed method in comparison with 

other previously developed methods and the second part the 

performance of the proposed method has been improved by 

using CA3 to determine the coefficients of the proposed 

method in an optimal manner. 

Figure 2 shows the residuals representation of the three 

best models for all the classes of WTGs. The residual values 

have been depicted against the actual measured values by the 

manufacturer. To have an accurate evaluation of residual 

behaviours, the confidence bound has been set as 33% of the 

highest deviation from the actual values in all comparison 

cases. The confidence bound has been depicted in the red 

dashed line. As seen from Figure 2, M13 has obtained fewer 

outliers in comparison to all other classes of WTGs aside from 

class E-33 where M14 showed a better performance. The 

placement of the residuals of M13 for the different classes of 

WTGs are as follows; 50% for the E-33, 76.92% for the E-44, 

81.82% for the E-82 and 90.91% for the E-101. 

Table 1 represents the comparison of MAE values for all 

the models, where the M13 has obtained the lowest values of 

MAE for all classes of WTGs aside from class E-33, where 

the M14 has achieved a slightly lower error. The MAE values 

of M13 are 2.265, 3.455, 11.752 and 27.767 for the E-33, E-

44, E-82, and E-101, respectively. Figure 3 illustrates an 

overall comparison of NRMSE for all classes of WTGs for the 

different models. The colour-bar on the right-hand side of 

Figure 3 represents the details of measured values. It is 

observable that the proposed model of the study (M13) has an 

outstanding performance in comparison to the other compared 

models. From all the aforementioned results, it can be inferred 

that M13 has a good performance for modelling of WTG 

power curve in comparison to all previously developed 

models. In the second part of the result and discussion, the 

CA3 method has been used to find the optimal coefficients for 

the proposed model in order to enhance the accuracy of the 

proposed model for modelling of the WTG power curves. To 

demonstrate the capability of the proposed model, the 

obtained results of the proposed model have been compared to 

the other evolutionary algorithms. 

 

Table 1. The MAE results for the all classes of WTGs 

 

  MAE 

  E-33 E-44 E-82 E-101 

M1 24.260 80.000 220.942 357.207 

M2 36.688 95.040 239.110 385.025 

M3 24.244 119.875 143.174 230.926 

M4 46.618 191.628 257.757 400.765 

M5 71.413 239.911 349.355 536.744 

M6 33.127 58.034 207.966 335.616 

M7 14.555 29.437 96.696 171.786 

M8 15.083 23.904 106.361 183.986 

M9 7.891 10.819 56.219 104.127 

M10 9.495 20.286 56.777 117.359 

M11 7.721 17.507 107.927 106.849 

M12 1.763 4.245 18.501 53.808 

M13 2.265 3.455 11.752 27.767 

M14 1.580 6.177 18.780 38.886 

M15 18.419 140.970 96.095 115.328 

M16 23.941 179.114 121.640 189.973 

M17 138.644 635.781 794.822 1211.272 

Figure 4 to Figure 7 represents the optimization 

process of the proposed model coefficients in order to 

minimize the MSE for all the studied classes of the WTGs. As 

it can be seen from Figure 4, CA3, GAPSO and PSO have a 

very close behaviour during the optimization process for the 

WTG E-33 while the lowest MSE has been obtained by CA3 

at 0.5466. The detailed comparison of the obtained MSE 

results for all the optimization algorithms with respect to the 

different classes of WTGs can be found in Table 2.  From 

Figure 5 it is observable, for E-44 class of WTG, up until to 

100th iteration GA has achieved a better performance during 

the optimization process but the best final value of MSE has 

been obtained by CA3 at 14.0924 followed by GAPSO and 

PSO at 14.3435 and 14.7978, respectively. Figure 6 represents 

the optimization process for E-82 WTG class, where CA3 

shows a performance when compared to the other 

optimization algorithms. For this class of WTG, the best result 

has been obtained by CA3 at 36.0583. Figure 7 shows the 

comparison of optimization algorithms for E-101 WTG class. 

