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Abstract- This study presents an agent-based model of innovation diffusion for Renewable Energy Technologies (RET) based 
on the spread of information in social networks within city neighborhoods. Information spread patterns across household and 
Twitter networks are combined to model the rate of RET innovation diffusion†. The resulting approach provides a 
methodology for capturing how RET innovation diffusion in online social networks and city neighborhood networks may 
jointly influence the residential adoption of renewable energy technologies. An application of this approach is demonstrated 
with reference to solar PV adoption in Qatar.  
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†	Social	media	consists	a	major	domain	for	the	production	and	dissemination	of	real-time		
information.	Such	flows	of	information	have	traditionally	been	thought	of	as	diffusion	

processes	over	social	networks	by	the	interactions	among	numerous	participants.	
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1. Introduction 

Qatar’s plans to generate 2% of the nation’s total 
electricity production from solar energy by 2020 and 20% by 
2030 [1] broach several environmental and economic 
benefits for the nation. For example, the ensuing saving in 
natural gas, which is currently the primary source of 
electricity generation, would lower Qatar’s carbon emissions, 
and could be repurposed for additional trade to increase 
revenues or left untapped to extend the lifetime of the 
country’s natural gas reserves and lower extraction costs [2], 
[3]. The development of a solar energy market would also 
help diversify the national economy through innovation and 
entrepreneurship to accelerate the ongoing transition from a 
carbon-based to a knowledge-based economy, as mandated 
by national development plans [4]. Residential photovoltaic 
(PV) systems play a crucial role for the achievement of these 
objectives, because of the difficulty in finding available land 
suitable for PV installations in the country, and the 
importance of avoiding additional transmission and 
distribution costs with utility scale installations in remote 
areas. Understanding the mechanism that underlie a 
household’s decision to adopt Renewable Energy 
Technologies (RET) in Qatar is therefore crucial to help 
policymakers and other stakeholder understand challenges 
and opportunities in reaping the benefits of solar energy 
penetration. Understanding the impact of information 
contagion on residential PV adoption can help policymakers 
and users assess the risks associated with adoption, and learn 
how to address challenges and take advantage of 
opportunities. Economists and behavioral scientist have 
become increasingly interested in analyzing the impact of 
social interactions in the diffusion of innovations. A growing 
body of literature argues that individuals and organizations 
rarely make decisions solely on the basis of economic factors 
[5], [6] [31]. Decisions are increasingly shaped by online 
social network interactions, which have come to play a major 
role in the spread of information with the rising ubiquity of 
social media [7], [8]. Consequently, theories of innovation 
diffusion are increasingly focusing on social network 
analysis approaches, where a positive feedback loop in the 
network of initial adopters may create peer pressure effects 
which promote new adoptions [9] [34].  

 
Online social [29] networks allow hundreds of millions 

of Internet users worldwide to produce, share and consume 
content [32] on an unprecedented scale. Social media 
platforms play a major role in the diffusion of information by 
increasing the spread of novel information and diverse 
viewpoints. For example, Facebook and Twitter have proved 
to be pivotal in shaping the course of political events 
worldwide, such as the outcome of the 2008 U.S. presidential 
elections and the outbreak of the Arab Spring in 2010, 
through the creation of social movements. Analogous 
impacts have been found on economies worldwide [10], [11]. 

This study uses an agent-based modeling (ABM) to 
characterize the impact of innovation diffusion on residential 
PV adoption in city neighborhoods. The paper is organized 
into six sections. Section 1 introduces the problem. Section 2 
describes the proposed model and introduces the terminology 

used throughout the paper. Sections 3 describes the data used 
throughout this paper. Section 4 combines the results of the 
simulations of the innovation diffusion in Twitter and 
neighborhood networks. In section 5, the evaluation of the 
impact of the innovation diffusion factor on PV-adoption 
decision was conducted by integrating the model into an 
ABM. Finally, Section 6 presents the conclusions of this 
study. 

