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Abstract- This work deals with the study of two types of wave energy converters (WEC’s) taken as representative models of 
the bottom fixed systems and the freely floating ones. The considered freely floating WEC (FFWEC), a multi-body articulated 
system, consists of two horizontal cylinders connected with a flat plate and with axis parallel to the waves. The bottom fixed 
WEC, a point absorber (PAWEC), consists of a unique horizontal cylinder oscillating under the action of sea waves and 
connected to the seabed through an extensible Power Take Off device. For each system, a mathematical model is developed 
and is based on a balance of forces involving, in addition to the gravity and the Archimedean thrust, the Morison force, 
representing the added mass and damping effects as well as additional viscous effects. An evolutionary algorithm based 
method is used for the identification of the appropriate values of added mass and drag coefficients. The importance of the 
optimization of the sizing parameters for each of the systems with respect to the energy recoverable by the WEC’s is shown, 
and an evolutionary algorithm method is also used for their optimization. For the PAWEC, the results show that the recovered 
energy is a decreasing function of the drag coefficient 𝐶! and that the decay is more marked when the wave pulsation increase. 
This decrease remains however limited and is about 5% when 𝐶! varies from 0 to 6. However, for the FFWEC the results show 
a less predictable situation as the drag coefficient increase due to the fact that the FFWEC model is more sensitive to a 
parameter’s variation. For the FFWEC, it is found that the viscous effects can act in both directions, in favor or against a 
recovery of energy recovery according to the range of values of the other coefficients. It is also important to note that taking 
account of viscous effects can lead to corrections of more than 50% in the calculation of the energy recovered by the FFWEC.   

Keywords Wave energy converter, Evolutionary algorithm, viscous effect, Heaving point absorber, freely floating WEC, 
Morison equation 

 

1. Introduction 

Given current energy challenges, there is a growing 
interest in finding new sources to extract clean and 
renewable energy. Although the diversity of the renewable 
resources, solar and wind energy are widespread and have 
significant investments, moreover, a variety of technologies 
may harvest the power stored in waves such as offshore wind 
farm and tidal energy [1]. 

 
In recent years, there has been a significant development 

in wave energy converters technologies. Drew et al. [2] 
introduced the general status of wave energy and evaluated 

device types representing wave energy converter (WEC) 
technology. Falcão [3] established the development of wave 
energy utilization since 1970, and shows the recent situation 
of different wave energy systems. He pointed up that the 
development of wave energy converters is a slow and 
expensive process. Many devices have been developed or are 
under improvement such as PELAMIS [4] or SEAREV [5] 
by enhancing efficiency of systems parts such as the PTO 
system, the shape or several other parameters. The 
confrontation of various technologies, each with its strengths 
and weaknesses, and the comparison of their performances 
are useful for the current development phase of the wave 
energy recovery systems. Babarit et al. [6] made a 
comparison between eight wave energy converters with 
different working principles. Their objective was to estimate 
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the mean annual power absorption of each of the eight WEC. 
Other reviews of these technologies are presented in Refs. [7-
10]. 

Among the various existing devices, two large classes of 
WECs should be distinguished, those with ground fixations 
for which devices connecting the floating system to a 
stationary boundary area are necessary and a second class for 
which the WEC is freely floating and for which the energy 
recovery is based on a difference of motion between the parts 
of the floating body. The latter systems are generally 
articulated systems (see PELAMIS, SEAREV and 
WAVESTARS [11]). The freely floating devices are of 
particular interest insofar as they do not require expensive 
and complex fixing systems for their exploitation [12].  

In order to test the performance of freely floating 
systems compared to equivalent bottom fixed systems, the 
present study deals with the study of two systems, one of 
cylindrical shape with a bottom attachment of "point 
absorber" type and the other one, a freely floating original 
system that is composed of two articulated cylinders. To 
make this comparison, it is assumed that the two systems 
have comparable volumes given the fact that the main force 
exploited by the wave energy converters is the Archimedean 
thrust, which is proportional to the volume of the floating 
object.  

Moreover, the comparison which is carried out 
theoretically is based on a calculation model involving the 
Morison force which makes it possible to take into account 
the viscous damping effects that can become important in the 
case of the freely floating systems. In particular, in the case 
of articulated multi-body systems for which the energy 
recovery relies on the phase shift of the articulated parts 
rather than just the amplitude of the movements with respect 
to a fixed base as it is the case for the bottom-fixed systems. 

The mathematical model developed in this work is based 
on a balance of forces involving, in addition to the gravity 
and the Archimedean thrust, an additional force, the Morison 
force, representing the added mass and damping effects. 
Usually, the study of floating systems is carried out on the 
basis of a model of non-viscous non-rotational fluid flow and 
by solving the fluid motion equations by numerical methods 
for calculating the flow potential and then the forces acting 
on the floating object. It is currently the model on which 
various numerical codes such as Wamit [13] or Nemoh [14] 
are based. 

It should be noted that the mathematical models using 
the Morison equation [15] were originally developed for 
fully immersed bodies or for stationary objects subjected to 
wave action [16, 17]. However, the Morison equation has 
been used recently for the modeling of floating system 
motion as done by [18] for the modeling of floating system 
motion and by [19] to investigate a generic Oscillating Surge 
Wave Energy Converter among others. The main advantage 
of the Morison force approach, which will be used in this 
study, is to allow taking into account the viscous effects 
without using time consuming CFD codes.  

