
INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
V. Eniola et al., Vol.9, No.2, June, 2019 

	

Hour-ahead Forecasting of Photovoltaic Power 
Output based on Hidden Markov Model 

and Genetic Algorithm 
 

Victor Eniola*,**, Tawat Suriwong*‡, Chatchai Sirisamphanwong***, Kasamsuk Ungchittrakool**** 

 

* School of Renewable Energy and Smart Grid Technology, Naresuan University, Phitsanulok 65000, Thailand  

** Energy Commission of Nigeria, Abuja 900211, Nigeria 

*** Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand 

**** Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand 

 (enilav01@yahoo.com,	tawats@nu.ac.th, chatchaisi@nu.ac.th, kasamsuku@nu.ac.th) 

 

‡	Corresponding Author; Tawat Suriwong, School of Renewable Energy and Smart Grid Technology, Naresuan University, 
Phitsanulok 65000, Thailand, Tel: +66 5596 3180,  

Fax: +066 5596 3182, tawats@nu.ac.th 

 
Received: 01.04.2019 Accepted: 30.04.2019 

 
Abstract- It is well known that the variability in PV power output is primarily owing to fluctuations in radiation received by 
the solar panels. Forecasting in the short-term horizon particularly is very crucial to power quality and power schedules such as 
load drop or gain, and power dispatch planning. This study details an innovative method based on ordinary model (Hidden 
Markov Model, HMM) and HMM optimized with Genetic Algorithm (GA) for hour-ahead forecasting of the power output 
(Po) of a 1.2 kW PV system. Solar irradiance, module temperature acquired by mathematical modelling and wind speed were 
used as initial forecast data. The model testing and validation was built on the computation of normalized Root Mean Square 
Error (nRMSE). As the results, GA-optimized HMM is able to forecast Po an hour-ahead with low nRMSE than HMM under 
clear sky day (CSD) condition. However, the abnormalities of the forecasting model resulting from instantaneous fluctuations 
in solar irradiance under cloudy day (CD) condition were decreased with correction factor (ξ). It was deduced that if the 
average change in the absolute value of solar irradiance |)(| sGΔ  is more than 128% and 90% in the morning and evening times 

respectively, the GA-optimized forecasting model with or without ξ presents average nRMSE of 2.33%. Therefore, HMM+GA 
gives more accurate Po forecast for CSDs whereas HMM+GA+ξ presents the best Po for CDs, supporting the consideration of 
the proposed forecast model as a good technique for hour-ahead power output forecasting of PV system.	 

Keywords Forecasting, Photovoltaic, Power, Hidden Markov Model (HMM), Genetic Algorithm.  

 

Nomenclature                                                                                       

PV  photovoltaic 

HMM  hidden Markov model 

GA  genetic algorithm 

kW  kilowatts 

nRMSE  normalized root mean square error 

MAPE  mean absolute percentage error 

Gs  solar irradiance 

|| sGΔ   average percentage change in absolute 
value of solar irradiance 
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msG || Δ   average percentage change in absolute 
value of solar irradiance in the morning 

esG ||Δ   average percentage change in absolute 
value of solar irradiance in the evening 

ξ     correction factor 

NWP  numerical weather prediction  

ANN   artificial neural network 

ARIMA  autoregressive integrated moving 
average                                    

ELM  extreme learning machine 

SVR  support vector regression 

GRP  Gaussian process regression 

Tm  module temperature  

Tamb  ambient temperature 

w  wind speed 

Po  power output 

VA  Viterbi algorithm 

η  module efficiency 

Am  module area 

α  temperature coefficient (power) 

Prated  rated power of PV system 

Pa  actual power 

Pf  forecasted power 

n  number of time periods for power 
production 

Pact  actual power output 

PHMM  HMM power output 

Popt  optimized power output 

CSD  clear sky day 

CD  cloudy day 

PSO  particle swarm optimization 

MRE  mean relative error 

RBF  radial basis function 

FNN  feedforward neural network 

 