2. Approach 

Our modeling premise is that decision behaviors about 
residential RET adoption are the outcome of a social process 
undertaken by motivated stakeholders who exert influence on 
each other in different spaces. This study investigates the 
influence of innovation diffusion on RET adoption in two 
spaces: city neighborhood households and online social 
networks. The joint spread of new RET ideas in these two 
spaces is analyzed as contributing to residential RET 
adoption, in an analogous way to how the neighborhood 
effect has been proved to influence a household’s decision to 
adopt renewable energy [12][33][35][36].  

A novel innovation diffusion algorithm is proposed to 
characterize the influence that may lead a household to RET 
adoption. First, a reference network of RET messages on 
Twitter in Qatar is created using the Barabási Albert [13] 
model. Then, a network model for a selection of city 
neighborhoods in Doha-Qatar is developed, where some of 
the Twitter RET message traffic is geocoded, using spatial 
analysis methods from Qatar census geography [14].  

Next, a linear threshold approach [15] is used to model 
innovation diffusion in the city neighborhood and Twitter 
networks. Finally, the influence that may lead a household to 
RET adoption is characterized as the weighted sum of the 
influences that the household receives from the two 
networks.  

 
 

(a) 
 

 
 

(b) 
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(c) 

 
Fig.1. (a) Twitter Network TN (b) Dwelling Network DN, 

(c) TN-DN Network. 

2.1 Modeling the Social Media Network  

The Barabási Albert [16] (BA) algorithm is used to 
develop a social network that approximates the diffusion of 
attitudes and ideas about renewable energy in a reference 
Twitter network. The BA model is an algorithm that 
generates “scale free” networks, i.e. networks in which 
vertex connectivity follows a power-law distribution. It 
incorporates two basic concepts: growth and preferential 
attachment. Growth means that the number of nodes in the 
network increases over time. Preferential Attachment (PA) 
means that the more connected a node is, the more likely it is 
to form new links. Both growth and preferential attachment 
are widely observed in real-world networks [16]. In the 
context of social media networks, a link from A to B means 
that person A “knows” or “is acquainted with” person B.  

 

Fig.2. Simulations of the information spread in the Twitter 
Reference Network, with random, central and marginal 
configurations. All graphs are “scale-free” and differ only in 
how the initial seed of informed nodes is chosen. Initial 
network seeds appear as solid dots. 

Heavily linked nodes represent well-known people with 
lots of relations. According to PA, a newcomer to the 
network is more likely to form links with nodes that are more 
heavily connected. We refer to individual nodes in the 
network as being either active (i.e. participating in innovation 
diffusion) or inactive, at any given point in the development 
of the network. Three cohorts of initial active nodes in the 
reference Twitter network are set: central, random and 
marginal. Each cohort includes 2.5% of users who twitted 
about renewable energy in the initial period of network 
formation (January 2009 through March 2016). The central 
cohort includes nodes that have the highest number of 
connections (highest degree), the marginal cohort is formed 
by nodes that have the lowest degree, while nodes in the 
random cohort are randomly chosen.  

The size of each cohort of initial active users (2.5%) 
corresponds to the innovators category of adopters in 
Rogers’ innovation curve [17]. According to Rogers, 
innovators are active information seekers about new ideas 
who are close to the scientific community and other 
innovators, have financial liquidity, and are willing to take 
high risks to pursue their vision. With reference to diffusion 
of information about solar and renewable energy in Twitter, 
such a cohort would match the profile of eco-warriors with 
financial means and high 

technology awareness, seeking the advancement of their 
ecological ideology. The central, random and marginal 
cohorts are used as seeds for the generation of simulated 
networks (Fig. 2), to verify which configuration best 
approximates the diffusion characteristics of the reference 
Twitter network. Formal details about the BA graph 
generation are provided through the pseudo-code in 
Algorithm 1 below, where the m parameter determines how 
quickly a novel piece of information spreads within a 
network (see Fig. 3).  
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To ensure that the network generation model uses an m 

parameter that adequately characterizes the flow of 
information in the reference Twitter network, m is set to a 

value that captures the degree distribution observed in the 
reference Twitter network. Trial tests with diverse values for 
the m parameter and initial active user cohorts indicate that 
the best fit is obtained using the average degree in the 
reference Twitter network (m = 15) with central initial active 
nodes. 

