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Abstract- A study on the possibility of energy self-sufficiency was conducted on Chuja Island, South Korea. The one-year wind 
data from 40 m to 80 m above ground level were collected from the Light Detection and Ranging (LiDAR) device. Fundamental 
characteristics of the wind data were analysed in detail. Then, the Measure-Correlate-Predict (MCP) technique was carried out 
to adjust the one-year wind data to long-term wind climate on the island using a nearby 25-year reanalysis wind data set. The 
power curves of three commercial wind turbines were applied to calculate the Annual Energy Productions (AEPs) for 25 years. 
Finally, an economic feasibility analysis was performed and then the possibility of energy self-sufficiency was assessed on the 
basis of actual electricity consumption of the island. As a result, the estimated annual Capacity Factors (CFs) were about 40 % 
to 50 %, which is similar to those of generic offshore wind farms. Also, the Internal Rate of Return (IRR) and Benefit-Cost Ratio 
(BCR) were 13.63 % and 1.77, respectively. The possibility of energy self-sufficiency on Chuja Island is revealed in this paper. 

Keywords Wind energy; Wind data; Light Detection and Ranging (LiDAR) system; Economic feasibility analysis; Energy self-
sufficiency. 

 

1. Introduction 

Wind energy is normally considered one of the leading 
renewable energies. The market of wind energy has been 
growing and improving. The Capital Expenditure (CapEx), 
Capacity Factor (CF), and Levelized Cost of Energy (LCOE) 
of onshore wind energy were improved to $1,477/kW, 29 %, 
and $0.06/kWh, respectively, on world average in 2017 [1]. 
Also, worldwide offshore wind power capacity has risen from 
1,442 MW in 2008 to 19,275 MW in 2017, an annual growth 
rate of about 33 % [2]. 

With an increase of on and offshore wind power plants, 
installing many meteorological masts is inevitable prior to the 
construction of the plants for wind resource measurement and 
after the construction for power performance measurement. 
However, it is generally very expensive and time-consuming 
to install tall met masts, which is the reason a Remote Sensing 
Device (RSD) such as Light Detection and Ranging (LiDAR) 
or Sonic Detection and Ranging (SoDAR) systems has been 
obtaining popularity [3,4]. That is, an RSD has the advantages 

of being highly portable and having a wider measurement 
range from 30 m to 200 m above ground level (a.g.l.). An RSD 
can be used to test wind turbine power performance more 
accurately by applying a rotor equivalent wind speed in 
compliance with International Electrotechnical Commission 
(IEC) 61400-12-1 ed.2 [5]. The LiDAR system has been 
applied in the wind industry more than the SoDAR system 
since the price of the LiDAR system has been decreasing with 
enhancement of its performance. 

There have been many studies using the LiDAR system 
for wind energy application. The verification of LiDAR wind 
data measured on simple and complex terrain was carried out 
by Kim et al. [6], while it was performed under offshore 
circumstances [7]. Furthermore, the LiDAR systems were also 
utilized for checking wind turbine yaw misalignment [8]. The 
LiDAR systems have been employed for capturing wind shear 
up to 300 m a.g.l. [9] and the speedup effect on a hill [10]. As 
LiDAR measurements have been establishing reliability, these 
were used for the economic feasibility study [11] as well as 
the analysis of wind characteristics [12]. 
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Wind analysts may be able to use LiDAR measurements 
instead of met mast measurements collected on small islands 
for determining the possibility of energy self-sufficiency 
because it is generally more difficult to transport, install, 
operate, and maintain met masts on small islands compared 
with inland locations. 

This study aims to analyze the feasibility of energy self-
sufficiency on Chuja Island, Korea, using LiDAR 
measurement data. The ground-based LiDAR system was 
deployed at a site on the island to measure wind condition 
from 40 m to 80 m a.g.l. and the measurement campaign was 
performed for one year. After collecting and filtering the data, 
the wind characteristics were analyzed in detail. Then, the 
Measure-Correlate-Predict (MCP) method was applied with 
the one-year LiDAR measurements to adjust the long-term 
wind climate. Finally, the financial performance was 
estimated using three types of wind turbines operating at the 
site in order to determine the possibility of energy self-
sufficiency. 

2. Test Setup 

Fig. 1 shows the location of the LiDAR device on Chuja 
Island, Korea. Chuja Island is situated between the southern 
coast of the Korean peninsula and Jeju Island. The island is 
surrounded by the sea and its area is 7.05 km2. The highest 
altitude of the island is about 100 m above sea level and the 
population is about 1,800. The WindCube v2 model of the 
LiDAR system was installed for this study. 