1. Introduction 

With respect to climate issues and global warming, 
various incentives and energy guidelines that can advance 
the penetration of renewables have been orchestrated in 
many countries [1]. It is possible to operate 100% 
renewable energy-based electric power grid in 2050 [2]. 
Among the renewable resources, solar power is one of the 
technologies that is being considered recently in view of 
its benefits such as inexhaustibility and near-zero 
pollution. In recent years, mean growth of Photovoltaic 
(PV) system is up to 30% annually [3]. PV power is a 
promising complement for the dwindling fossil fuel-based 
system [4, 5]. Alongside with the diminishing prices of PV 
modules, it is anticipated that the PV power supply to 
energy systems and the modern electric power would grow 
further. To meet the world’s energy need, PV power is a 
viable solution. However, the PV technology is confronted 
still with some difficulties particularly for high supply in 
which intermittency and discontinuity are pronounced [6]. 
Meteorological parameters influence the PV power plant 
production capacity. The variability in PV power output is 
primarily owing to fluctuations in radiation received by the 
solar panels. This inherent unpredictability of PV power at 
higher supply to the grid gives complications relating to 
conveyable generation, reserve costs, power quality and 
overall dependability of the grid [7]. As such, models with 
high forecast accuracy are essential for various forecast 
horizons related to law, scheduling, unit commitment and 
transmission [8]. Forecast horizon can be classified as 
either short-term, medium-term or long-term. With short-
term forecasting, intermittency problem associated with 
PV based power production as well as power quality issues 
can be addressed. Particularly, short-term forecasting is 

very crucial to power schedules such as load drop or gain, 
and power dispatch planning. It affords improvement in 
power system control and reliability, increases the 
penetration of PV power technology, enhances energy 
planning and management. With short-term forecasting, 
energy price can be determined beforehand. Forecast 
models are characterized into three namely: physical 
models; statistical techniques and hybrid approaches. 
Physical methods, such as Numerical Weather Prediction 
(NWP) model, explains solar energy to electrical power 
conversion. On daily basis, power production can be 
predicted with physical methods by utilizing a given day’s 
probable weather conditions. Alternatively, statistical 
approaches such as Artificial Neural Network (ANN) 
based on persistent notion or probabilistic time series 
model, for example, an Autoregressive Integrated Moving 
Average (ARIMA), classically depend on machine 
learning processes. With this method, renewable energy-
based power prediction can be implemented using 
historical training dataset which can be of any size. 
However, it requires striking a balance between training 
dataset size and model sensitivity. The larger the training 
dataset, the better the model accuracy with respect to long-
term trend study. When two or more physical and/or 
statistical methods are integrated, the resulting 
combination is referred to as a hybrid model. Such 
amalgamation has the advantage of outweighing the 
drawbacks associated with standalone approach and finally 
improves the forecast [9]. 

Hidden Markov Model (HMM) is a model in which a 
sequence of states generates a sequence of observation or 
emission, though the states sequence the model passed 
through to produce the emission is not known. The 
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attribute hidden signifies the sequence of states the model 
went through, and not to the model parameters. Even if 
these parameters are exactly known, the model is still an 
HMM. The model has determinate internal states that 
generate a set of external emissions. The changes in the 
internal states are not observable to an external examiner. 
A unique Markov property is that the present state is 
always dependent on the immediately preceding state only. 
Analysis of HMM seeks to recover the sequence of states 
from the observed data. This model hinges on the 
estimation of transition and emission probabilities. Short 
term hour-ahead prediction of PV power is very crucial to 
power quality and power schedules such as load drop or 
gain, and power dispatch planning. In the prediction of 
varying power supply, ANN has been applied severally 
with an acceptable level of success. Nevertheless, it 
requires more robust training dataset and the selection of 
HMM is informed by some other considerations such as its 
adaptability; richness in mathematical structure and ability 
to describe data more accurately with an optimal increase 
in the number of discrete states [10, 11].  