2.2 Modeling the City Neighborhood Network  

A network model for a selection of city neighborhoods 
in Doha, Qatar was developed where most geocoded posts in 
the reference Twitter network occur. Figure 4 shows the 
specific city area of interest, which is one of the most 
populated neighborhoods in Doha. Each selected household 
(represented with a green circle) corresponds to a compound 
or independent villa-type accommodation. To ensure that our 
city neighborhood model – the dwelling network (DN) 
henceforth – preserves the layout of its real world physical 
counterpart, constraints derived from Qatar’s census 
geography were used in developing the model. More 
specifically, census blocks were used as the basic unit of DN. 

 

 
 
 

Fig.3. The diffusion spread process in one user network. 

 

Census blocks are statistical areas bounded by visible 
features, such as streets, roads, streams, and railroad tracks, 
and by invisible boundaries, such as selected property lines 
and city, township, school district, and county limits and 
short line-of sight extensions of streets and roads. Generally, 
census blocks cover small areas, such as a block in a city 
bounded on all sides by streets. Census blocks in suburban 
and rural areas may be large, irregular, and bounded by a 
variety of features, such as roads, streams, and transmission 

lines. In remote areas, census blocks may encompass many 
square miles.  
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Fig.4. Geographic distribution of selected households (green 
circles) in Doha. 

 
 
             Fig.5. Sample of Qatar’s 2010 census geography. 

As to Qatar’s 2010 census geography, 4345 blocks 
containing 150,000 building plots are grouped into 90 zones, 
which in turn are arranged into seven municipalities, as 
shown in Fig. 5. GIS files providing information about 
census blocks and building locations were used as reference 
data for DN. In DN, each node corresponds to a census 
block. First, a network where each block is connected to an 
adjacent block was created. Next, a spatial join operation was 
performed to link each housing unit (represented as a pair of 
coordinates) to its corresponding block (represented as 
polygon). Then, housing units were added into the network 
of blocks as nodes and links were created following these 
two rules: 

 
• Each housing unit node is connected to its 

corresponding block node. 
• Housing unit nodes within the same block form a 

fully connected sub-graph.  
 
A network model for the selection of city neighborhoods 

in Doha (Qatar) shown in Fig. 4 was developed, where most 
geocoded posts in the reference Twitter network occur.  

Figure 6 provides an analysis of structural properties for 
the real-world dwelling network. Panel (a) shows the 

distribution of neighboring blocks in the network. One 
observation is that most of the blocks have between 4 and 8 
adjacent blocks, the maximum number of neighbors a block 
may have being 14. The distribution of the number of villas 
per block is shown in panel (b). Most of blocks turn out to 
have less than 20 villas. Very few have more than 50 villas. 
It is important to notice that over 500 blocks have no villas.  

 

 
(a) 

 
(b) 

 
Fig.6. Some structural properties of the real dwelling 
network. Panel (a) plots the distribution of number of 
adjacent blocks for each block. Panel (b) plots the number of 
buildings in each block. Note that there are 521 blocks 
without any building in them. 

Figure 7 shows the distribution of neighboring blocks in 
the network. The dots in this graph represent the blocks of 
the k selected zones. 

 

 

Fig.7. A sub-graph of some blocks from k selected zones 

 

2.3. Linear Threshold Model for Innovation Diffusion 
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Information may spread through a network in different 
ways. Accordingly, diverse models of network information 
spread have been developed in the literature. For example, in 
the PUSH model, only nodes that have information can 
contact neighbors to inform them, and an active node can 
only contact one of its neighbors at a time. This model has 
been used to transmit information in computer networks [18], 
[19]. By contrast, linear threshold models allow an active 
node to contact all its neighbors at once.   

