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Abstract- This paper introduces a Hybrid Particle Swarm Optimization with Sine Cosine Acceleration Coefficients (H-PSO-
SCAC) for solving the Unit Commitment (UC) problem of grid connected Microgrid (MG). The optimal set point of MG’s 
generation units is determined for a Day Ahead (DA) power market to supply the required demand. The studied MG consists 
of one Wind Turbine (WT) generator, one Photovoltaic (PV) panel and three Diesel Generators (DGs). The new algorithm is 
employed to minimize the fuel cost of DGs and the transaction costs of transferable power trade whilst taking into 
consideration load balance constraint and MG’s generation units constraints. The performance of the new H-PSO-SCAC is 
examined by comparing with Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). The effectiveness of these 
methods is analyzed by using different criteria of the objective function. MATLAB environment is used to code H-PSO-
SCAC, PSO, GA, and the system under study. The simulation results prove the robustness of the proposed method and 
approve its potential to get closer to the global optimum solution. 

Keywords Hybrid particle swarm optimization with sine cosine acceleration coefficients, energy management system, unit 
commitment, microgrid, renewable energy. 

 

1. Introduction 

A Microgrid (MG) might be simply defined as : ‘’a 
distribution network that incorporates a variety of possible 
distributed energy resource that can be optimized and 
aggregated into single system that can balance loads and 
generation with or without energy storage and is capable of 
islanding whether connected or not connected to a traditional 
utility power grid.” [1]. Therefore, a MG is an electrical 
network having local generation sources, located in the 
downstream of the grid through a point of common coupling. 
A MG can operate in two modes, Grid-Connected (GC) 
mode means that a MG is linked to the distribution grid, and 
can participate in the energy market by exchanging energy 

with the utility as buyer or seller. However, in Standalone 
(SA) mode, a MG operates as an autonomous component, 
which is disconnected from the grid, for different causes like 
brownout, geography position or economic issues.  

An Energy Management System (EMS) has been 
defined as « a collection of control strategies and operational 
practices, together with the hardware and software to 
accomplish the objectives of energy management» [2]. 
Therefore, an EMS can optimally allocate the power output 
of the generating units, economically supply the Load 
Demand (LD), properly regulate the voltage and frequency 
of the MG systems, and automatically provide a smooth 
transition between GC operation mode and SA mode, 
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according to real-time operating conditions and MG 
components. Boqtob et al. [3] have given a state of the art of 
MG-EMS based on recent works, discussing the used MG 
generation units and storage devices, the integration of 
electric vehicles and combined heat and power systems, and 
the Objective Functions (OFs) and constraints of MG-EMS 
as well as the applied optimization algorithms. 

Unit Commitment (UC) is an important optimization 
problem applied in electric power systems. The UC is one of 
EMS solution based on Day Ahead (DA) scheduling of 24-h 
energy production and LD forecasting which aims to find the 
most cost-effective dispatch of production units while taking 
in consideration the satisfaction of LD and several equality 
and inequality constraints [4]. 

Given the attention of the UC problem, several studies 
have been made to resolve it using different techniques, 
deterministic and probabilistic.  

Deterministic Methods (DMs) take advantage of the 
problem’s analytical characteristics to make converge a set of 
points to the global optimal solution [5]. In literature, DMs 
are used to resolve a MG optimization problems by linear 
programming [6,7], mixed integer programming [8], mixed 
integer linear programming [9,10], and Non-Linear 
Programming (NLP) [11].  DMs are used for smooth and 
continuous OFs. Therefore, the Fuel Costs (FCs) make the 
UC problem discontinuous, this is a complication that DMs 
find difficult to deal with.  

Probabilistic and Metaheuristic Methods (MMs) are 
widely used by dint of their ability to deal easily with these 
difficulties in the UC problem. MMs have stochastic 
elements in the data and the resultant solution is dependent 
on the set of random generated variables [12]. 

Swarm Intelligence (SI) techniques are one of MMs 
known also as nature-inspired methods inspired by the 
behaviour of agents like that of ant colonies, animal herding, 
bird flocking, bacterial growth, microbial intelligence, and 
fish schooling. In these methods, the agents belonging to the 
population interact locally with each other and their 
environment to attain the optimal solution. 