The Morison force includes two parts, the first one is an 
inertia force (𝐹!")  related to the acceleration of the body and 

associated with the added mass coefficient 𝐶!, the second 
term is the drag force (𝐹!") related to the relative velocity 
between the body and the fluid and associated to the drag 
coefficient 𝐶!. Obtaining adequate values of coefficients 𝐶! 
and 𝐶! for a wide range of WEC’s shapes and of wave 
parameters remains one of the difficulties associated with the 
use of the Morison force equation. Wolfram and Naghipour 
[20] discussed various methods used to analyze experimental 
data on the force experienced by a circular cylinder in waves 
to estimate drag and inertia coefficients for use in Morison’s 
equation. Recently, Bhinder et al. [21] in a paper on the 
potential time domain viscous model for a surging buoy, 
presented a review of works concerning Morison equation 
coefficients and mentioned that the evaluation of the 
Morison force coefficients usually involves physical 
laboratory tests but also that some researchers have shown 
that computational numerical analysis can be adopted as an 
alternative to the experimental procedure and the force 
coefficients be determined thus. This last alternative is 
adopted in the present work, using a minimization of the gap 
between the solution obtained on the basis of the Morison 
force equation and a numerical one obtained by the boundary 
element method code NEMOH for the identification of the 
appropriate values of drag coefficients and added mass.  

This paper will focus on a comparison between two 
WEC devices, one of freely floating type and the other of 
floating bottom-fixed type, with consideration of viscous 
effect. The considered freely floating WEC, a multi-body 
articulated system, consists of two cylinders connected with 
a flat plate. The connections between the parts of the WEC 
allow the rotational movements of cylinders and of the plate 
and the entire system perform translational movements. The 
bottom fixed WEC, a point absorber, consists of a unique 
cylinder of length 𝐿!" and radius 𝑅, oscillating under the 
action of sea waves and connected to the seabed through an 
extensible Power Take Off device. In both cases, the viscous 
force and the pressure acting on the immerged surfaces of the 
cylinders are modeled by Morison’s equation to which is 
added an Archimedes thrust and a gravity force. 

To realize the comparison between the two types of 
systems, the bottom fixed and the freely floating one, it has 
already been pointed out that this comparison must be 
relayed at the same volume, or else considering as a 
significant quantity for the comparison only the energy 
recovered by unit of volume; in addition, the systems should 
be considered in their optimal function, given the imposed 
wave model. For this purpose, and before realizing the 
comparisons, each system will be subject to optimization of 
his characteristics by optimization methods. In this regard, 
optimization of wave energy converters has been the subject 
of several works. Banos et al. [22] presents a review of the 
latest numerical optimization methods used for design and 
control in the field of renewables energies. In their review, 
they mentioned that the evolutionary algorithms (E.A) are 
promising tools for the optimization of floating energy 
converters. Ringwood and Butler [23] used genetic algorithm 
(G.A) to optimize point absorber device that consists of a 
vertical cylinder moving in heave motion. Many other 
authors, such as [24, 25 and 26] have used genetic algorithms 
for WEC optimization either for WEC form parameters, for 
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shape optimization or for the power take off systems. 
Following the same approach, we will use evolutionary 
algorithms to optimize each of the studied systems. 

This paper is organized as follows: the first section is 
devoted to the mathematical models of the considered 
systems. Section two examines the identification of the drag 
and added mass coefficients. The third section deals with the 
WEC’s optimization. In the fourth section, a case study 
analyzed the viscosity effect on the WEC’s. The comparison 
of sensitivity to parameters variation between the two 
floating types of WEC’s are given and discussed in the last 
part.  

2. Mathematical Modeling 

This section introduces the mathematical models for the 
bottom fixed heaving point absorber (PAWEC) and for the 
original freely floating device (FFWEC). In section 2.1, the 
mathematical modeling of the PAWEC is presented. Section 
2.2 deals with the mathematical modeling of the FFWEC. 

2.1. Bottom-fixed heaving point absorber (PAWEC). 

We consider the plane motion of a cylinder of radius 𝑅 
in a non-inertial reference frame ℛ O, 𝑥, 𝑦, 𝑧 . O is an 
arbitrary point taken at the moving free surface of the fluid 
and 𝑦 is the upward vertical. The floating cylinder is 
connected to the sea bottom by an extensible Power Take Off 
device [27] and oscillating under wave’s action. The position 
of the center O! is indicated by Cartesian coordinates x, y. 
The current paper will focus on the heave movement of the 
WEC, and the only degree of freedom to consider is the 
variable y (Fig. 1). 

 

 
Fig. 1. Schema of the PAWEC where 𝓡(𝐎,𝒙,𝒚, 𝒛) is the 
reference frame linked on a point O taken arbitrarily at the 
free surface of the fluid and 𝓡𝟏(𝐎𝟏,𝒙𝟏,𝒚𝟏, 𝒛) is the 
reference frame  associated to the cylinder. 

In the non-inertial frame ℛ(O, 𝑥, 𝑦, 𝑧), Newton's law of 
motion applied to the cylinder is written as: 

𝑚 𝑦 𝑦 = 𝑃 + 𝐹! + 𝐹! + 𝐹! −𝑚
!!!
!"!