 
Linear threshold models are better suited to characterize 

the spreading of information in social networks such as 
Twitter and Facebook, where the content generated by a user 
is made instantaneously available to all her followers and/or 
friends. In addition, linear threshold models can factor in two 
important factors: (i.) the extent to which a user can be 
influenced by or influence its neighbors, and (ii.) the 
activation threshold of different users. For example, a user 
may become active if only one of its neighbors is active, 
whereas another user may require 50% of its neighbors be 
active before it activates. The pseudo-code in Algorithm 2 
describes the linear threshold-based diffusion process that 
has been adopted in this paper.  
 

Since the same linear threshold algorithm can be applied 
to the Twitter network (TN) and the dwelling network (DN), 
Innovation Diffusion (ID‡) can be characterized in combined 
TN and DN networks jointly (ID (TN, DN)), as shown in 1, 
where: (a) α is the weight§ given to the social network 
influence; (b) β = 1−α is the weight of the dwellings network 
influence; (c) 𝑡!!,!!  (𝑑!!,!!) is the influence that stakeholder 
𝑠! exerts on 𝑠! in TN (DN). 

 
ID TN,DN = 
 

          𝛼 × ( 𝑡!!,!!
!!!"# !!

+  β× 𝑑!!,!!
!!!"#(!!)

 
(1) 

 
The joint TN-DN innovation diffusion function was used 

in (1) to calculate innovation diffusion jointly in the Twitter 
and dwelling networks. Algorithm 2 presents a pseudo-code 
of the adaption of linear threshold model to deal with 
multigraphs.		

																																																													
‡	ID	is	the	factor	measuring	how	the	information	spread	through	the	network.	

§	α	is	the	relative	importance	assigned	to	each	network.	

 
 
3. Data 

For the dwelling network DN, reference GIS data has 
been used, which where kindly made available by Qatar 
Ministry of Development Planning and Statistics. For the 
creation of the renewable energy social network, information 
about the interest of people living in Qatar towards 
renewable energy was collected from Twitter.  

The process for extracting Twitter message reflecting 
users’s interest towards renewable energy is described below, 
and the results are shown in Fig. 9.  

 
(a) Identifying users of Qatar: First, a gazetteer of 

locations in Qatar was created including the names of 
main cities  and districts in both English and Arabic, 
and under different spellings. This list was matched to a 
45 day sample of the Twitter Decahose API** - a 
sample of 10% of the entire Twitter stream - to identify 
users of Qatar. This list was expanded by iteratively 
analyzing profiles of the friends and followers until no 
more users were identified. The result consists of 117K 
users who claim to live in Qatar.  

(b) Collecting User Tweets: Twitter Historical API†† was 
used to collect up to 3,200 tweets posted (the maximum 
allowed by Twitter API) for each of the users. This 
collection generated a total of 109.6 million tweets 
posted by more than 98,066 different users over a 

																																																													
**https://developer.twitter.com/en/docs/tweets/samplerealtime/overview/decahose

,	last	accessed	on	Dec	2017	

††	https://developer.twitter.com/,	last	accessed	on	Dec	2017	
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period of nine years (from 2007 to 2016). As Twitter 
was launched in 2006 only, the activity of the users in 
Qatar was very marginal before 2011. Therefore, we 
focus on the time period spanning from January 1st, 
2009 to January 1st, 2016.  

(c) Filtering for Renewable Energy: Next, a filtering 
process has be run to retrieve tweets that match one of 
the following keywords: solar and renewable energy 
(see Fig. 8). The keyword solar is used as a wild card to 
catch several solar energy related technologies such as 
solar panels, solar energy, solar electricity, solar power, 
and solar PV. By doing so, we obtained a list of 8,681 
tweets posted by 1,570 unique users (see Table. 1).  