Several SI algorithms have been studied and applied to 
resolve the MG optimization concepts, such as a Particle 
Swarm Optimization (PSO) [13], Genetic Algorithm (GA) 
[14, 15], Bat Algorithm (BA) [16], Cuckoo Search 
Algorithm (CSA) [17], Artificial Bee Colony Algorithm 
(ABC) [18], Whale Optimization Algorithm (WOA) [19] and 
Ant Lion Algorithm (ALA) [20]. 

Most of these algorithms have the drawback of 
premature convergence during the iteration process and so 
falling in a local optimal solution without the capacity to 
explore more areas of the search space. To circumvent this 
problem, improved SI algorithms have been proposed to 
resolve the UC problem and determine the optimal EMS of 
MG. To develop the performance of Fireworks Algorithm 
(FA), Wang et al. [21] have proposed a hybrid multi-
objective based FA and Gravitational Search Operator (GSO) 
to resolve the multi-variable NLP problem subjected to 
multiple constraints. The proposed method used GSO to 

direct the sparks into the clustered region for exchanging 
location information with Pareto- optimal solutions at each 
generation process to reach the best results.  

Advanced MMs have used chaotic sequences instead of 
random numbers to enhance their performance. Adarsh et al. 
[22] have applied the chaotic BA to optimize the economic 
dispatch of the used system. The proposed method 
incorporated chaotic sequences based sinusoidal sequence in 
the basic BA to improve its performance for reaching the 
global optimal result. Marzband et al. [23] have proposed a 
new Multi-Layer Ant Colony Optimization (MACO) for real 
time introduction of MG-EMS in SA mode. The MACO is 
developed from the basic ACO equalling the number of 
layers to the number of design variables and the number of 
nodes in each particular layer to the number of allowable 
values of each variable. Roy et al. [24] have proposed an 
Improved Artificial Bee Colony algorithm (IABC) to 
optimize a hybrid MG in GC operation mode. The author has 
improved the basic ABC by using the GSO to generate the 
scout bee and to upgrade searching accuracy, and hence 
improving the global optimal solution of the optimization 
problem. Naghdi et al. [25] have used Improved Bee 
Algorithm (IBA) to optimize the penetration level of 
Renewable Generators (RGs) in distribution networks. IBA 
differs from the ABC by the introduction of the elite bee 
location in the patch size of the next iteration, to increase the 
search accuracy in high dimensional problems and accelerate 
the IBA convergence. 

In this paper, a new hybrid algorithm based on PSO is 
tested. Given that, the PSO is one of the most popular SI 
methods that has been widely applied to resolve complex 
optimization problems due to its implementation simplicity, 
fast convergence and high efficiency. Although, PSO is 
trapped easily in local optimum position due to its premature 
convergence. Therefore, the PSO finds difficult to balance 
exploration and exploitation. 

To overcome these disadvantages, this paper presents the 
application of a new SI algorithm known as Hybrid PSO 
with Sine Cosine Acceleration Coefficients (H-PSO-SCAC) 
to the UC problem. A DA scheduling of a rural GC-MG has 
been resolved by the H-PSO-SCAC, and compared with 
other MMs to demonstrate its performance. The studied MG 
includes one Wind Turbine (WT), one Photovoltaic (PV) and 
three Diesel Generators (DGs). The H-PSO-SCAC has the 
ability to avoid premature convergence and shows promising 
results.  

The rest of the paper is organized as follows. Section 2 
describes UC problem formulation, Section 3 introduces the 
background of the PSO, Section 4 introduces the H-PSO-
SCAC and Section 5 presents the methodology and 
simulation results, and Section 6 concludes the paper and 
gives an overview of the next work.     

2. Unit Commitment Problem Formulation 

In this paper, the MG consists of a hybrid energy system 
with PV panels, WT and DGs. 
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2.1.  Photovoltaic Generator  

All illustrations must be supplied at the correct 
resolution: 

In a simple model, the hourly energy output of PV 
panels can be determined by Eq.(1) [26]: 

                              PV PV PV PVE I A η=                                    (1) 

Where PVI is the hourly solar irradiation incident on the 
PV panels, PVA is the PV panels area and PVη  is the PV 
panels efficiency. 

