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Abstract- Integrated renewable energy is now becoming an option for sustainable growth of humanity. Because it provides the 
uninterrupted energy supply to small, and micro grids, as well as it penetrates the larger conventional energy grid to decrease 
the emissions and active losses. Combining renewable sources to conventional grid results in an integrated renewable energy 
system. Sometimes for smaller loads hybrid renewable energy systems (HRES) can be used as an alternative. This whole 
integration of different renewable energy systems (RES) which can be grid connected or off grid, requires optimization of 
various factors like total levelized cost of energy, total CO2 emission (life cycle), total percentage of grid penetration etc. 
Hence, these kinds of problems include a large data regarding, energy resources, their annual availability, use pattern of the 
energy. Therefore to solve these complex problems one has to use intelligent computer algorithms, because of less calculation 
time and better accuracy than any other means. This paper highlights an updated literature regarding algorithmic multi-
objective optimization for generation and integration side problems of renewable energy resources to satisfy electrical and in 
some cases thermal demand also. It will be helpful to the researchers working in the field of multiobjective optimization and 
integrated RES. 
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1. Introduction 

Limitations of a single renewable source came into the 
picture in the late 20th century, causing the unreliability in 
energy supplies, fluctuation of the energy generation 
throughout the year, and insufficiency of a single renewable 
source to satisfy increasing energy demand. This situation 
generated the requirement of integration of two or more than 
two renewable energy sources, and in some cases the 
combination of renewable sources with some conventional 
energy sources, or with the grid. This gave rise to multiple 
problems, while deciding the size of the hybrid renewable 
system like deciding the total cost percentage of the 

renewable energy in the grid, unavailability of a particular 
renewable resource for a particular period of time, whether to 
use the storage system or not [1]. To decide the optimal 
energy mix for an integration problem, which varies from 
location to location [2], irrespective of the same components, 
requires use of some computer algorithms, to find the global 
optimal solution in each case. This technique mainly includes 
the use of different intelligent algorithms, such as Genetic 
Algorithm (GA), Evolutionary Algorithm (EA), Ant colony 
optimization Algorithm (ACO), Simulated Annealing 
Algorithm (SA), Particle Swarm Optimization Algorithm 
(PSO) etc., which give a non–dominated solution [3], for the 
problem. These techniques determine the space for the cost-
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quality trade-off for the renewable energy power supply. 
There are multiple inbuilt open access algorithmic software 
tools available for the optimization of the grid connected as 
well as for hybrid renewable energy systems. Yet they 
emerge with the limitations of components, as well as 
objective functions. These software include mainly Hybrid-2, 
improved hybrid optimization using genetic algorithm 
(iHOGA), and hybrid optimization of multiple electric 
renewables (HOMER) [4].  

2. Generalized Form of a Multiobjective Optimization 
Problem 

In a multiobjective optimization problem one has to 
optimize n objective functions simultaneously, with some 
equality and inequality constrains, which can be written as 
follows [5], 

Min or Max F (x̅) = [f1 (x̅)….fn (x̅)]    (1) 

Subject to constraints:  G̅ (x̅) = 0  (2) 

H̅ (x̅) ≤ 0  (3) 

Where F (x) is objective function, containing n objectives, 
and equation (2) and equation (3) are equality and inequality 
constraints respectively. 

The answer of this multiobjective optimization problem 
is actually in the form of set of solutions, means which are 
equally feasible and one solution cannot dominate other 
solutions, unless there is a user defined criteria given which 
is known as trade off criteria. Such sets of non-dominated 
solutions are shown by the Pareto optimal front [6]. While in 
some cases Pareto optimal front may not be used. 

3. Types of Multiobjective Optimization Problems in 
RES 

Types of problems occurred while optimizing the 
renewable energy systems mainly classified as, 1) Generation 
(Supply-Demand) side optimization problems and 2) 
Integration (Distribution Network) side optimization 
problems, 

3.1. Generation Side Optimization Problems 

Generation or Supply-demand side optimization problems 
mainly include, problems related to the energy costs, and 
emissions produced during generation of energy, formation 
of a hybrid renewable energy system (HRES). 