(d) Building Follow-ship Network: data from step (a) has 
been used to connect the 1,570 users to their friends 
and followers. This resulted in a unified network of 
8,181,998 nodes (users) and 11,040,652 links. As our 
only focus point is on the network linking the 1,570 
users, all links to users who are not in that list were 
filtered out. Hence, a smaller network has been 
obtained– represented as a directed graph – with 1,471 
nodes and 22,217 links. 
 

 

 
(a)                                      (b) 

 
Fig.8. (a) Cumulative number of users who twitted about 
solar and renewable energy in Qatar. (b) Monthly time line 
of tweets referring to renewable energy posted by users of 
Qatar. 

 
Fig.9. Topology of Twitter Close-Net network connecting 
users in Qatar interested in renewable/solar energy. One 
observation is that the network is strongly connected and has 
three distinguishable communities. 

Table1. Twitter Follow-Ship Network Statistics. CLOSE-NET is the Subset Network Made for the 1,417 Users.
Relationship #Links #Users Avg. links/user 

Followers 10,0.30,279 7,927,366 6,388,71 
Friends 1,030,270 581,826 656,22 

Closed-Net 22,217 1,417 14,27 
4. Results 

First, the best performing Twitter network model was 
selected in terms of its ability to match a real-world model of 
the reference Twitter network. Then, the selected Twitter 
network model was used to calculate the combined rate of 
diffusion for renewable energy innovation across the Twitter 
and dwelling networks. 

 A real-world model of the reference Twitter network 
was first created through 30 simulated iterations of the linear 
threshold spreading algorithm, with an initial seed cohort 
equal to 2.5% of the reference Twitter user network, as 
shown in Fig. 10. Then the analogous simulations were 
performed using the BA model with random, central and 
marginal configurations of the initial seed cohort, using 
different values for graph density parameter (m ∈ {5, 10, 11, 
15}). This allowed us to verify which of the three 
configuration comes the closest to the reference Twitter 
network – see [20] for a similar study. As shown in Fig. 10, 
the closest approximation of the simulated networks to the 

reference Twitter model is obtained with the highest degree 
of graph density (m = 15) in the central configuration. 

 
Since all buildings within a census block form the 

smallest neighborhood unity within a municipality, we 
hypothesize that innovation diffusion can spread in parallel 
across households within a census block, so that buildings 
belonging to the same census block activate together within 
the innovation diffusion model. Therefore, census blocks 
were used as the basic unit of the dwelling network networks 
of buildings instead of using individual buildings. This 
reduces significantly the size of the dwelling network with 
substantial ensuing efficiency in the computations needed to 
carry out this study.  

After simulating the Twitter network TN in the 
configuration which best fits the reference Twitter network 
(using the BA model with the graph parameter m = 15), the 
combined TDN network was created by mapping each user 
captured in Twitter network to a census block. The activation 
threshold for all nodes was set in both TN and DN to 1/10, 
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meaning that a node will activate if at least one tenth of its 
neighbors are activated. The scores that quantify the 
influence nodes exert on each other (i.e. edge weights) are 
assigned randomly, so that influence scores of all incoming 
edges of any node sum up to 1.  

Figure 11 shows how information started at a random 
node spreads in the reference Twitter and simulated 
networks. The diffusion of innovations in this model are 
consequently parameterized by a threshold of adoption. The 
key variable here is the initial distribution of thresholds 
across a social network, which describes in totality the final 
extent of the behavior. Results show that news spreads much 
faster in the real world networks and the central graphs than 
in the random and marginal graphs. Early potential adopters 
in the real network and potential adopters in the central 
configuration are the most favorable to have a high 
exposure‡‡, as they have many connections. 

 

 
(a)                                         (b) 

 
                         (c)                                           (d) 

Fig.10. Informed nodes average rate over time for the 
Twitter-Real-Network and random, central and marginal 
attachments of the initial seed cohort of users. Simulations 
were run using the same number of nodes (# of nodes=1451) 
and density parameter m ∈ {10, 11, 15}. Both the real 
network and the central attachment show better and faster 
contagion spread in comparison with the others processes. 