𝑦            (1) 

where m is the cylinder mass, 𝑃 = 𝑚𝑔 is the gravity force 
and 𝑔 = −𝑔𝑦 is the gravity acceleration, 𝐹!  is the Morison 

force representing the inertia and drag forces exerted by the 
fluid on the cylinder, 𝐹! is the Archimedes thrust and 𝐹! is the 
force exerted by the recovery system on the cylinder. The 

term 𝑚 !!!
!"!

  is an inertia force related to the non-inertial 

reference frame, where 𝜂 𝑡 = 𝐴! 𝑐𝑜𝑠(𝜔𝑡) represent the 
vertical distance between a point on the free surface of the 
fluid and the average level of the fluid at rest, where 𝐴! is the 
amplitude of the wave, 𝜔 = !!

!
 is the pulsation of the wave 

and T is the wave period. 
Morison force 𝐹!  is given by the Morison equation as 

𝐹! = 𝜌!𝐶!𝑉𝑦𝑦 +
!
!
𝜌!𝐶!𝑆𝑦 𝑦 𝑦 where 𝑦 and 𝑦 are 

respectively the velocity and the acceleration of the cylinder, 
𝜌! is the fluid density, Cm is an added mass coefficient, Cd is 

defined as drag coefficient, 𝑆 = 𝑅𝐿!" 𝐴𝑟𝑐𝑐𝑜𝑠 !
!

 is the 

wetted cross-section area of the cylinder, 𝐿!" is the length of 
the cylinder, 𝑅 is the radius and V is the volume of the body. 

𝐹! is given by 𝐹! = −𝛽 𝑦 − A!ω sin(ωt) 𝑦 where 𝛽 is a 
coefficient related to the power take off device. Archimedes 
force is 𝐹! = −𝜌!V!𝑔, where V! is the immersed volume. By 
inserting the expressions of the forces in Eq. (1), one obtains 
the following differential equation:  

𝑚 + 𝜌!𝐶!𝑉! 𝑦 +𝑚𝐴!𝜔! 𝑐𝑜𝑠(𝜔𝑡) +𝑚𝑔 + 𝛽 𝑦 −

𝐴!𝜔 𝑠𝑖𝑛(𝜔𝑡) + !
!
𝜌!𝐶!𝑆𝑦 𝑦 − 𝜌!𝑔𝐿!"𝑅!

!!!!!
!!

+ 𝜃! +

!
!
𝑠𝑖𝑛 2 𝜃! +

!!
!

+ 𝑠𝑖𝑛 2 𝜃! +
!!
!

+

𝜌!𝑔𝐿!"𝑅𝑦 𝑠𝑖𝑛 𝜃! +
!!
!

+ 𝑠𝑖𝑛 𝜃! +
!!
!

= 0           (2) 

where  𝜃! = 𝑎𝑟𝑐𝑜𝑠 𝒚
!

 , 𝜂! = 𝐴! 𝑐𝑜𝑠 𝜔𝑡 + 𝑘𝑅𝑠𝑖𝑛𝜃!   and 

  𝜂! = 𝐴! 𝑐𝑜𝑠 𝜔𝑡 − 𝑘𝑅𝑠𝑖𝑛𝜃! , k is the wave number. Eq. (2) 
with initial conditions 𝑦(𝑡 = 0) and 𝑦 𝑡 = 0 , can be solved 
numerically by using 4th order Runge-Kutta method provided 
that the values of 𝐶! and 𝐶! are known. 

2.2. Freely Floating device (FFWEC) 

In a Non-inertial reference frame ℛ(O, 𝑥, 𝑦, 𝑧), we 
consider the plane motion of an articulated multi-body 
system used as wave energy converter (WEC) and oscillating 
under the action of sea waves. The original freely floating 
WEC considered consists of two cylinders, of centers O1, O2, 
lengths 𝐿!, 𝐿! and radius 𝑅!, 𝑅! respectively, connected by a 
flat plate of center G and length L. The flat plate related the 
two cylinders on O1 and B (Fig. 2). It is assumed that the 
WEC has only five degrees of freedom in the mechanical 
system which are the heave (𝑦!), the surge (𝑥!) and the pitch 
(𝛼!) for cylinder 1, the pitch (𝛼!) for cylinder 2 and the angle 
(𝛼) for the plate. Here 𝑥!, 𝑦! are the Cartesian coordinate of 
O1 in the frame ℛ(O, 𝑥, 𝑦, 𝑧), 𝛼1 (resp. α2) is the angle 
between 𝑥 and 𝑥! (resp. 𝑥!) where 𝑥! (𝑖 = 1, 2) is the axis of 
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the relative frame of reference ℛ!(𝑂! , 𝑥! , 𝑦! , 𝑧) attached to 
cylinder i and α is the angle between 𝑥 and the plate O1B. 

 

 
Fig. 2. Schema of the FFWEC where ℛ(𝑂, 𝑥, 𝑦, 𝑧) is the 
reference frame linked on a point O taken arbitrarily at the 
free surface of the fluid, ℛ!(𝑂!, 𝑥!, 𝑦!, 𝑧)) the reference 
frame associated to cylinder 1 on point 𝑂! and 
ℛ!(𝑂!, 𝑥!, 𝑦!, 𝑧)) the reference frame associated to cylinder 
2 on point 𝑂!. 