PV power output forecast has been carried out with 
several methods such as neural networks [12-14], grey 
theory [15, 16], cloud modelling [17], random forests [8], 
Support Vector Regression (SVR) [18], Gaussian Process 
Regression (GPR) [19] and  hybrid approach [20, 21]. PV 
power output has also been forecasted based on Markov 
processes [15]. Recently, efforts have been made to predict 
streamflow for water resource management [10], 
prediction of solar irradiance [22] using HMM. 
Nevertheless, there is need to improve the forecasting 
capability of the model.  

In this study, therefore, a time series mathematical 
forecasting model based on ordinary model (HMM) and 
HMM optimized with Genetic Algorithm (GA); expressed 
as HMM+GA, is proposed to predict hour-ahead power 
output of a 1.2 kW PV system. GA makes use of a 
population whose size is fixed and comprising individual 
distinct probable solutions to a given problem, which 
evolve in time. It applies the selection, recombination 
(crossover) and mutation operators to exclude the poorest 
solutions and generate new results from the selected 
current ones. To smoothen abnormalities resulting from 
abrupt changes in solar irradiance (Gs), the correction 
factor (ξ) is required to adapt the HMM and HMM+GA 
models. The key contribution of our study is the 
comparison of HMM and HMM+GA forecasting models 
in PV power prediction. The effectiveness of the 
integration of GA and model adaptation with ξ to improve 
the forecast accuracy of the model is also discussed.  

2. Methodology 

The power output (Po) of the 1.2 kW thin-film silicon 
modules installed at the School of Renewable Energy and 
Smart Grid Technology (SGtech), Naresuan University, 
Thailand, as shown in Fig.1, is forecasted based on 
historical data of Gs, ambient temperature (Tamb) and wind 
speed (w). Figure 2 presents the flowchart of the PV power 

output forecast process. First, the data is filtered to 1-hr 
time resolution followed by data refinement to compensate 
for missing or negative data points by replacing them with 
their monthly averages. In order to avoid irrational error 
value at the validation step, the dataset was preprocessed 
to eliminate zero-value data occurring at early hours and 
night times. Subsequently, the dataset is divided into two 
quotas. About 95% of the dataset is used for training while 
the remaining is used for forecasting model validation. To 
consider very short-term forecasting, Gs and module 
temperature (Tm) are the best parameters to precisely 
forecast rapid PV energy variations due to cloud cover and 
Tm significant effect on voltage which invariably affects 
the Po of the PV system [17, 23]. In the present study, the 
Tm is determined from Tamb using mathematical 
transformation as expressed in Eq. (1) [17, 24].  

 

3.4528.1028.0943.0 +−+= wGTT sambm                (1) 

 

 

 
Fig. 1. 1.2 kW PV system at SGtech, Phitsanulok, 
Thailand. 

 

Table 1. Categorization of Gs 

Gs (W/m2) State Class 

≤ 200 1 very cloudy 

≤ 400 2 cloudy 

≤ 600 3 partial cloud 

≤ 800 4 clear sky 

> 800 5 very clea sky 
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Fig. 2. Flowchart of PV power output forecast process. 

 

In estimating parameters and model training, the use 
of HMM necessitates the determination of the likelihood 
of sequence of observations, predicting the next 
observation in the sequence of observations and finding 
the most likely underlying explanation of the sequence of 
observation. The solutions to these problems require the 
forward part of the forward-backward algorithm, Viterbi 
Algorithm (VA) and the Baum-Welch algorithm [11, 25]. 
For model development, Gs is categorized into five 
different states according to the following rules; as shown 
in Table 1. The state classification corresponds to very 
cloudy, cloudy, partial cloud, clear sky and very clear sky. 
On the other hand, the observations are also grouped into 
three levels equivalent to low, moderate and high 
generations. The latent variables of the HMM are discrete 
and express to a Markov chain. Supervised training is 
implemented by equating outputs to states and inputs to 

observations. The model learned from input-output 
relationship and makes predictions based on models of 
observed data. To predict with HMM, the training data is 
sequenced and the transition matrix with other model 
parameters are estimated. After 500 number of iterations 
of the Baum-Welch algorithm was specified in training the 
model, the state transition probability distribution matrix A 
is as given: 