 

 
Fig. 1. Location of LiDAR device on Chuja Island, Korea. 

 

Table 1 represents the site and measurement conditions 
with LiDAR specification. The roughness class around the 
LiDAR was 1.28, which corresponds to flat and open terrain 
[4]. The 10-min average wind data was analyzed for featuring 
wind characteristics. The measurement heights were 40, 60, 
and 80 m a.g.l. The LiDAR measurement campaign was 
carried out for one year from April 1st, 2017 to March 31st, 
2018. The WindCube v2 is a pulsed Doppler laser type and the 
Flow Complexity Recognition (FCR) module is not installed 
in the system. 

 

Table 1. Site and measurement conditions with LiDAR 
specification. 

Items Category Description 

Site condition Location Latitude 33.950287 N 
Longitude 126.309898 E 

Roughness class 1.28 

Measurement 
condition 

Measure
ment 

period 

Start 1st Apr. 2017 

End 31st Mar. 2018 

Duration 12 months 

Measurement heights 40, 60, and 80 
m a.g.l. 

Sampling interval 1 second 

LiDAR 
Spec. 

Model WindCube v2 
Measuri
ng range 

Speed 0 ~ 55 m/s 
Direction 0 ~ 360° 

Accurac
y 

Speed 0.1 m/s 
Direction 2 ° 

Operation temperature -30 ~ +45 °C 

Type Pulsed 
Doppler Laser 

Flow Complexity 
Recognition 

(FCR) module 
Not installed 

 

3. LiDAR Measurements Analysis 

3.1. LiDAR wind data validation 

The validation of the LiDAR data was performed before 
the analysis. The criteria of the LiDAR data rejection are as 
follows [13-15]: 

Ø Data with Carrier-to-Noise Ratio (CNR) less than            
-22 dB 

Ø Data less than 80 % availability 

Ø Data affected by the tower’s shadow 

The LiDAR measurements that met the criteria above 
were discarded and the other measurements were used for the 
analysis. 

Table 2 presents the recovery rate and meteorological 
information after the data rejection. The data recovery rate was 
93.6 %, which was over the standard for acceptable rate. 

Table 2. Results of data rejection. 

Items Description 
Data points before and after the 

rejection [-] 
Before 52,560 
After   49,222 

Recovery rate [%] 93.6 
Mean temperature [°C] 15 

Mean relative humidity [%] 84 
Mean air density [kg/m3] 1.21 
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3.2. Wind characteristics 

The annual mean wind speeds were calculated at all 
measurement heights using the LiDAR data after the data 
rejection. Those were 7.42, 7.90, and 8.17 m/s at 40, 60, and 
80 m a.g.l. 

The Weibull wind speed distribution at 80 m a.g.l. was 
estimated on the basis of the actual data as a representative, 
which is shown in Fig. 2. The Weibull parameters of shape, k, 
and scale, c, were calculated by the Maximum Likelihood 
Estimation (MLE), which were 2.10 and 9.23 m/s, 
respectively. The Weibull distribution curve fit well to the 
actual wind speed data. 

 

 
Fig. 2. Weibull distribution of wind speed at 80 m a.g.l. 

 

Figs. 3 and 4 show the wind rose and the energy rose, 
respectively. The prevailing wind and energy directions were 
both from the NNW, which accounted for 18 % and 30 %, 
respectively. Directional wind frequencies were almost the 
same at all measurement heights, while directional energy 
frequencies were slightly different from one another, 
especially at the prevailing NNW energy direction. 

 
Fig. 3. Wind direction rose. 

 
Fig. 4. Energy rose. 

 

Fig. 5 represents the monthly mean wind speed. As the 
measurement height increases, the wind speed increases for all 
months. The highest monthly mean wind speed of 9.5 m/s was 
found in January, while the lowest of 6.5 m/s was in June at 
80 m a.g.l. The variation in the monthly mean wind speed 
matched well with the normal trend of seasonal variation in 
Korea. 
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Fig. 5. Monthly mean wind speed at all measurement heights. 

 

Fig. 6 shows the vertical wind shear. The power law is 
calculated by the following equation [3,4,16,17]: 

!"
!#
= %"

%#

&
                            (1) 

where, 𝑣(  and 𝑣)  are wind speeds at heights ℎ(  and ℎ) , 
respectively.  α is a dimensionless power law exponent. 

The power law exponent was 0.139, which corresponds to 
simple terrain or temperate offshore condition [3,4]. 