In the non-inertial frame ℛ(O, 𝑥, 𝑦, 𝑧), Newton's law of 
motion applied to each part of the system separately 
[cylinder 1, cylinder 2, plate] is expressed for cylinder i (i = 
1 for cylinder 1 and i = 2 for cylinder 2) as follows : 

𝐷! = 𝜏!" + 𝜏!" + 𝜏!" + 𝜏!"# + 𝜏!" − 𝜏!"     
(3) 

where 𝐷!  is the dynamic torsor, 𝜏!"  represents the gravity 
force torsor, 𝜏!"  is the Morison force torsor representing 
the inertia forces and viscous forces exerted by the fluid on 
the system, 𝜏!"  is the Archimedes thrust torsor, 𝜏!"#  
represents the reactions torsor at connection between the 
cylinder i and the plate, 𝜏!"  is the forces torsor for the 
power take off system of the WEC and 𝜏!"  is the inertia 
force torsor related to the non-inertial character of the 
considered reference frame. Since all the torsors are 
expressed at point Oi, then the terms of Eq. (3) are given by: 

𝐷! =

𝑚!𝑥!
𝑚!𝑦!
0
0
0

!!!!
!

!
𝛼!

, 𝜏!" =

0
−𝑚!𝑔
0
0
0
0

, 𝜏!"  =

𝐹!"#
𝐹!"#
0
0
0
0

, 

𝜏!"  =

𝐹!"#$ 
𝐹!"#$ 
0
0
0
0

, 𝜏!"#  =

𝐹!" 
𝐹!" 
0
𝐿𝑁!
𝑀!
0

 , 

 𝜏!" =

0 
0 
0
0
0

−𝛽! 𝛼! − 𝛼

, 𝜏!" =

0 
𝑚! .

!!!
!"!

  
0
0
0
0

          (4) 

 
where 𝑚! and 𝑅! are respectively the mass and the radius of 
the cylinder i, 𝑥! and 𝑦! are the two accelerations along 𝑂𝑥 
and 𝑂𝑦 axis respectively, 𝛼! is the angular acceleration of the 
cylinder i,  𝑔 represent gravity acceleration, 𝐹!"# and 𝐹!"# 
are given by Morison equation (Appendix A), 𝐹!"#$  and 
𝐹!"#$ are the two forces of Archimedes along the axis 𝑂𝑥 and 

𝑂𝑦 respectively (Appendix B), defined by −𝜌!𝑉!!𝑔, where 
𝑉!! is the immersed volume of cylinder i, 𝐹!"  and 𝐹!" the 

reaction forces at the point 𝑂! and B along the axis 𝑂𝑥 and 
𝑂𝑦 respectively, 𝐿𝑁!   and 𝑀! the reactions momentum at the 
point 𝑂! and B along the axis 𝑂𝑥 and 𝑂𝑦 respectively, 𝛽! is a 
coefficient related to the power take off device, 𝛼! is the 
angular velocity of the cylinder i and 𝛼 is angular velocity of 
the plate, 𝜂(𝑥, 𝑡) represent the vertical distance between a 
point on the free surface of the fluid and the average level of 
the fluid at rest. 

For the plate, the Newton's second law of motion has 
written: 

𝐷! = 𝜏!" − 𝜏!"! − 𝜏!"! − 𝜏!"            (5) 

where 𝐷!  is the dynamic torsor, 𝜏!"  represents the gravity 
force torsor, 𝜏!"!  represents the reactions torsor at the point 
G between the cylinder 1 and the plate, 𝜏!"!  represents the 
reactions torsor at the point G between the cylinder 2 and the 
plate and 𝜏!"  is the inertia force torsor related to the non-
inertial character of the considered reference frame. 
Where 

𝐷! =

𝑚!𝑥!
𝑚!𝑦!
0
0
0

!!!!

!"
𝛼

, 𝜏!" =

0
−𝑚!𝑔
0
0
0
0

, 𝜏!"!  =

−𝐹!! 
−𝐹!! 
0
𝐿!!
𝑀!!
0

, 

𝜏!"!  =

−𝐹!! 
−𝐹!! 
0
𝐿!!
𝑀!!
0

, 𝜏!" =

0 
𝑚!

!!!
!"!

  
0
0
0
0

                        

(6) 
 

with 𝑚! is the mass of the plate, 𝐿 is the length of the 
plate, 𝑥!  and 𝑦!  are the two accelerations along 𝑂𝑥 and 𝑂𝑦 
axis respectively, 𝛼 is the angular acceleration of the plate, 
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𝐹!!  and 𝐹!" the connection forces at the point 𝐺 relative to 

𝑂! along the axis 𝑂𝑥 and 𝑂𝑦 respectively, 𝐿!! and 𝑀!! the 
reaction moment at the point 𝐺 relative to 𝑂! along the axis 
𝑂𝑥 and 𝑂𝑦 respectively, 𝐹!!  and 𝐹!! the reaction forces at 

the point 𝐺 relative to 𝐵 along the axis 𝑂𝑥 and 𝑂𝑦  
respectively, 𝐿!!   and 𝑀!! the reaction moment at the point 𝐺 

relative to 𝐵 along the axis 𝑂𝑥 and 𝑂𝑦 respectively. 
By inserting the expressions of the torsors (4) and (6) in 

Eqs. (3) and (5), and after rearrangement, one obtains the 
following system of five coupled differential equations for 
the five degrees of freedom 𝑥!, 𝑦!, 𝛼, 𝛼! and 𝛼!: 