⎥
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With five number of discrete states, A is of the order 5 × 5. 
Element aij represents the probability distribution of 
transitioning from state i to j. Thus, 0≥ija  and ∑ =

N

ija
1

1, 

for Ni ≤≤1 . Viterbi decoding gives the highest probable 
state sequence that is employed to predict the next hour 
power output. The Po formula which the model relies upon 
for prediction is expressed in Eq. (3) [26]. 

[ ])25(1 −−= msmo TGAP αη                        (3)                                                                            

To obtain Po at time t +1, Gs and Tm at time t are initialized 
and passed unto the forecast model. The power forecasting 
has been implemented using HMM toolboxTM, as 
determined in the HMM-based Po forecasting step. 

Parameter optimization and model improvement are 
built on GA. All input parameters are initialized and the 
fitness function, expressed as the sum of square of the 
deviation between actual and fitted values, is created. To 
optimize this function using GA, a function handle is 
passed to the fitness function together with the number of 
variables in the problem. To also ensure that GA 
scrutinizes the region of relevance, preselected upper and 
lower bounds are passed as arguments following number 
of variables. When the fitness value becomes less than the 
function tolerance, the optimization process is terminated. 
Optimized parameters are adopted for the modification of 
the HMM, forming a sort of GA-optimized HMM. At the 
validation step, abnormalities observed to have resulted 
from instantaneous changes in solar irradiance are 
smoothened using ξ. If the average change in the absolute 
value of solar irradiance |)(| sGΔ is more than 128% in the 

morning, and/or if || sGΔ in the evening time exceeds 90%; 
then the adoption of ξ becomes crucial. However, GA 
optimization process is considered non-recursive in the 
case for which the adoption of ξ is necessary. The 
computation of ξ is based on interior-point algorithm. This 
algorithm requires a fitness assignment and a constraint set 
by error definition, bounds whose upper value is set at the 
corresponding actual power output (Pact) and parameter 
initialization.  

The results of the ordinary model and proposed 
optimized model are comparatively analyzed in the 
validation process, using the testing and validation dataset. 
The study utilized statistical methods involving normalized 
Root Mean Square Error (nRMSE) and Mean Absolute 
Percentage Error (MAPE), which are computed as follows:  

  ∑ −=
n

i
ifia

rated

PP
nP

nRMSE 2
,, )(11                     (4)                                                                            

∑
−

×=
n

i
ia

ifia

P
PP

n
MAPE

,

,, ||1100                         (5)                                                                                 

Both methods are measures to compare the forecasted Po 
with the Pact value. Such computations provide an insight 
into the degree of reliability of the forecast model. An 
efficient forecast model is expected to present a low value 
of nRMSE or MAPE. 

3. Results and Discussion 
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Fig. 3. Time dependence of Gs and Po correlation for a 
clear (a) and cloudy (b) sky condition. 

Figure 3 presents the Gs and Po of the 1.2 kW PV 
system correlation for clear and cloudy sky. It is well 
known that the Po increases with increasing Gs. In Fig.3a, 
it is observed that the Po and Gs profiles are symmetrically 
distributed over time due to the typical nature of the Clear 
Sky Day (CSD). The highest Po is about 83% rated power 
of the PV system (Prated) from 12:00 to 13:00. On the other 
hand, both the Po and Gs present the instantaneous change 
along the day (Fig.3b). However, regardless of the sky 
condition under consideration, Po maintains a profile 
analogous to that of Gs. This similarity is indicative of the 
strong correlation between both parameters.  