3.1.1. Objective Functions: Many studies have been carried 
out regarding the multiobjective optimization of supply 
demand side renewable problems but most of them contain 
limited number of objectives, as minimization of loss of 
power supply probability, which is a ratio of shortage 
(demand minus generation) to the demand [7]. Minimization 
of total life cycle cost of energy [8] [9], minimization of 
greenhouse gas (GHG) emissions, minimization of only CO2 

[10]. Maximization of grid penetration by maximizing 
renewable energy generation [6]. 

3.1.2. Constraints: The constraints regarding supply demand 
side optimization are strongly related to the system capacity. 
Demand satisfaction constraint, maximum unmet load, state 
of charge of the battery if used [11] [12], rated output of 
generator [13], hydrogen availability (H2 electrolyzer) if 
used, useful area, initial investment cost, are some conditions 
which are considered as important [14]. 

3.1.3. Variables: Variables in the supply-demand problems 
are, global daily average incident solar radiation, area of PV 
panel, average annual wind speed, flow of water in streams, 
efficiencies of power generating equipment(s) [15], along 
with these variables some variables like daily waste 
generation, production of biogas per day [16] are used for the 
thermal power fulfilment along with the electrical power. 

3.2. Integration Side Optimization Problems 

These problems are generally associated with the 
planning of distribution network structures for integrated 
systems, renewable penetration percentage in the grid, 
network topology changes, components allocations and 
upgradations. 

3.2.1. Objective functions: In these types of problems which 
are considered by researchers are mainly as, Minimization of 
network power losses, which includes resistive and inductive 
losses, resistive and inductive loss index [17]. Maximization 
of voltage stability, this condition has been expressed in 
some literatures in the form of voltage stability index, load 
sustainability limit or stability margin, and in some cases 
minimization of total variation of voltage [18]. Minimization 
of total harmonic distortion levels this includes minimization 
of current and voltage total harmonic distortion (THD) 
minimization [19]. Minimization of total distribution side 
costs which includes the planning, operational and 
maintenance costs [20]. Maximizing the system reliability, or 
minimizing system failures [21]. Minimizing the power 
purchased from the conventional grid or increasing the 
renewable energy penetration [22], minimizing GHG 
emission. 

3.2.2. Constraints: Limiting conditions occur while 
optimizing the several functions at a time. In this case, 
conditions are, bus voltage range, number of taps, line flow 
constraint [23], thermal overloading constraint [24], feeder 
capacity constraint, power flow equality constraints [25][26]. 

3.2.3. Variables: Slack bus power [27], load bus voltage 
magnitude, phase angles, reference voltage, distribution 
network line parameters are variables observed while 
studying problems [28]. 

 

 



INTERNATIONAL	JOURNAL	of	RENEWABLE	ENERGY	RESEARCH		
Acharya	P.S		et	al.,	Vol.9,	No.1,	March,	2019	

	 273	

4. Intelligent Algorithmic Optimization for Generation 
Side Problems 

Intelligent algorithms generally having the property of 
giving global optimal solution rather than a local one best, so 
they are useful over the ordinary algorithms. Each intelligent 
algorithm has its advantages as well as disadvantages for a 
given scenario. However, the superiority of a particular 
algorithm over another can be compared by parameters like 
number of non-dominated solutions given, and smoothness 
of Pareto optimal front, and number of objectives which can 
be optimized simultaneously [29]. Use of algorithms is very 
common for optimization of generation side problems, but 
many of the optimization problems are limited to the two 
components which mainly consist of wind and solar PV, and 
therefore one cannot analyse the actual performance of an 
intelligent algorithm. Due to this reason literature reviewed 
in this paper deals with more than two components. For 
optimization of generation side problems first one has to 
verify the resources which will provide the energy then 
writing the governing equation for the each individual 
resource is necessary, which further leads to identifying the 
variables, constrains governing the energy output from that 
particular resource, then loading schedule and availability of 
a particular resource need to be identified before going to 
optimization task. 