𝑀𝑥! −𝑚!𝐿 𝑠𝑖𝑛 𝛼 𝛼 −𝑚!𝐿 𝑐𝑜𝑠 𝛼 𝛼! +
𝑚!𝑅! 𝑐𝑜𝑠 𝛼! 𝛼! −𝑚!𝑅! 𝑠𝑖𝑛 𝛼! 𝛼!! + 𝐹!!! + 𝐹!!! −
𝐹!"!! − 𝐹!"!! = 0             (7) 

 
𝑀𝑦! +𝑚!𝐿 𝑐𝑜𝑠 𝛼 𝛼 −𝑚!𝐿 𝑠𝑖𝑛 𝛼 𝛼! +𝑚!𝑅! 𝑠𝑖𝑛 𝛼! 𝛼! +

𝑚!𝑅! 𝑐𝑜𝑠 𝛼! 𝛼!! + 𝐹!!! + 𝐹!!! − 𝐹!"!! − 𝐹!"!! +𝑀𝑔 = 0 
(8) 

𝑚!! 𝑠𝑖𝑛 𝛼 𝑥! −𝑚!! 𝑐𝑜𝑠 𝛼 𝑦! +𝑚!!!𝐿𝛼 −𝑚!𝑅! 𝑠𝑖𝑛 𝛼 −
𝛼! 𝛼! +𝑚!𝑅! 𝑐𝑜𝑠 𝛼 − 𝛼! 𝛼! − 𝐹!"!! − 𝐹!"!! 𝑠𝑖𝑛 𝛼 +
𝐹!"!! − 𝐹!"!! 𝑐𝑜𝑠 𝛼 −𝑚!! 𝑐𝑜𝑠 𝛼 𝑔 = 0           (9) 

𝛼! +
!

!!!!!
𝛽! 𝛼! − 𝛼 = 0          (10) 

 
𝑚!𝑅! 𝑐𝑜𝑠 𝛼! 𝑥! +𝑚!𝑅! 𝑠𝑖𝑛 𝛼! 𝑦! −𝑚!𝑅!𝐿 𝑠𝑖𝑛 𝛼 −

𝛼! 𝛼 −𝑚!𝑅!𝐿 𝑐𝑜𝑠 𝛼 − 𝛼! 𝛼! + !
!
𝑚!𝑅!!𝛼! + 𝛽! 𝛼! −

𝛼 − 𝑅! 𝑐𝑜𝑠 𝛼! 𝐹!"!! − 𝑅! 𝑠𝑖𝑛 𝛼! 𝐹!"!! +𝑚!𝑅! 𝑠𝑖𝑛 𝛼! 𝑔 =
0             (11) 
where  𝑚! = 𝑚! +

!!
!

 , 𝑚!! = 𝑚! −𝑚!, 𝑚!!! = 𝑚! +
!!
!

 

and M = 𝑚! +𝑚! +𝑚! is the total mass of the WEC. The 
expressions for the Morison and Archimedes forces 
components are given in Appendix A and B. Numerical 
resolution of the coupled differential Eqs. (7)-(11) with 
initial conditions can be achieved by using 4th order Runge-
Kutta method. However, this resolution requires knowledge 
of the values of added mass and drag coefficients 𝐶! and 𝐶!, 
and therefore a method of preliminary determination of these 
values must be adopted. 

3. Determination of Added Mass and Drag Coefficients  

In order to identify drag and added mass coefficients, 
various theoretical and experimental methods have been used 
[28, 29]. Yee et al. [30] used an experimental model 
composed of two vertical cylinders with different diameters 
to determine the hydrodynamics coefficients. Avila and 
Adamowski [31] used system identification methods to 
estimate drag and added mass coefficients. Recently, Jin et 
al. [32] show that the nonlinear viscosity should be carefully 
involved. An investigation into drag coefficient has been 
done using CFD and experimental data. The last square 

method has been used to compare the results obtained by 
CFD and the Morison model. 

For the present study, for the sake to identify the drag 
and the added mass coefficients for a floating cylinder, a 
numerical solution is calculated using a code based on 
Boundary Element Method (BEM) and compared with the 
solution obtained by the Morison equation model. An 
evolutionary algorithm is used to generate the optimal values 
of the required coefficients that are minimizing the gap 
between the two solutions, an overview of this method can 
be found in [33, 34]. The objective function used for the 
minimization process is the sum of the squares of the gaps 
between the two solutions   𝐸!! = 𝑦!"#$! 𝑖 −

𝑦!"#$%"& 𝑖
!
. 

The first generation used for the evolutionary algorithm 
is obtained by random drawing of the values, for the 
following generations a cross of the best solutions is operated 
by weighted linear combinations of the best solutions of the 
previous generation.  

Fig. 3 shows the sum of the squares of the gaps between 
the two solutions as a function of the number of generations. 
It can be seen in Fig. 3 that 𝐸!! is a decreasing function of 
the generation number. For the considered values of 
𝑅 = 0.10125 𝑚, 𝑚 = 11.7 𝑘𝑔, 𝐿!" = 1.1 𝑚, 𝑇 = 4 𝑠 and 
𝐴! = 0.06 𝑚 the optimal values of added mass and drag 
coefficients are found to be 𝐶! = 7.46 and 𝐶! = 0.61. 

 
Fig. 3. The sum of the squares of the gaps between the two 
solutions as a function of the number of generation. 