2.2. Wind Turbine Generator  

The hourly energy output of WT is mainly depended on 
the Wind Speed (WS) at the hub height, and can be 
mathematically described by Eq.(2) [26]: 

                       30.5WT WT air PE C AVη ρ=                         (2) 

Where WTη  is the WT’s efficiency, airρ  is the air 
density, PC  is the power coefficient of WT, A  is swept area 
of WT rotor, V is The hourly WS at hub height, and it is 
modelled by Eq.(3) [27]: 

                            ( )hub
ref

ref

h
V V

h
α= ×                                (3) 

Where refV  is the hourly WS measured at the reference 
height refh , hubh is the hub height and α  is the power law 

exponent 1 1,
7 4

α ⎡ ⎤∈ ⎢ ⎥⎣ ⎦
. 

2.3. Main Grid  

The MG is assumed to operate in GC mode and a trading 
scheme is allowed between the MG and the grid. Therefore, 
the power can be sold or transferred to the MG from the grid 
and vice versa. The grid is used to cater the shortage of the 
RGs. If the MG generation units cannot satisfy the LD, then 
the MG has to purchase the power from the grid. Moreover, 
if the MG generation units exceed the LD, then the MG can 
sell the excess power to the grid. 

2.4. Objective Function   

From the selected MG energy sources, the production of 
PV and WT depend on the environmental conditions and 
generate energy with free cost. Therefore, the OF in this 
paper is minimizing the FC of DGs and the transaction costs 
of transferable power trade, and is described by Eq.(4) [28]: 

         
1 1 1

min ( ( )) ( ( ))
T T n

g g i i
t t i
C P t C P t

= = =

+∑ ∑∑                       (4) 

Where T  is the horizon time, n  is the total number of 
DGs, ( ( ))g gC P t  is the transaction cost to trade transferable 
power ( )gP t  at t time and ( ( ))i iC P t  is the FC of DG(i). 

The transaction cost to trade transferable power can be 
modelled by Eq.(5):        

              
( ) ( ) 0

( ( )) 0 ( ) 0
( ) ( ) 0

g g g

g g g

g g g

P t P t
C P t P t

P t P t

γ

γ

⎧ ×
⎪

= =⎨
⎪− ×⎩

                  (5) 

Where gγ  is the price to purchase power between the 
MG and the grid. 

The fuel cost of DG can be modelled by a quadratic 
function of generator power output and is described by 
Eq.(6) [28]: 

                    2( ( )) ( ) ( )i i i i i iC P t a P t b P t= +                       (6) 

Where ia  and ib  are cost coefficients of DG(i), ( )iP t  is 
the power output of DG(i) at t time. 

2.5. Problem Constraints  

2.5.1. Power Flow Balance 

The power generated from MG generation units should 
be equal to LD at time t as in Eq.(7): 

             
1

( ) ( ) ( ) ( ) ( )
n

i w PV g load
i
P t P t P t P t P t

=

+ + + =∑                (7) 

Where ( )iP t  is the power output of DG(i) at t time, ( )wP t  
is the power generated by WT at time t, ( )PVP t  is the power 
generated by PV at time t, ( )gP t  is the transferable power 
between the MG and the grid at time t, and ( )loadP t  is the 
power of LD at time t. 

2.5.2. Renewable Generation Limits  

The power generated by PV and WT at time t should be 
maintained within the minimum and maximum power limits 
as in Eq.(8) and Eq.(9) [29]: 

                    ,min ,max( )PV PV PVP P t P≤ ≤                            (8) 

                   ,min ,max( )W W WP P t P≤ ≤                            (9) 

Where ,minPVP  and ,maxPVP  are the minimum and 
maximum power limits generated by PV panels, respectively. 

,minWP  and ,maxWP  are the minimum and maximum power 
limits generated by WT, respectively. 

2.5.3.  Diesel Generator Limits  

The power generated by DG in period t should be 
maintained within minimum and maximum power limits as 
in Eq.(10) [28]: 

                      ,min ,max( )i i iP P t P≤ ≤                                (10) 

Where ,miniP  and ,maxiP are the minimum and maximum 
power limits generated by DG(i), respectively.  
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The power generated by DG is also limited by the 
physical constraints of starting up and shutting down, which 
are represented by ramp rate limits, and modelled by Eq.(11) 
[28]: 

              ( 1) ( )i i i iDR P t P t UR− ≤ + − ≤                         (11) 

Where iDR  and iUR  are the down-ramp and the up 
ramp limits of the DG(i), respectively. 