Figure 4a presents the results of Po model validation of 
09.04.2018 using ordinary model (HMM) and optimized 
model (HMM+GA). Power output forecasted with HMM 
(PHMM) is not close to the Pact, particularly between 11:00 
and 15:00. In order to improve the Po forecasting close to 
the Pact, the HMM is optimized with GA. So, the power 
output determined with GA-integrated HMM, expressed as 
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Popt, almost match with the Pact. To consider the error of 
HMM and HMM+GA (Fig.4b), the values of nRMSEopt 
are almost lower than that of nRMSEHMM. The HMM is 
observed to over-forecast the data points with an ensemble 
nRMSE of 5.36%, whereas the ensemble nRMSE of GA-
integrated HMM is reduced to 2.55%. 
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Fig. 4. Po forecast and nRMSE of models on 09.04.2018 
using HMM and HMM+GA. 

The HMM and HMM+GA Po forecast validation on 
15.04.2018, is as shown in Fig.5a. The Po output 
forecasting using HMM is higher above Pact, particularly 
between 10:00 and 15:00. The over-forecast of the HMM 
is reduced with the HMM+GA model which forecasts the 
Popt to match almost with the Pact. Error consideration 
based on nRMSE (Fig.5b) shows that nRMSEopt values are 
well below those of nRMSEHMM. The HMM gives a 
maximum nRMSE of about 9% between 10:00 and 11:00, 
whereas the optimized model presents a maximum 
nRMSE value nearly 3% at around the hours of 12:00 and 
16:00. The ensemble nRMSEHMM of 6.27% as against 
1.57% for nRMSEopt further explains the overshooting 
nature of the HMM.	
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Fig. 5. Po forecast and nRMSE of models on 15.04.2018 
using HMM and HMM+GA. 

In a much similar manner, the HMM+GA model 
predicted more accurately than PHMM for the day 
23.04.2018, as shown in Fig.6a. The power overshoot of 
the PHMM escalated at 13:00 hour, but the predictions with 
Popt is however overlapping with Pact values. The 
improvement in Po forecasting is attributable to the 
integration of GA with HMM. Considering the error of 
both forecast models, the values of nRMSEopt are lower 
than those of nRMSEHMM, according to Fig.6b. The 
nRMSEHMM corresponding to the maximum power 
overshoot is about 9%, whereas the peak of the nRMSEopt 
is lower than 4%. With Popt, ensemble nRMSE decreased 
considerably from 6.33% to 1.77%. Computational 
analysis reveals that the HMM optimized with GA is 
capable of improving the reliability of the Po forecasting 
by 4.56%. 
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Fig. 6. Po forecast and nRMSE of models on 23.04.2018 
using HMM and HMM+GA. 

Figure 7a presents the results of Po model validation of 
the day 30.04.2018 based on HMM and HMM+GA. It is 
observed that the Pact fluctuates as a result of the cloudy 
sky condition. The Popt is closer to Pact than PHMM over the 
entire day. However, PHMM and Popt do not approach Pact 

primarily due to the influence of sudden changes in Gs at 
8:00 and 17:00 hours. According to their nRMSE curve 
(Fig.7b), both nRMSEs present the highest values. 
Additionally, nRMSEopt and nRMSEHMM have the highest 
values of about 26-28% and 32-35% respectively. It 
indicates that HMM and HMM+GA models have a 
limitation for instantaneous changes in Gs. To rectify 
abnormality, correction factor (ξ) was adopted based on 
HMM+ξ and HMM+GA+ξ with the criteria outlined in the 
methodology section. The ξ plays a crucial role on Cloudy 

Day (CD) when the || sGΔ  is more than 128% in the 

morning, and/or if || sGΔ  in the evening time exceeds 90%. 