M. Trivedi [30] developed a multiobjective demand 
scheduling for a combination nuclear power plant- hydro 
power plant with renewable power plants, using genetic 
algorithm, the results show that the GA is capable of 
optimizing highly nonlinear scheduling problems. R. Dufo-
López, and J. L. Bernal-Agustín [31]minimized total cost, 
unmet load and CO2 emission of a hybrid renewable energy 
system using multiobjective EA (MOEA), and GA 
algorithms. The maximum net present cost for the non-
dominated solutions was observed up to 60% over the lowest 
net present cost of the non-dominated solution. Saif et al. 
[32] used multiobjective optimization method foe capacity 
planning of PV-Wind Diesel-Battery hybrid system with 
minimization of total levelized cost and emissions, 
uniqueness of this optimization was that, when unused 
energy level is 0% the solution with the least cost went close 
to the solution with least emission. O. Ekren, B. Y. Ekren 
[33] used simulated annealing algorithm (SA) for 
optimization of PV-Wind-Battery hybrid system for 
minimization of total cost, of the system. The study shows 
that using SA instead of using inbuilt optimization software 
results in 10.13% improvement in the objective function. 
Bilal et al. [34] designed hybrid battery-wind-PV system for 
minimization of total cost, and loss of power supply 
probability, for the site of Potou, it was observed from the 
simulations using GA that the loss of power supply 
probability increases with increasing share of wind energy 
production. Katsigiannis et al. [35] used non dominated 
sorting genetic algorithm (NSGA-II) for optimization of 
small scale standalone hybrid energy systems, two main case 
studies were analysed of which one system was having 
battery storage, and the other one having hydrogen storage, 
the results shows that battery storage was better than H2 
storage in both cost and emission criteria applied. M. Fadaee 