3. The Backgrounds Of Particle Swarm Optimization 
Algorithm 

The Particle Swarm Optimization (PSO) is nature 
inspired intelligence algorithm originally proposed by 
Kennedy and Eberhart in 1995 [30], inspired by social 
behaviour of the particles in schools of fishes or flocks of 
birds. A group of individuals are initially searching food in 
the search space in a random manner, and then look to follow 
the particle that is nearest to the food. In the PSO, each 
particle has a fitness value that is computed by the fitness 
function to be optimized, and has a velocity that direct the 
move of the particle. Based on the social behaviour of the 
particle described above, the PSO updates the particle 
position and velocity in every iteration as described by 
Eq.(12) and Eq.(13) [31] : 

1 1

2 2

( 1) ( ) ( ( ) ( ))

( ( ) ( ))

i i i i

i

V t w V t C r pbest t X t
C r gbest t X t

+ = × + × × −

+ × × −
       (12) 

                ( 1) ( ) ( 1)i i iX t X t V t+ = + +                         (13) 

                                 

Where w  is the inertia weight, [ ]1 2, 0,1r r ∈  are two 
uniform distributed numbers, 1 2 2C C= =  are the 
acceleration parameters, gbest  is the global best position 

discovered by the full population, and ipbest  is the personal 
best position of the particle(i). 

The PSO updates the pbest and gbest as in Eq.(14) and 
Eq.(15) : 

     ( ) ( )i ipbest t X t=  if ( ( )) ( ( 1))i if X t f pbest t≥ −          (14)  

( ) ( )igbest t pbest t=  if ( ( )) ( ( 1))if pbest t f gbest t≥ −      
(15) 

4. The Hybrid PSO With Sine Cosine Acceleration 
Coefficients  

In PSO process, acceleration parameters 1C  and 2C  are 
also called the cognitive and the social components, 
respectively. These parameters modify the particle velocity. 
Therefore, they are responsible for obtaining an accurate 
optimal solution. 

For an efficient evolutionary algorithm, it is desired that 
the particles wander through the whole search space. 
Therefore, during the early stage of the algorithm process, 
the global search ability should be improved in the search 
space. Otherwise, during the latter stage of the algorithm 

process, the ability to converge towards global optima should 
be enhanced throughout the search space. 

To balance the global search of early stage and the 
global convergence of latter stage, the use of sine cosine 
acceleration coefficients into the PSO is proposed [32]. The 
sine map of acceleration coefficients can improve the 
population diversity into the search process and enhance the 
convergence ability to the global optimal. The proposed 
method is H-PSO-SCAC. In this paper, the H-PSO-SCAC is 
used to resolve the proposed UC problem. The flowchart of 
the proposed H-PSO-SCAC algorithm for the UC problem is 
shown in Fig.1. 

 
Fig. 1. Flowchart of H-PSO-SCAC algorithm. 
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5. Methodology And Simulation Results 

5.1. Methodology 

To validate the effectiveness of the H-PSO-SCAC to 
resolve a UC problem, a rural GC-MG is used with one WT, 
one PV solar and three DGs. Therefore, the decision 
variables are ( )wP t , ( )PVP t , ( )gP t  and ( )iP t . A DA is 
considered as a scheduling interval. Fig.2 shows the hourly 
LD. The LD has been ranged between 1 and 24 kW. The 
mean LD is 5 kW during the day. The LD required a higher 
power between 18h and 22h with a peak of 24 kW. 

 Fig.3 depicts the PV solar output power based on the 
solar radiation data for a site in Taza, Morocco (latitude 
34,211°N) [33]. The PV solar has a maximum output power 
of 5 kW under the selected daily environmental conditions. 
The PV panel produces energy between 6h and 18h.  Fig.4 
gives the WT output power based on the WS data of Taza at 
510 altitudes above sea level [33]. The WT has a maximum 
output power of 4,7kW. The WT generates energy between 
10h and 18h. Values of the three DGs parameters are adapted 
from [28], including FC coefficients, power output limits and 
ramp rate limits, as shown in Table 1. 

The UC problem optimization is carried out also by the 
GA and PSO for comparing the performance with that of the 
proposed H-PSO-SCAC. The number of particles (solutions) 
for all algorithms is assumed to be 50 and the maximum 
number of iterations is 100. A personal computer is used 
with a 2.59 GHz processor and 8 GB RAM, running on 
Windows 10, and the program is implemented into Matlab. 
The effectiveness of these methods is analyzed by using the 
Standard Deviation (SD), the Best Cost (BC), the max cost, 
and the Mean Cost (MC) of the OF [22], and the Cost 
Accuracy Percentage (CAP) [24], which can be calculated 
using Eq.(16): 

                   ( ) *100BC WCCAP
BC
−

=                           (16) 

Where BC  and WC  are the best cost and worst cost 
respectively. 