Fig. 4 shows a heaving motion of the PAWEC obtained 
using the NEMOH calculation code and then using a model 
based on the Morison force where 𝑅 = 0.10125 𝑚, 
𝑚 = 11.7 𝑘𝑔, 𝐿!" = 1.1 𝑚, 𝑇 = 4 𝑠, 𝐴! = 0.06 𝑚, 
𝐶! = 0.61 and 𝐶! = 7.46. It is found that the motion is 
correctly reproduced when using the Morison model, and 
that this model allows with simplified calculations to 
determine the motion of a floating object taking into account 
the main effects of added mass and damping. 
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Fig. 4. Heaving motion of the PAWEC obtained by BEM 

code Nemoh and Morison equation Model. 

4. WEC’s Parameters Optimization 

The optimization of wave energy converters has been 
discussed by many researches. Among the used methods, 
there is the evolutionary algorithm. 

In order to maximize the energy recovered by the device, 
the values of the parameters of the WEC such as cylinder 
radius and damping coefficient of the power take off device 
must be optimized in relation with the characteristics of the 
waves. In our case, an evolutionary algorithm based code, 
presented on Fig. 5, is used to optimize the system 
parameters. The first case is to optimize the PAWEC by 
determining the optimal value of the coefficient of the Power 
Take Off device. The second case is realized to find the 
optimal values of the damping coefficients of the FFWEC. 

 
Fig. 5. Evolutionary algorithm for parametric optimization. 

4.1. PAWEC Optimization 

The energy recovered by PAWEC is obtained by: 

𝐸 = 𝛽𝑦!(𝑡)!!
!!

𝑑𝑡            (12) 

where 𝑡! and 𝑡! are the times of integration. 
It is found that there is a value of the recovery coefficient 

that maximizes the recovered energy. In fact, insofar as the 
energy recovery is achieved through a friction force, it is clear 
that by increasing this friction force, the amplitude of the 

movements of the float is reduced, and that at the limit an 
excessive friction will lead to complete braking of the 
movement of the float and thus will cancel the recovery of 
energy. Therefore, there exists between the two limits of zero 
friction and excessive friction an optimal value of the friction 
which maximizes the energy recovered and this is what is 
identified in Fig. 6. This figure presents the recovered energy 
during 3.75 wave period 𝑇 by PAWEC as a function of the 
coefficient of the Power Take Off device 𝛽, where 𝑅 =
0.10125 𝑚, 𝐴! = 0.06𝑚 and 𝑇 = 4 𝑠. It shows that the 
recovered energy increase until an optimum value of 
𝐸 = 36.253 𝐽 for a coefficient of PTO device 𝛽 = 900 𝑁𝑠/
𝑚. 

 
Fig. 6. The energy recovered by PAWEC as a function of the 

PTO device coefficient β. 

4.2. PAWEC Optimization 

The energy recovered by the cylinder i is: 

𝐸! = 𝛽!(𝛼!(𝑡) − 𝛼(𝑡))!
!!
!!

𝑑𝑡          (13) 

and the energy recovered by FFWEC is the sum of the energy 
recovered by the two cylinders, such as : 

𝐸 = 𝐸! + 𝐸!            (14) 

Fig. 7 illustrates the recovered energy by FFWEC in 3.75 
periods as a function of the Power Take Off device 
coefficients 𝛽! and 𝛽!, where 𝑅! = 𝑅! = 0.0716 𝑚,  A! =
0.06m, 𝑇 = 4𝑠 and 𝐿 = 0.22584 𝑚. The optimum recovered 
energy is E=104.3 J for the coefficients of PTO device 
𝛽! = 0.2 𝑁𝑠/𝑚 and 𝛽! = 0.65 𝑁𝑠/𝑚. It should be noted that 
the energy recovered by the cylinders 1 and 2 are respectively 
E! = 53.15 J and E! = 51.15 J. For the sake to analyze the 
effect of the PTO coefficients on the recovered energy, a 
fixed value of 𝛽! was given to 20 𝑁𝑠/𝑚 in order to optimize 
𝛽! and 𝐿. It is found in this case that 𝛽! = 0.4 𝑁𝑠/𝑚 and 
𝐿 = 0.35 𝑚 are the optimum values while the recovered 
energy is 𝐸 = 69.3265 𝐽. In this situation, the energy 
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recovered by the cylinders 1 and 2 are respectively 
E! = 0.08 J and E! = 69.246 J. 

Optimization of the parameters 𝛽!, 𝛽! and 𝐿 has been 
investigated using an evolutionary algorithm method. The 
optimal recovered energy is 𝐸 = 103.8 𝐽 where the best 
values of the parameters are  β! = 0.29298 Ns/rad, 
β! = 0.66129 Ns/rad and 𝐿 = 0.22584 𝑚.  

 
Fig. 7. The recovered energy by FFWEC as a function of the 

PTO coefficients 𝛽! and 𝛽!. 

5. Viscous Effect on WEC’S 

In order to clarify the effects of viscous friction on the 
energy recovery capacities of floating systems, 
computational methods require at least the introduction of an 
unsteady boundary layer in the vicinity of the object, or a 
complete resolution by a 3D numerical calculation code that 
can become expensive in terms of calculation time. One of 
the possibilities offered by Morison's force-type model, 
which remains fairly simple, is the possibility of taking into 
account additional drag forces by varying the drag coefficient 
in the Morison force expression 

This last approach is the one that we propose to use to 
simulate, in a first approximation, viscosity effects. These 
effects, which a priori are of the "resistive" type 
corresponding to a loss of energy, may in certain cases be 
useful for the process of energy recovery by the floating 
system. 