and M.A.M. Radzi [36] reviewed evolutionary algorithmic 
approaches for optimization, and stated that, most used 
genetic, and PSO algorithms can be used for generalized 
optimizations for standalone hybrid systems. S. Fazlollahi 
and F. Maréchal [37] used evolutionary multiobjective 
optimization algorithm for deciding the individual renewable 
unit capacity for minimum cost, and CO2 emissions for 
integrated thermal energy resources with the renewables they 
observed that combined production of heat and power (CHP) 
using biomass based renewables give more economic 
profitability up to 52% and reduction in CO2 emission up to 
40% compared to base case can be possible. A. J. Litchy [38] 
applied a real time energy management system for an 
islanded microgrid using multiobjective PSO algorithm. A 
relation between the performance and economic operating 
parameters was established for battery and H2 electrolyzer, 
and operating order was developed such that least cost can be 
achieved with optimal energy provided. Stojiljkovic et al. 
[39] compared different algorithms performance 
optimization for a trigeneration based hybrid power system, 
and found out that PSO, SA and taboo search algorithm 
(TSA) were superior over GA, ant colony and harmony 
search algorithms because they require a fewer inputs. Al-
Shamma’a and. Addoweesh [40] analysed a case study using 
GA of a village for a standalone renewable system, with 
energy components as PV, wind, diesel, and battery. They 
resulted in a conclusion that a combination of 65% 
renewables and 35% DG-set will result in the lowest total 
cost along with the optimize emission. The outputs were also 
compared with HOMER. M. Sharafi, and T. Y. EIMekkawy 
[41] applied optimization for a problem  comprising of 
Wind-PV-Battery-Diesel-Hydrogen tank-Fuel cell 
combination using dynamic multiobjective PSO (DMOPSO) 
and estimated that a minimum of 67% of solutions generated 
by DMOPSO dominates solutions generated by other 
algorithms. Perera et al. [42] integrated the DG set with a 
standalone renewable system, using steady state ɛ-
multiobjective optimization algorithm based on ɛ-dominance 
method, with maximizing the renewable energy capacity, and 
loss of load probability, with cost minimization. One of the 
results shows that increasing wind generation capacity in the 
system, allows user to use higher powered DG sets, 
whenever there is limitation to the storage bank.  Ko et al. 
[43] used elitist NSGA-II for the optimization of combined 
renewable heat power supply, for a school building. It was 
also observed that the higher penetration of renewables 
above certain limit will not decrease the GHG emissions, 
instead it will increase the total cost only. This condition was 
occurred due to differences in operational orders, and 
component capacities. M. Sharafi [44] Studied and compared 
(MOPSO) Multiobjective Particle Swarm Optimization 
Algorithm with the multiobjective genetic algorithm, for 
optimization of islanded micro grid and concluded that 
MOPSO performs faster than multiobjective GA (MOGA) 
for optimization with the same demand, and same number of 
solution sets. Mohamed et al. [45] studied series and parallel 
implementations of PSO for a PV-Wind-Battery-and Diesel 
generator system, with objectives as maximum energy 
generation with minimum system cost. Study reveals that the 
parallel implementation of PSO is more time saving than 
serial implementation. Ming et al. [46] proposed 
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multiobjective evolutionary algorithm with a localized 
penalty based-boundary intersection method (MOEA/D-
LPBI) used for optimizing the nonlinear, mixed integer 
problem. Simulation for an optimization of 5 components for 
minimizing system costs, unmet load, emissions, was carried 
out. Results show superiority of this algorithm over the 
preference inspired the co-evolutionary algorithm using goal 
vectors (PICEA-g) and multiobjective evolutionary 
algorithm based on decomposition (MOEA/D). Maleki et al. 
[47] optimized a similar combined heat power optimization 
problem using PSO and GA for minimum cost objective 
function, each algorithm was run for 20 times keeping the 
problem same as earlier. When minimum values of objective 
functions were compared and relative error calculation was 
carried out for demand fulfilment using hybrid energy and 
conventional grid it was 14%, giving PSO a winning edge. R. 
Singh et al. [48] introduced a new method for the hybrid 
system analysis which is termed as reformed electric system 
cascade analysis, taking two constraints at a time and goal 
programming for the real time optimization of hybrid energy 
systems for standalone as well as grid connected cases. 

5. Intelligent Algorithmic Optimization for Integration 
Side Problems 

Integration side optimization problems for RES 
generally consist of dealing with distribution network,grid 
resonance attenuation,[49] generating station optimal 
placement, real time energy demand fulfilment.[50] The test 
systems generally used for the distributed network analysis, 
can be categorized into two types which are, medium voltage 
level having the range of 6.6 kV to 34.5 kV, and low voltage 
level having the range of 110 V to 600 V. The multiobjective 
optimization provides an active network control for the 
distributed network system, rather than the conventional 
methods which actually focus on the distributor solely. 

Ochoa et al.[51] Proposed time series based 
maximization of distributed wind energy generation using 
NSGA algorithm also discussion has been carried that the all 
solutions given may not be non-dominated, when dealing 
with probabilistic approaches. A. Soroudi, & M. Ehsan [52] 
compared performance of different algorithms for 
multiobjective optimization of distributed generation 
integration in to the distribution network, and came up with a 
conclusion that modified NSGA can find more number of 
optimal solutions as compared to other algorithms like SA, 
PSO, TSA, and ordinary NSGA. A. Mohsenzadeh and M. 
Haghifam [53] analyzed simultaneous allocation of 
conventional and renewable generations in distribution 
generation with 132/33 kV 9 node system, distribution 
generation consisting of only diesel and wind systems, and 
resulted in decreased power loss up to 76%, and unsupplied 
energy reduced to 25% of original value. Ebrahimi et al. [54] 
studied the optimization of 2 400-kVAr-SVC 13 bus system 
using binary PSO for, also it has been proved that binary 
PSO is more efficient in solving this kind of problems rather 
than genetic algorithm. Zidan et al. [55] came up with 
multiobjective approach based on NSGA-II for the 
optimization of the distributed network with objectives as, 
minimizing GHG emissions, and costs related to the system, 