 
 

 
 

																																																													
‡‡	The	exposure	of	a	node	is	the	fraction	of	their	neighbors	who	are	already	informed	and	

that	must	be	reached	before	they	will	adopt	the	innovation.	

 

 
   (a) 

 
    (b) 

 
   (c) 

 
  (d) 

 

Fig.11. Time of Topic Spread by Network Threshold. # of 
nodes=1451 and density parameter m=10 (a) Ref-Twitter, (b) 
Central, (c) Random and (d) Marginal. 



INTERNATIONAL	JOURNAL	of	RENEWABLE	ENERGY	RESEARCH		
A.Boumazai	et	al.,	Vol.8,	No.3,September,	2018	

	
	

1757	

 

The linear threshold spreading algorithm was simulated 
on TDN until convergence was achieved (i.e., no more nodes 
can be activated) with the initial seed cohort of active nodes 
(equal to 2.5% of the reference Twitter user network, see 
section 2.1 for details). In order to allow a better 
understanding of the impact of the choice of initial active 
nodes on the diffusion process, two different scenarios were 
simulated:  

• Random cohort, in which the initial active nodes are 
selected at random from the set of all nodes.  

• Central cohort, in which the initial active nodes with the 
highest degree (number of connections in the network) 
are selected.  
α, β parameters were varied to take values in the interval 

{0, 0.25, 0.5, 0.75, 1} with the constraint α + β = 1. 

Fig.12 reports the results for the different 
experimentation configurations. Note that when α = 1 and β 
= 0, then TDN reduces to the Twitter network TN. Similarly, 
the combined network TDN reduces to the dwellings 
network for α = 0 and β = 1. The results for these two special 
cases are plotted in sub-figures (a) and (b) respectively. The 
main observation here is that innovation diffusion spreads 
much faster in TN (where convergence is achieved in 3 steps 
for the central cohort, and 5 for the random cohort) compared 
to DN (where convergence is achieved in 8 steps for the 
central cohort, and 11 for the random cohort). This is mainly 
due to the presence of more highly connected nodes in the 
Twitter Network than there are in the dwelling Network. 

The remaining sub-figures (c), (d) and (e) in Fig. 12 
show the behavior of innovation diffusion with values for the 
α, β parameters in the interval {0.25, 0.5, 0.75}, i.e. when 
both TN and DN determine the level of diffusion jointly. The 
main result here is that TN somewhat dominates the 
diffusion process. The lower the weight α is, the higher the 
number of steps required for the diffusion algorithm to 
converge. Finally, the central cohort of initial active nodes 
(curves in green) leads to faster innovation diffusion when 
compared to the random cohort of initial active nodes (curves 
in blue) in all cases. This is mainly due to the fact that highly 
central nodes are connected to more neighbors, and thus 
allow the activation of more nodes. 

5. Integrating Innovation Diffusion Factor in a Multi-
agent Residential PV Adoption Model 

Agent-based modeling (ABM) is recognized as a 
powerful tool to understand and analyze phenomena in 
complex systems [21]. It’s one kind of micro-scale model, 
bottom-up approach that captures the simultaneous 
interactions of multiple agents [30] in an attempt to recreate 
and predict macro system-level events [22]. ABM was used 
to demonstrate the impact of our approach to innovation 
diffusion on residential PV adoption. Our starting point is the 
residential PV adoption model developed in [23], where 
agents represent residential households whose decision to 
adopt PV is driven by economic factors.   
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Fig. 12. Innovation diffusion results for the combined TN-DN network with different influence weights for the two networks. 

 
Households adopt solar PV with a probability 

established by the logistic function in (2), where L is a 
scaling constant, e is the natural logarithm, x is the cost of 
PV minus the cost of electricity, and k is a parameter which 
determines the slope of the adoption curve. Following [23], L 
was set to 1 to normalize the output of the logistic function 
as a probability. For the k parameter, a value was selected 
that yields a PV market share of 2.5% at the end of the 
simulation in a scenario where the cost of PV stays constant 
through time. This market share is equivalent to the number 
of innovators in Rogers' innovation adoption curve, who by 
disposition are willing to adopt novel technology at a 
premium price.   At each simulation tick, each household 
agent that has not adopted yet, is presented with the 
opportunity of doing so. Adoption is determined randomly in 
terms of the output of the logistic function in (2): a random 
probability p_r is generated, and if  

the probability of adoption as calculated by (2) is greater or 
equal to p_r, adoption occurs. 

 
       f x = !