Let us first note that in the Morison force expression 
there are two parts, a first part is the force related to the 
effects of added mass, and is proportional to the relative 
acceleration between the floating system and the fluid, and a 
second part proportional to the square of the relative speed 
and which represents both damping effects and viscous 
effects.  

The magnitude of the viscous forces is related to the 
Keulegan-carpenter number [35]. As mentioned by Laya et 
al. [36], Keulegan and Carpenter postulated that the 
harmonic fluid forces on a cylinder are, in general, functions 
of Reynolds number, Re, and a nondimensional "period" 
parameter proportional to the ratio of drag and inertia forces, 
KC, called the Keulegan-Carpenter number and defined as: 

𝐾𝐶 =
𝑈!𝑇!
𝐷

 

where 𝑈! is the sinusoidal velocity amplitude, 𝑇! is the 
sinusoidal velocity period and 𝐷 is the cylinder diameter. For 
deep water waves, the 𝐾𝐶 number can be re-written as 

𝐾𝐶 =
2 𝜋 𝐴!
𝐷

 

where 𝐴! is the amplitude of the wave. In the case of low 
damping effects, an increase in the drag coefficient even by 
100% only slightly impacts the system. On the other hand, in 
the case where damping effects  are important in front of the 
inertia effects, a variation of 𝐶! can causes more important 
modifications on the movements of the floats and thus on the 
energy recovery process. 

Fig. 8.a shows the ratio of the recovered energy (E) to a 
reference value of recovered energy calculated for 𝐶! = 0 
for the PAWEC and the FFWEC as a function of drag 
coefficient 𝐶! in two cases: case (i) the inertia force is more 
significant than the drag force where 𝜔 = 1.5 𝑟𝑎𝑑/𝑠, case 
(ii) the drag force is larger than the inertia force where 
𝜔 = 6.5 𝑟𝑎𝑑/𝑠. It should be noted that in both cases WEC’s 
parameters are set to optimum values. 

The result shows that the PAWEC’s recovered energy is 
a decreasing function of the drag coefficient 𝐶! (Fig. 8.a) and 
that the decay is more marked when the wave pulsation 
increase. This decrease remains however limited and is about 
5% when 𝐶! varies from 0 to 6. However, for the FFWEC 
the results show a less predictable situation as the drag 
coefficient increase in case (i) and in case (ii) (Fig. 8.b), this 
is probably due to the fact that the FFWEC model is more 
sensitive to a parameter’s variation. It is found that the 
viscous effects can act in both directions, in favor or against 
a recovery of energy recovery according to the range of 
values of the other coefficients. It is also important to note 
that taking account of viscous effects can lead to corrections 
of more than 50% in the calculation of the energy recovered 
by the FFWEC. 
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Fig. 8. Recovered energy by (a) PAWEC and (b) FFWEC as 

a function of drag coefficient. 

6. Comparison of Sensitivity to Parameters Variation 

The comparison between the two systems considered can 
be essentially based on the energy recovered by each of the 
systems when it is dimensioned optimally. The obtained 
results show that, in the considered cases, the freely floating 
system FFWEC can be quite efficient and recover more 
energy than the PAWEC system under specific conditions. 
However, articulated multibody systems like the FFWEC are 
very sensitive to parameter variations, and it should be 
emphasized that the theoretical design values that maximize 
the recovered energy cannot be strictly maintained in a real-
life situation, particularly in terms of wave characteristics. 
Indeed, the waves are very variables in their characteristics 
and the regularity of the expressions used to represent them 
constitute only theoretical approximations. Therefore, it is 
necessary to study the behavior of energy recovery systems 
in case of fluctuation of the values of the parameters around 
their nominal values.  

 
Fig.9. The recovered energy by FFWEC and PAWEC as 

a function of the wave amplitude. 

Fig. 9 shows the ratio between the recovered energy and 
the recovered energy in the optimum case where 𝐴! =
0.06 𝑚, 𝑅! = 𝑅! = 0.0716 𝑚 and 𝑅 = 0.1025 𝑚 by the two 
WEC’s. It is noted that in the case of PAWEC the behavior is 
stable and that a small variation of amplitude of the waves 

induces a quasi-proportional variation of the recovered 
energy. On the other hand, in the case of FFWEC, a slight 
deviation in the values of the parameters can lead to a 
significant drop in the energy recovered. Similar behavior is 
observed when the recovery coefficients are varied (Figs. 
10.a-b).  

Figs. 10.a and 10.b show the variations of the energy 
recovered by the FFWEC in the case where one of the PTO 
coefficients is varied while the other is maintained at a 
constant value. We note that the recovered energy varies by 
more than 50% when the coefficients are modified.  
 

 

 
 

Fig.10. The recovered energy by FFWEC as a function of the 
PTO coefficients 𝛽! and 𝛽! : (a) 𝛽!,!"#$%&% = 0.65 𝑁𝑠/𝑟𝑎𝑑, 

(b) 𝛽!,!"#$%&% = 0.2 𝑁𝑠/𝑟𝑎𝑑. 

7. Conclusion 

The current study present and investigate an original 
floating WEC and a heaving point absorber WEC. A 
parametric optimization has been done to improve the 
recovered energy by the two WEC’s. As a case study, it is 
found that the viscous effects can act in both directions, in 
favor or against a recovery of energy recovery according to 
the range of values of the other coefficients. It is noted that 
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the adding of viscous drag coefficient can improve the 
recovered energy by the FFWEC by 50%.  