it has been proved that emission reduction up to 56.94% is 
possible as compared to base case considered using, 119 bus 
system. Ameli et al. [56] used MOPSO for maximizing the 
profit of distributed generation owner and minimizing the 
distribution companies’ costs, it has been concluded that 
minimizing one quantity results in the minimization of 
another quantity. P. Kayal and C. Chanda [57] proposed a 
method using MOPSO for minimizing the voltage deviation, 
emission, losses and payback period and found out that 
presence of renewables decreases the losses in system. Also 
they mentioned that, consideration of power factor in system 
can affect the system allocations. B. Arandian and M. M. 
Ardehalia [58] used hybrid shuffled frog leap algorithm 
(HSFLA) for allocating combined PV- and CHP power 
allocation in radial and meshed integrated heat and electric 
network with storages. It was found out that, using HSFLA 
increase in profit, by 28.36%, 11.89%, 19.96%, 14.73%, 
8.21%, and 17.44% in comparison with, GA, modified 
SFLA, imperial colony algorithm (ICA), ordinary SFLA, 
improved PSO, and ordinary PSO respectively. Conteh et al. 
[59] used GA and artificial neural network (ANN) for 
minimizing the system costs, and meeting the demand 
respectively. The study emphasizes that, the ANN technique 
is more effective for load shedding assessments, and system 
isolation than conventional techniques. Khaled et al. [60] 
introduced modified PSO technique for optimizing power 
flow in distribution with a modelled system network of IEEE 
30-bus test system. The study represents that the integration 
of renewables is more effective in case of slight decrement in 
load. The reduction in losses by 16% for the 5% decrement 
in the load to be supplied, when renewables are connected to 
the grid. A. M. Eltamaly and M. S. Al-Saud [61] used nested 
MOPSO with an IEEE 30 bus system model for optimized 
allocation of renewables, and minimizing transmission line 
losses. Zhang et al. [62] proposed a distributed network 
operator based method to solve the multiobjective 
optimizations with uncertainty conditions, in this method 
redundant calculations connected to the optimal location of 
DG, are omitted. Ravadanegh et al. [63] studied distributed 
network based approach, it has been discussed that the 
voltage amplitude can be considered as a main governing 
parameter, in case of power flow, and losses, this paper deals 
with the demand mix of industrial, commercial and domestic 
power.  

 

 Summary of Optimization Approaches 

Summary of different algorithmic approaches used for 
renewable optimization of generation and integration side 
problems is presented in “Table 1” and “Table 2” 
respectively, 
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Table 1. Summary of optimization approaches for Generation side problems 

Authors Energy Components 
Objective Functions Algorithms 

Used Year 
Maximize Minimize 

R. Dufo-López, and J. 
L. Bernal-Agustín 

[31] 
PV, Wind, Battery, Diesel –– 

• Net present cost 
• Emissions 
• Unmet Load 

MOEA, GA 2008 

Bilal et al. [34] PV, Wind, Battery –– 

• Annual Power 
cost 

• Loss of Load 
Probability 
(LLP) 

GA 2010 

Katsigiannis et al. 
[35] 

PV, Wind, Diesel, Fuel cell, Fuel 
cell (natural gas), Biodiesel 

generator, Electrolyzer, Battery 
–– 

• Total energy 
cost 

• GHG emission 
NSGA-II 2012 

S. Fazlollahi and F. 
Maréchal [37] 

Back pressure steam turbine, 
Biomass integrated gas engine-
gas turbine- combined cycle,  