!!!-!*#
                                                                 (2)	

 Using the Netlogo environment [28], three scenarios were 
simulated: one with ID in the Twitter network TN, one with 
the ID factor simulated in the Dwelling network DN and one 
with the ID simulated in both TN+DN. Each scenario was 

simulated for 14 years starting from 2016, with each 
simulation tick corresponding to a year. Simulations are 
iterated 200 times for each year, and the adoption rate for the 
year was calculated as the average adoption for the year. 

To quantify the falling cost of PV, the US Department of 
Energy SUNSHOT Initiative targets [24] has been used, 
according to which residential PV costs in 2020 and 2030 are 
respectively expected to be 50% and 70% less that PV costs 
in 2016 [23]. The SUNSHOT targets have been adopted  as 
reference points and use interpolation to calculate PV costs 
in the intervening years, as shown in Table 2. Following 
[25], residential PV cost was set by doubling a utility PV 
solar plant in the 300MW scale. Given our focus on the 
Arabian Gulf Region, the 2015 award by the Dubai 
Electricity and Water Authority to Acwa Power for a 
200MW solar plant, at a fixed rate of 5.84c/kWh over 25 
years [26] was used as the reference cost for utility-scale PV. 
The price of residential PV in 2016 was therefore set at 
11.68c/kWh. The price of electricity was calculated as the 
average ongoing KAHRAMAA tariff for residential villas, of 
3.555c/kWh [27]. The analysis is presented in two portions. 
First, we present a comparative analysis focused on 
identifying descriptive differences between the different 
networks: TN, DN and TN+DN. Then, an analysis of the PV 
total adoption rate (i.e. cumulative adoption rate) was 
provided for the three networks. 
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Table 2. Estimated Residential PV costs 2016-30 in Qatar 
using DOE SUNSHOT Initiative targets. 
Year PV Cost (¢/kWh) Calculated as 
2016 11.68 Initial PV Cost 
2017 10.22 Interpolate 
2018 8.76 Interpolate 
2019 7.30 Interpolate 
2020 5.84 50% less than initial PV cost 
2021 5.61 Interpolate 
2022 5.37 Interpolate 
2023 5.14 Interpolate 
2024 4.91 Interpolate 
2025 4.67 Interpolate 
2026 4.44 Interpolate 
2027 4.20 Interpolate 
2028 3.97 Interpolate 
2029 3.74 Interpolate 
2030 3.50 70% less than initial PV cost 
 

5.1 Comparative analysis of the TN, DN and TN+DN 
Networks 

This analysis highlights both similarities and differences 
between the TN, DN and TN+DN networks in terms of two 
main outcomes: the rate of total and new adopters per year. 
In Fig.13, simulation results were reported relative to the rate 
of total and new adopters for two scenarios: PV Adoption 
with and without Innovation Diffusion (PVA-ID, PVA-No-
ID).  

Figures 13c-e show the impact of the Innovation 
Diffusion factor (ID) simulated in the Twitter network TN 
and the Dwelling network DN for new and total adoptions 
rates per year using the DOE Sun Shot targets for falling PV 
costs. The PVA-No-ID is the basic scenario where ID factor 
is not taken into account in the ABM. For the PVA-ID, two 
special cases are plotted in Fig. 13a and Fig. 13b. Different 
PVA-ID scenarios are provided by varying the α and β 
parameters in the interval {0.25, 0.5, 0.75}, i.e. when both 
TN and DN determine the level of diffusion jointly. The 
main result here is that TN somewhat dominates the 
diffusion process. The lower the weight α is, the higher the 
number of years required for the PV adoption decision to be 
positive. The combined network TN+DN leads to faster PV 
adoption when compared to the two special cases plotted in 
Fig. 13a-b. 