The obtained results show that, in the considered cases, 
the freely floating system FFWEC can be quite efficient and 
recover more energy than the PAWEC system under specific 
conditions. However, articulated multibody systems like the 
FFWEC are very sensitive to parameter variations, and it 
should be emphasized that the theoretical design values that 
maximize the recovered energy cannot be strictly maintained 
in a real-life situation, particularly in terms of wave 
characteristics.  
 

Appendix A.  Morison Force 

The expression of Morison equation along the axis 𝑂𝑥 
and 𝑂𝑦 respectively written as:  

𝐹!"# = 𝜌!𝐶!𝑉!!𝑥! +
!
!
𝜌!𝐶!𝑆!𝑥! 𝑥!                             

(A.1) 
𝐹!"# = 𝜌!𝐶!𝑉!!𝑦! +

!
!
𝜌!𝐶!𝑆!𝑦! 𝑦!                                     

(A.2) 
where  𝑥!  and 𝑥! are respectively the velocity and the 
acceleration of the cylinder i along 𝑂𝑥, 𝑦!  and 𝑦! are 
respectively the velocity and the acceleration of the cylinder i 
along 𝑂𝑦, 𝜌! represent fluid density, 𝐶! represent added mass 
coefficient, 𝐶! is defined as drag coefficient,                                  

𝑆! = 𝑅!𝐿!arccos 
 !!
!!

 is the wetted cross-section area of 

cylinder perpendicular to the direction of flow, 𝐿! is the length 
of the cylinder i,  𝑉!! is the immersed volume of the cylinder i. 
 

Appendix B.  Archimedes Force 

The expression of the Archimedes force along the axis 
𝑂𝑥 is given by:  

𝐹!"!! = 𝜌!𝑔𝐿!𝑅!𝑦! sin 𝜃! +
!!
!!

+ sin 𝜃! +
!!
!!

−

!!!!!!!!

!
cos 2 𝜃! +

!!
!!

− cos 2 𝜃! +
!!
!!

   

(B.1) 
𝐹!"!! =
𝜌!𝑔𝐿!𝑅! 𝑦! + 𝐿𝑠𝑖𝑛 𝛼 − 𝑅!𝑐𝑜𝑠 𝛼! 𝑠𝑖𝑛 𝜃!! +

!!
!!

+

𝑠𝑖𝑛 𝜃!! +
!!
!!

− !!!!!!!!

!
𝑐𝑜𝑠 2 𝜃!! +

!!
!!

−

𝑐𝑜𝑠 2 𝜃!! +
!!
!!

     

    (B.2) 
 
The Archimedes force along the axis 𝑂𝑦 written as: 

𝐹!"!! = −𝜌!𝑔𝐿!𝑅!𝑦! 𝑠𝑖𝑛 𝜃! +
!!
!!

+ 𝑠𝑖𝑛 𝜃! +

!!
!!

+ 𝜌!𝑔𝐿!𝑅!! 𝜃! +
!!!!!
!!!

+ !
!
𝑠𝑖𝑛 2 𝜃! +

!!
!!

+ 𝑠𝑖𝑛 2 𝜃! +
!!
!!

                     (B.3) 

𝐹!"!! =

−𝜌!𝑔𝐿!𝑅! 𝑦! + 𝐿𝑠𝑖𝑛 𝛼 − 𝑅!𝑐𝑜𝑠 𝛼! 𝑠𝑖𝑛 𝜃!! +

!!
!!

+ 𝑠𝑖𝑛 𝜃!! +
!!
!!

+

𝜌!𝑔𝐿!𝑅!! 𝜃!! +
!!!!!
!!!

+ !
!
𝑠𝑖𝑛 2 𝜃!! +

!!
!!

+

𝑠𝑖𝑛 2 𝜃!! +
!!
!!

                                                          

(B.4) 
where 𝐿! and 𝐿! are ²² the cylinder 1 and the cylinder 2 
respectively, 𝑅! and 𝐿! are the radius of the cylinder 1 and 
the cylinder 2 respectively, 𝑔 represent gravity acceleration, 
𝜌! is the fluid density and L is the length of the plate. 
with: 

𝜃! = 𝑎𝑟𝑐𝑜𝑠 !!
!!

, 𝜃!! = 𝑎𝑟𝑐𝑜𝑠 !!!!"#$ ! !!!!"# !!
!!

, 

 𝜂! = 𝐴! cos 𝜔𝑡 − 𝑘(𝑥! − 𝑅!𝑠𝑖𝑛𝜃!) , 
 𝜂! = 𝐴! cos 𝜔𝑡 − 𝑘(𝑥! + 𝑅!𝑠𝑖𝑛𝜃!) , 
𝜂! = 𝐴! cos 𝜔𝑡 − 𝑘(𝑥! + 𝐿𝑐𝑜𝑠𝛼 + 𝑅!𝑠𝑖𝑛𝛼!  −
𝑅!𝑠𝑖𝑛𝜃!!) , 
𝜂! = 𝐴! cos 𝜔𝑡 − 𝑘(𝑥! + 𝐿𝑐𝑜𝑠𝛼 + 𝑅!𝑠𝑖𝑛𝛼!  +
𝑅!𝑠𝑖𝑛𝜃!!) ,  
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