Biomass Rankine cycle, Synthetic 
natural gas 

–– 
• Investment cost 
• Operating cost 
• CO2 emissions 

EA 2013 

A. J. Litchy [38] PV, IC engine CHP, Fuel cell 
CHP, H2 tank, Boiler –– 

• Total energy 
cost 

• GHG emission 

MOPSO, 
GA 2013 

Stojiljkovic et al. [39] Components related to heating, 
cooling and electric generation –– 

• Annual Power 
cost 

• Primary energy 
consumption 

GA, PSO, 
SA, TSA, 

ACO 
2014 

Al-Shamma’a and. 
Addoweesh [40] PV, Wind, Battery, Diesel Renewable 

fraction 
• (LLP) 
• system cost 

GA 2014 

M. Sharafi, and T. Y. 
EIMekkawy [41] 

Wind, PV, Diesel, Battery, 
electrolyzer, Fuel cell, Hydrogen 

Tank 
–– 

• Net present cost 
• (LLP) 
•  Fuel emission 

Dynamic 
MOPSO 2014 

Perera et al. [42] PV, Wind, Battery, Diesel –– 
• system cost 
• fuel 

consumption 
•  (LLP) 

ɛ-MO 
dominance 

2015 

Ko et al. [43] 
PV, solar collector, steam boiler, 
and other thermal components 

Renewable 
penetration 

• levelized cost 
of energy 

• GHG emissions 

NSGA-II 2015 

M. Sharafi [44] PV, Wind, Battery, Diesel, 
Electrolyzer, Fuel Cell, H2 Tank 

–– • system cost 
• (LLP) 

MOPSO 2015 

Mohamed et al.[45] PV, Wind, Battery, Diesel Renewable 
generation • System Cost 

Pareto 
based PSO 

2016 

Ming et al. [46] PV, Wind, Battery, Diesel System 
Reliability 

• System Cost 
• Fuel emission 

MOEA/D 
(LPBI) 

2017 

R. Singh et al.[48] 
PV, Wind, Battery, Diesel, 
Conventional Grid, Inverter 

Renewable 
Energy 
fraction 
 

• Final Excess 
Energy  

• Annual system 
cost 

• (LLP) 

RESCA 2018 
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Table 2. Summary of optimization approaches for Integration side problems 

Authors 
Objective Functions 

Constraints Algorithms used Year 
Maximize Minimize 

Ochoa et al.[51] • Wind power 
Export 

• Active power loss 
• Hazard for protection 

devices 

• Bus voltage drop  
• Power flow Equality 
• Radial operation 
• Branch feeder capacity 

NSGA 2008 

A. Soroudi , M. 
Ehsan [52] –– 

• Active Losses 
• Total costs 
• GHG Emission 

• Power flow equality 
• Voltage Magnitude 

Modified NSGA 2011 

A. Mohsenzadeh 
and M. Haghifam 

[53] 

• System 
Reliability 

 

• Power losses costs 
• CO2 emissions 
• Investment costs 
• Voltage deviation 

penalty  

• Power flow equality  NSGA-II 2012 

Ebrahimi et al. 
[54] 

• Renewable 
penetration  

• Active Losses 
• Voltage deviation 
• Cost of power 
• Emission 

• Bus voltage drop 
• Power flow Equality 
• Thermal constraints 
• Power Factor 

Binary PSO-fuzzy 
set theory 2012 

Zidan et al. [55] –– 
• Total costs 
• GHG Emission 
• Active losses 

• Bus voltage drop  
• Power flow Equality 
• Radial operation 
• Branch feeder capacity 
• THD constraint  

NSGA 2013 

Ameli et al. [56] • DG owner 
profit 

 
• Customer 

interruption cost 
• Total cost 
• Cost of power 

purchase 
 

• Bus voltage drop  
• Power flow Equality 
• Branch feeder capacity 
• Transformer overload 
• Budget constraint  