In this class, CA3 achieved the lowest value of MSE among 

the other algorithms at 63.2763, and this shows the capability 

of the proposed method. The final values of the optimal 

coefficients of the proposed model for different optimization 

algorithms are given in Table 3.
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Fig. 2. The residuals representation of the three best models 

 

 

 

Fig. 3. Evaluation of NRMSE for all the studied classes of WTGs
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Fig. 4. The optimization process of the objective function (E-

33 WTG) 

 

 

Fig. 5. The optimization process of the objective function (E-

44 WTG) 

 

 

Fig. 6. The optimization process of the objective function (E-

82 WTG) 

 

 

 

 

Fig. 7. The optimization process of the objective function (E-

101 WTG) 

 

Table 2. MSE results for all the optimization algorithms 

WTG 

Class 
FA GA PSO GAPSO CA3 

E33 1.1734 1.23 1.2288 0.5897 0.5466 

E44 15.7577 15.7286 14.4978 14.3435 14.0924 

E82 70.1446 36.1032 36.0873 36.0663 36.0583 

E101 92.9399 87.251 72.886 64.6689 63.2763 

 

Table 3. The optimal coefficients of the proposed model for 

different optimization algorithms 

Method  a1 b1 c1 a2 b2 c2  

E33 

FA -2.79 2.03 5.19 322.69 12.49 4.94 

GA 3.18 -2.28 1.47 321.26 12.42 4.82 

PSO -5.90 23.92 2.86 321.26 12.41 4.82 

GAPSO -3.92 -1.95 9.37 323.42 12.50 4.94 

CA3 -3.28 7.86 183.98 326.41 12.50 4.96 

E44 

FA 199.72 16.84 -1.81 829.63 14.17 5.51 

GA 203.45 16.83 -1.82 828.31 14.16 5.50 

PSO 265.51 17.39 -2.24 819.75 14.08 5.45 

GAPSO 1091.97 21.39 -4.29 792.84 13.90 5.37 

CA3 1003.15 21.31 -4.55 774.48 13.77 -5.30 

E82 

FA 1988.92 12.41 4.70 66.54 10.07 0.41 

GA 2005.51 12.55 4.80 76.33 9.76 0.61 

PSO 2005.35 12.54 4.80 78.17 9.74 -0.59 

GAPSO 75.44 9.76 0.61 2005.37 12.54 4.81 

CA3 74.23 9.78 0.63 2005.59 12.55 4.81 

E101 

FA 3043.27 11.99 3.77 258.54 6.63 2.36 

GA 3042.34 11.98 -3.76 262.49 6.66 -2.33 

PSO 3043.51 11.99 3.73 281.19 6.73 2.45 

GAPSO 3038.12 11.96 3.71 284.92 6.74 -2.38 

CA3 3051.05 11.90 4.36 -253.17 9.00 -1.73 
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5. Conclusion 

The precise modelling of WTG power curves is an 

essential tool for the wind farm operators and power system 

planners which can be used for evaluation and monitoring of 

the wind turbine’s performance. The accurate modelling of 

WTG power output enables the system operator to consider 

the sufficient amount of reserve to handle the intermittency of 

the wind energy and enhance the penetration level of wind 

energy into the power grid which leads to the generation of 

power at the least cost. In this study, a non-parametric model, 

based on the quadratic Gaussian function, has been proposed 

for estimating WTG power curves. The proposed model has 

been benchmarked with several parametric and non-

parametric models which have previously been developed for 

the modelling of WTG power curve. According to the results, 

it can be inferred that the parametric and polynomial 

regression models are constrained subject to their model 

characteristics and sensitivity of the error estimation. A 

precise fit to experimental data requires a higher degree of 

polynomial regression that sometimes can lead to over/under-

fitting to the field data.  In this regard, the study has used the 

cultural algorithm to find the optimal coefficients of the 

proposed model in order to reduce the estimating errors of the 

curve fitting and enhance the practicality of the model. The 

accuracy of the proposed model has been evaluated by four 

statistical methods, namely; residual analysis, MSE, MAE and 

NRMSE. The results of the study show that the proposed 

model presents a noticeably better performance in comparison 

to the other studied methods. In addition with the coupling of 

the proposed model to the cultural algorithm, the performance 

of the proposed model can be considerably improved. It is 

recommended that the proposed model of the study can be 

used in the power industry for the modelling and monitoring 

of the power outputs of wind turbine generators. 
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