The analyses show that total adoption rate is higher and 
grows faster in TN compared to DN. These results are 
expected according to the results presented in section IV, 
which demonstrate that innovation diffusion ID spreads 
faster in TN compared to DN. This is mainly due to the 
presence of more highly connected nodes in the Twitter 
network than there are in the Dwelling network. Another 

explanation is that the social network TN is denser and more 
interconnected than the Dwelling network DN. 

 

5.2 Analysis of the PV total adoption rate for the TN, DN and 
TN+DN Networks 

Table 3 provides simulation results for the total PV 
adoption rate, which appear to be growing faster in the 
combined network TN+DN than other networks. This can be 
explained by the fact that the PV adoption decision tends to 
grow faster in households networks that are more connected 
in social media network and are situated in the same district 
or area.  The results suggest small, but positive and 
significant social effects that can be exploited to promote 
adoption: at the average installation rate of 0.3 installations 
per 1,000 owner-occupied households. At the average 
number of 37,565 owner-occupied households within a 
postcode district, this implies an increase in the number of 
new installations in the neighborhood by 0.05. The resulting 
approach shows how online social networks and city 
neighborhood networks may jointly influence the residential 
adoption of RET.  

 

	
Fig. 13a α = 1 and β = 0, TDN reduces to the TN.		
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Fig. 13b α = 0 and β = 1, TDN reduces to the DN. 	

Fig. 13c α, β ∈ {0.25, 0.5, 0.75}, i.e. joint TN-DN ID. 	

	
Fig. 13d α, β ∈ {0.25, 0.5, 0.75}, i.e. joint TN-DN ID. 

	
Fig. 13e α, β ∈ {0.25, 0.5, 0.75}, i.e. joint TN-DN ID. 

Fig.13. The impact of the Innovation Diffusion factor (ID) simulated in the Twitter network TN and the Dwelling network DN, 
on new and total adoptions rates per year. 
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Table 3. Estimated rates of total PV adopters in TN, DN and TN+DN networks for 2016-30 in Qatar using DOE SUNSHOT 
Initiative targets. 

Year TN DN  TN+DN 
1 0.21% 114 0.16% 104 0.21% 126 
2 0.41% 240 0.29% 223 0.40% 251 
3 0.97% 489 0.68% 473 0.74% 537 
4 2.03% 1023 1.04% 1008 1.70% 1071 
5 4.52% 2223 2.37% 2206 3.91% 2336 
6 7.89% 4869 5.35% 4820 8.51% 5051 
7 15.23% 7808 9.85% 7766 12.02% 8154 
8 19.42% 11141 12.94% 11099 16.51% 11614 
9 24.63% 14903 19.45% 14714 20.78% 15485 

10 32.41% 18899 21.59% 18734 28.29% 19475 
11 37.32% 23306 22.11% 23004 37.25% 23831 
12 45.47% 27856 35.99% 27519 46.35% 23342 
13 54.52% 32533 41.06% 32151 47.42% 32981 
14 60.20% 37321 46.05% 36731 63.92% 37565 

 

6. Conclusion 

Understanding the innovation diffusion mechanism that 
underlie a household’s decision to adopt Renewable Energy 
Technologies (RET) is crucial to help policymakers and 
other stakeholder understand challenges and opportunities in 
reaping the benefits of renewable energy penetration. This 
study shows that a model of RET innovation diffusion can be 
developed by combining information diffusion patterns 
derived from online social network and city neighborhood 
networks. The resulting approach provides a methodology 
for capturing how online social networks and city 
neighborhood networks may jointly influence the residential 
adoption of renewable energy technologies. Our future goals 
are to evaluate the contribution of information diffusion to 
PV adoption when combined with other factors in diverse 
regulatory frameworks, as an augmentation of a PV adoption 
model. 
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