Fig. 2. Hourly load demand of a rural MG during a DA 

time. 

Fig. 3. Hourly PV output power during a DA time. 

Fig. 4. Hourly WT output power during a DA time. 

 

Table 1. Diesel generators parameters 

DGi ai bi Pmin Pmax DRi URi 
1 0.06 0.5 0 kW 4 kW 3 kW 3 kW 
2 0.03 0.25 0 kW 6 kW 5 kW 5 kW 
3 0.04 0.3 0 kW 9 kW 8 kW 8 kW 
 

5.2. Results And Discussion 

Fig.5 illustrates the comparison of the BC fitness 
function convergence attained from different algorithms 
against iterations. For the GA, the optimization process has 
required a large number of iterations to converge to a local 
optimum position, more than 40 trial runs. Based on the 
zoom screenshot in Fig.5, it clearly shows that the PSO is 
trapped easily in a local optimum position after 8 trial runs 
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where the H-PSO-SCAC escape the local optimum solution 
and continue to search for the gbest solution. The proposed  
H-PSO-SCAC can get closer to the global optimum after 22 

trial runs. The graph proves the ability of the proposed H-
PSO-SCAC to avoid premature convergence and to enhance 
search accuracy. 

Fig. 5. The best cost fitness function convergence using 
different algorithms. 

 

The optimization criteria of the UC problem using 
different techniques are described in Table 2. It can be 
concluded from the SD values that the PSO and the H-PSO-
SCAC have both a larger population diversity that justify the 
capacity to explore more areas of the search space and then 
to yield better performance. The proposed H-PSO-SCAC is 
more cost effective, it provides the lowest BC, the lowest 
MC and WC in comparison with the GA and the PSO. From 
the CAP values, the results prove the effectiveness and 
accuracy of the H-PSO-SCAC to obtain the best solution in 
comparison with the PSO and GA. 

Table 3 details the optimal power generated by the three 
DGs obtained by the H-PSO-SCAC.  As the DGs are the 
main power source, it can be seen from Table 3 that the three 
DGs produce the energy all day long, with high production 
between 19h and 22h, and low value at the morning.  

 Table 4 gives the optimal power transferable between 
the MG and the grid ( )gP t resulting from the H-PSO-SCAC. 
It can be observed that the power is often sold to the grid 
between 1h and 16h with a high value at the 11h; however, 

the power is purchased from the grid between 17h and 24h 
with a high at the 19h and 20h. 

Moreover, Table 5 shows the optimal power generated 
by RGs ( )WP t  and ( )PVP t obtained by H-PSO-SCAC. The 
RGs energy production can support the DGs production 
especially between 8h and 15h by PV generator and between 
11h and 18h by the WT generator.   

Fig.6 represents the plotting of the optimal power 
generated by MG units as in Table 3, Table 4 and Table 5. It 
can be shown that the LD is mainly supplied by the three 
DGs, and the RGs are used as auxiliary sources. When the 
PV and WT generators start producing energy, DGs 2 and 3 
reduce their production. As observed from Fig.6, ( )gP t  can 
be positive or negative. ( )gP t  is positive means that the MG 
buy the power from the grid whilst if ( )gP t  is negative, the 
MG sell power to the grid. Therefore, the LD requires more 
power between 18h and 22h, when there is no renewable 
production. However, the DGs production cannot satisfy the 
LD, in this period the MG purchase the power from the grid 
to fill the need and support the DGs to satisfy the LD. 
Throughout the day between 1h and 16h, as it is a benefit to 
the MG, MG units can produce more power than LD, and the 

excess power can be sold to the grid.  