The computed values of ξ used to smoothen the data at 
8:00 and 17:00 hours were 0.40 and 0.24 respectively. 
Sequel to the use of ξ, both PHMM and Popt present more 

reasonable Po curves in Fig.8a. Considering the influence 
ξ-adapted HMM and ξ-adapted HMM+GA on the nRMSE 
(Fig.8b), it can be observed that nRMSEHMM and 
nRMSEopt in the hours of 8:00 and 17:00 reduced close to 
3% and zero respectively. The reduced peaks of nRMSEopt 
and nRMSEHMM coupled with their respective ensemble 
nRMSE values decreasing to 5.61% and 4.29% further 
strengthen the correctional strength and significance of ξ. 
To compare HMM and HMM+GA adapted with and 
without ξ (Fig.7 and Fig.8), the abnormalities and nRMSE 
are significantly reduced with the use of ξ and the values 
of nRMSE of ξ-adapted HMM and HMM+GA are less 
fluctuating than without the ξ.  
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Fig. 7. Po forecast and nRMSE of models on 30.04.2018 
using HMM and HMM+GA. 
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Fig. 8. Po forecast and nRMSE of models on 30.04.2018 
using HMM+ξ and HMM+GA+ξ. 

Figure 9a presents the result comparison of Po forecast 
models for the day 25.03.2018 using HMM+ξ and 
HMM+GA+ξ on cloudy sky condition. The computed 
value of ξ used to adapt the abnormalities occurring at 8.00 
and 9.00 is 0.33. Po forecasted with HMM+ξ presents 
overshoots noticeably around 11:00 and 14:00. In order to 
improve the Po close to the Pact, Popt was predicted based 
on HMM+GA+ξ model; which is perceived to forecast Po 
more accurately. To consider the forecast error (Fig.9b), 
the ensemble nRMSEopt values of 2.42% for the 
HMM+GA+ξ is lower than the 5.11% nRMSEHMM of the 
HMM+ξ; especially the value of HMM+GA+ξ relatively 
maintains a range around 1-4%.  
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Fig. 9. Po forecast and nRMSE of models on 25.03.2018 
using HMM+ξ and HMM+GA+ξ. 

Figure 10a presents the results of Po forecast for the 
day 26.06.2018 based on cloudy sky condition using 
HMM+ξ and HMM+GA+ξ models. The computed value 
of ξ used to fine-tune the abnormalities occurring at 8:00 is 
0.41 and those occurring from 15:00 – 17:00 are adjusted 
with ξ = 0.35. PHMM and Popt with both models present 
good agreement with Pact along the entire day. The 
improvement in power output prediction with 
HMM+GA+ξ can be perceived by considering the nRMSE 
curves shown in Fig.10b. Fortunately, the curve of 
nRMSEHMM and nRMSEopt almost exhibit similar trend 
with low ensemble nRMSE value of 1.51% for the 
HMM+ξ and 1.42% for HMM+GA+ξ. 
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Fig. 10. Po forecast and nRMSE of models 26.06.2018 using HMM+ξ and HMM+GA+ξ. 

 

Table 2. Forecast model performance from March to June 2018 

 

 

 

 

 

 

 

 

 

 

 

The model performance of the HMM and GA-
optimized HMM with or without ξ on the hour-ahead 
forecasting of Po of the PV system under different 
conditions of Gs (CSD or CD) are summarized in Table 2. 
For the days considered in the validation process, the 
reliability of the HMM and GA-integrated HMM is 
indicated by ensemble nRMSE and MAPE. It can be 
observed that both nRMSE and MAPE reduced when GA 
is integrated with HMM, corresponding to the class of day 
under CSD consideration. This reflects PV power 
forecasting with GA-integrated HMM has a higher Po 
prediction capability, as the results of the optimized 
forecast parameters. In the case of instantaneous Gs on CD 
consideration, the data analytics stipulated the decision 
support tool for the application of ξ-adapted HMM and 
HMM+GA. It was deduced that if || sGΔ is more than 
128% in the morning, ξ in the range of 0.33 - 0.41 is 
acceptable. On the other hand, if || sGΔ in the evening time 
exceeds 90%; appropriate ξ is in the range of 0.24 - 0.35. 
The use of ξ for the days in which fluctuation in Gs is 
pronounced, further improves the accuracy of forecast as 

expressed in percentage of nRMSE and MAPE. The HMM 
with or without ξ presents the average nRMSE and MAPE 
larger than HMM+GA with or without ξ. In addition, the 
average nRMSE and MAPE of HMM+GA with or without 
ξ is 2.33% and 6.27%. Therefore, the integration of GA 
and ξ into HMM are able to improve the forecasting 
accuracy of the hour-ahead Po of the PV system as a result 
of the optimized forecast parameters. 