MOPSO 2014 
 

P. Kayal and C. 
Chanda [57] 

• Average 
voltage 
stability 

• Payback year 
• Yearly voltage loss 
 

• Bus voltage drop  
• Power flow Equality 
• Branch feeder capacity 
• DG capacity limit 

MOPSO 2015 

B. Arandian and 
M. M. 

Ardehalia[58] 

• Distributors 
economic 
profit 

• Total cost of power 

• Heat flow distribution 
and pressure limit 

• Bus voltage drop 
• Electricity and heat 

storage 
• Branch feeder capacity 
• Balance of electric and 

thermal loads  

Hybrid SFLA 2017 

Conteh et al. [59] 
• Reliability 

of power 
supply 

• Total system cost 
• Load balance 

constraint 
• Bus voltage drop 

MOGA& 
ANN 2017 

A. M. Eltamaly 
and M. S. Al-

Saud [61] 
–– 

• Generation and 
operating cost 

• Total line losses 
• Emission 

• Voltage stability  
• Power stability 

Nested MOPSO 2018 

L. Zhang et al. 
[62] 

• Power 
reliability 

 

• Voltage Quality 
• Power loss 

• Voltage Limit 
• Line Capacity 

NSGA-II 2018 

Ravadanegh et al. 
[63] 

Power 
Reliability 

• O&M cost of energy 
• Emission 

• Voltage Limit 
• Line Thermal unit 

NSGA-II 2018 
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6. Discussions  

The multiobjective optimization of hybrid renewable 
energy systems is necessary for the developing the precise 
microgrid, structure which can deliver power to forever 
increasing demand in the future. Various evolutionary 
algorithms are now being used besides only PSO and GA. 
This current scenario of developing hybrid microgrids 
whether for a remote place or as an assisting medium for the 
conventional grid to supply the continuously increasing 
power, can result in a more cost saving and green option. For 
future studies more algorithms which can solve the complex 
programming regarding the energy optimization should be 
used to tackle the uncertainty in power supply. In future the 
simultaneous as well as real-time optimization of available 
energy sources and their integration will be a prior solution 
required along with the accuracy, so two or more algorithms 
can be compared for the time taken to optimize the complex 
problem and accuracy. Presently one cannot rely on the mere 
optimization of complex grid scheduling and integrating 
problem but a real time simulation should be needed to 
identify the uncertainties more carefully and to minimize 
them. The integration side problems are generally optimized 
with bus voltage drop and power flow quality as the vital 
constraints. Minimization of active power losses is one of the 
most studied objective, due to cost related with the losses is 
high. Also some researchers have used various post 
optimization decision making criteria for cost-quality trade-
off for a particular set of solutions. On the other hand 
generation side optimization problems are considering more 
environmental constraints rather than technical one, and 
NSGA category algorithms are now being used for 
optimizing simple as well as moderate complex system 
optimization problems. Many studies highlight that 
integration renewables in the conventional grid resulting in 
to the less power losses, and emissions of the grid. 
Integration also giving advantage on the counter side for 
standalone renewable systems against their limitations for 
load supply. Installing grid connect renewable with CHP 
plants also increases system efficiency and generates heat 
providing capability into the whole network. The system 
derived by this addition can be a cost effective, yet more 
reliable system. 

7. Conclusion 

The present study has classified the multiobjective 
energy optimization problems in two different perspectives 
rather than a single problem, yet the optimization methods 
use the same algorithms for different objective functions in 
two different fields. For both the problems some common 
objective functions are there like minimization of total 
emission minimization of system cost and maintenance cost. 
Most of studies are dealing with only a single sided 
conflicting objective functions, such as two maximizing or 
two minimizing, there is a future scope for simultaneously 
optimizing two sided conflicting objectives. The interrelation 
between generation side and integration side problems 
should be established as the focus on a particular objective is 
different from both the perspective. The future challenges 

like wide area monitoring, optimal location and sizing of 
DG’s must need the multiobjective optimization in real time. 
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