Fig. 6. The resulted UC solution of MG generation units. 
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Table 2. Performance comparison based on the mg total cost ($/day) calculated by different techniques for 100 trial runs 

Algorithms BC MC WC CAP(%) SD 

GA 9.4972e+07 9.4999e+07 1.2367e+09 1,20E+03 7247.6 

PSO 1.4501e+06 4.2121e+07 1.1625e+09 8,01E+04 4.8063e+07 
H-PSO-SCAC 63.4000 5.7513e+06 9.3246e+08 1,47E+09 1.3281e+07 

 

Table 3. Optimal power generated by diesel generators ( )iP t by H-PSO-SCAC 

Time(h) P1 (kW) P2 (kW) P3 (kW) 
1 1,494695 0 1,362238 
2 0,235273 2,135784 0,358993 
3 0,12601 0,072348 0,910185 
4 0,449523 0 1,207137 
5 0,077147 2,444488 0,422936 
6 2,966414 0,126718 1,981885 
7 0,146752 0,603788 1,436219 
8 0,286075 2,929532 0,440133 
9 1,324898 1,770919 0,370595 

10 1,875473 0,394907 0,649399 
11 0,027281 4,008629 1,415716 
12 0,087985 1,632865 1,25752 
13 1,012369 2,606259 1,642515 
14 0 0 1,416264 
15 0,918105 0,074961 0,016211 
16 0,611933 1,728849 0,32446 
17 1,043591 0,025329 0,350446 
18 0,090329 1,831834 0,354864 
19 0,94948 1,8715 7,066197 
20 3,256274 6 8,705664 
21 1,461655 5,80957 6,451036 
22 0,819013 2,230569 2,005586 
23 0 4,853661 0,259287 
24 2,730402 1,33694 0,176568 

 

Table 4. Optimal power transferable between the MG and the grid ( )gP t by H-PSO-SCAC 

Time(h) Pg (kW) Time(h) Pg (kW) 
1 -1,66846 13 -1,3434 
2 -1,31074 14 0,662547 
3 0,718666 15 -2,48825 
4 0,193574 16 -0,5643 
5 -1,09306 17 0,093667 
6 -0,70309 18 0,84073 
7 0,01308 19 3,649455 
8 -2,11118 20 3,995784 
9 -1,83379 21 1,958866 

10 -1,15921 22 2,111386 
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11 -3,10698 23 1,2857 
12 -0,78343 24 0,120165 

 

Table 5. Optimal power generated by renewable generators 
( )WP t  and ( )PVP t by H-PSO-SCAC 

Time(h) PW (kW) PPV (kW) 
1 0,036529 0 
2 0,015689 0 
3 0,027791 0 
4 0,004765 0 
5 0,003487 0 
6 0,003075 0 
7 0,011079 0,064082 
8 0,047534 0,262902 
9 0,059176 0,285703 

10 0,010562 0,328865 
11 0,343127 1,442226 
12 2,224416 1,040645 
13 2,021089 0,291171 
14 1,695745 2,455444 
15 3,471375 1,084559 
16 1,246637 0,575387 
17 0,80586 0,025691 
18 0,212439 0,064404 
19 0,067469 0 
20 0,046378 0 
21 0,022953 0 
22 0,137547 0 
23 0,076352 0 
24 0,010925 0 

 

6. Conclusion And Future Work 

This paper has described H-PSO-SCAC to resolve UC 
problem of GC-MG. The proposed H-PSO-SCAC provided 
an optimal strategy for supplying the required LD in a GC-
MG based on a hybrid energy system, including one WT 
generator, one PV and three DGs. The energy management 
focused on minimizing the FC of DGs and the transaction 
costs of transferable power trade for DA scheduling. The 
demand has been mainly supplied by the three DGs, and the 
RGs have been used as auxiliary sources. A trading scheme 
is allowed between the MG and the grid. The grid is used to 
cater the shortage of the RGs. The performance of the 
proposed H-PSO-SCAC is examined by comparing with 
PSO and GA. The effectiveness of these methods is 
demonstrated by using the SD, the BC, the max cost, and the 
MC of the OF, and the CAP. The simulation results have 
shown that the proposed H-PSO-SCAC is more robust than 
the PSO and GA. The H-PSO-SCAC has better performance 
with higher convergence accuracy, it has a larger population 
diversity that helps to yield better performance. The H-PSO-
SCAC can be seen as a very efficient optimization algorithm, 

with the advantages of its efficiency, accuracy and reliability 
in searching. 

As regards the environmental problem, future work aims 
to reduce the fuel consumption by saving the power excess 
generated by RGs. The use of storage devices becomes 
necessary to decrease the fuel dependence by charging the 
power at lower user demand with high renewable production, 
and then discharging the saved power at peak LD. The use of 
other RGs will be discussed in future work to maximize the 
clean energy contribution. 
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