Comparing with previous studies, Z. Zhong et al. 
presented a short-term day-ahead PV power generation 
volume based on multivariable Grey theory model 
improved with Particle Swarm Optimization (PSO); 
indicating that the model verification with PSO yields 
Mean Relative Error (MRE) decreasing from 7.14% to 
3.53%, which corresponds to about 51% reduction [16]. 
However, the technique enunciated in this study gives a 
percentage reduction in nRMSE of about 54%. W. Zhang 
et al. articulated a 10 minute-ahead PV Po forecasting 
using fuzzy clustering analysis with SVR model and 
reported an average nRMSE of 5.55% [18]. In contrast, 
our model presents an average nRMSE of 2.33%.            

Date Class Models 
nRMSE [%] MAPE [%] 

PHMM Popt PHMM Popt 

09.04.2018 CSD HMM/HMM+GA 5.36 2.55 11.17 4.94 

15.04.2018 CSD HMM/HMM+GA 6.27 1.51 13.43 3.09 

23.04.2018 CSD HMM/HMM+GA 6.33 1.77 13.40 4.20 

30.04.2018 CD HMM+ξ/HMM+GA+ξ 5.61 4.29 15.64 12.33 

25.03.2018 CD HMM+ξ/HMM+GA+ξ 5.11 2.42 12.95 8.55 

26.06.2018 CD HMM+ξ/HMM+GA+ξ 1.51 1.42 4.63 4.52 

Average   5.03 2.33 11.87 6.27 
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A. Lahouar et al. proposed a short-term day-ahead PV Po 
forecast based on random forests using bagging algorithm 
with and without former information on the solar 
irradiance, and the authors reported a MAPE of 28.97% in 
the month of April [8]. A multivariate ensemble 
framework for seasonal one day and week-ahead PV Po 
forecast using Autoregressive predicator, Particle Swarm 
Optimized-Radial Basis Function (PSO-RBF) network 
predicator and Particle Swarm Optimized-Feed-forward 
Neural Network (PSO-FNN) predictor presented an 
nRMSE of 9.55% for CSD and 9.51% for CD in the spring 
season [27]. With the model proposed in this study, the 
maximum MAPE in the month of April is 12.33% and the 
maximum nRMSEs are 6.33% and 5.61% for CSD and 
CD, respectively.   

In the present study, therefore, GA-optimized HMM 
with or without ξ has been considered a good model for 
the hour-ahead Po forecasting of the PV system.  This 
model can be deployed by power system owners and grid 
operators, offering them some benefits including power 
quality, load drop or gain, reduced reserve costs, pricing-
ahead of energy, better energy planning and management. 
In practical application, this forecast model can be suitably 
applied in locations or area whose weather pattern is 
similar to Thailand’s. However, in case the nature of 
meteorological parameters follows a different pattern, the 
model retraining may be required using at least 6 months 
of historical data from the PV power plant.  

4.  Conclusion 

In this study, the hour-ahead Po forecasting of the PV 
system based on ordinary model (HMM) and optimized 
model (HMM+GA) together with or without correction 
factor (ξ) has been proposed. On the class of the day under 
CSD consideration, HMM+GA is able to predict the Po 
with high forecasting accuracy. In a typical CD 
consideration, ξ is required to adapt HMM+GA when 

%128|| ≥Δ sG in the morning and/or %90|| ≥Δ sG in the 
evening time. The proposed optimized model presents 
higher accuracy than the ordinary model in all the days 
considered. With its average nRMSE and MAPE 
computed to be 2.33% and 6.27% respectively, GA-
optimized HMM with or without ξ has been considered a 
good approach to hour-ahead forecasting of PV power 
output.  
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