 

 
Fig. 6. Vertical wind shear. 

3.3. Estimation of Annual Energy Production (AEP) 

Three wind turbines from different manufacturers were 
chosen to analyze AEP and economic feasibility. Table 3 lists 
the specification of the three wind turbines. WT in the table 
means wind turbine. The rated power ranges from 2 MW to 
3.3 MW. 

Fig. 7 shows the power curves of the three wind turbines. 

Table 3. Specification of wind turbines. 

Items WT A WT B WT C 
Rated power [kW] 2,000 3,000 3,300 

Hub height [m] 87 80 84 
Rotor diameter [m] 86 100 112 

Cut-in wind speed [m/s] 3.5 3 3 
Rated wind speed [m/s] 12   13 13 

Cut-out wind speed [m/s] 25 25 25 
 

 
Fig. 7. Power curves of the three wind turbines. 

 

The gross and net AEPs are calculated by the following 
equations [18-20]: 

𝐺𝑟𝑜𝑠𝑠	𝐴𝐸𝑃 = ∑ p 𝑣6 ×𝑓 𝑣6 ×8760           (2) 

𝑁𝑒𝑡	𝐴𝐸𝑃 = 𝐺𝑟𝑜𝑠𝑠	𝐴𝐸𝑃 − δ×𝐺𝑟𝑜𝑠𝑠	𝐴𝐸𝑃       (3) 

where, 𝑝 𝑣6  and 𝑓 𝑣6  are the power output and the 
probability density function of Weibull distribution for wind 
speed bin i, respectively. δ  is the loss of AEP, which was 
assumed to be 10 % in this research. 

The following equation [21,22] was used for the CF 
calculation: 

𝐶𝐹 = EFG	HIJ
KLGFM	NOPFQ×RSTU

                      (4) 
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In addition, the MCP method was applied to reflect long-
term wind speed. The reanalysis wind data from the Modern-
Era Retrospective analysis for Research and Application, 
Version 2, (MERRA-2) was used for the application of the 
MCP method. The 25-year reanalysis wind data from 1994 to 
2018 were collected at a point about 7.8 km northwest from 
the LiDAR measurement point. For performing the economic 
feasibility study, the useful life of 25 years for a wind turbine 
is often used in the wind industry [1,23,24]. The correlation of 
one-year concurrent data from LiDAR and MERRA-2 was 
about 0.82, which was good for conducting the MCP method 
[25,26]. Finally, the 25-year wind data were predicted using 
the Matrix method of the MCP technique, which were used for 
calculating annual AEPs and CFs. 

The predicted annual net AEPs are shown in Fig. 8. These 
fluctuated from year to year for all wind turbines. As the wind 
turbine capacity was larger, the AEP was higher. The AEPs 
rapidly dropped in 2014 and remained stable since then for 
unknown reasons. The 25-year average AEPs were 8.29, 
11.62, and 13.63 GWh for WTs A, B, and C, respectively. 

Fig. 9 presents the predicted annual CFs. The same rapid 
drop in the CF as the AEP shown in Fig. 8 was found in 2014. 
The CFs of all the wind turbines were in the range of about 40 
% to 50 %, which were similar to those of generic offshore 
wind farms. In other words, Chuja Island can be considered to 
have very abundant wind resources. WT A had almost the 
same CFs as WT C, which were all larger than those of the 
WT B. The average CFs over 25 years for WTs A, B, and C 
were 47.33 %, 44.22 %, and 47.16 %, respectively. 

 

 
Fig. 8. Predicted annual net AEPs. 

 

 
Fig. 9. Predicted annual net CFs. 

4. Economic Feasibility Analysis 

The economic feasibility analysis was performed using 
the predicted 25-year wind data. The financial assumption for 
the analysis is presented in Table 4. The CapEx was assumed 
to be 2,054.94 $/kW on the basis of an actual recent CapEx in 
Korea [27,28]. It was assumed that the price of a wind turbine 
was 0.65 of the CapEx. 

The social discount rate of 4.5% in Korea was adopted as 
the discount rate for the analysis. The useful life of 25 years 
was applied. The System Marginal Price (SMP), or the 
electricity cost in Korea, was 0.08 $/kWh in 2017. The 
Operation Expenditure (OpEx) was assumed to be 3 % of the 
CapEx, which came from the average value of OpExs in Korea 
[29]. Although there is further revenue from the Renewable 
Energy Certificates (REC) system in Korea, it was neglected 
in this work. 

Table 4. Financial assumption. 

Items Description 
Wind turbine price* [$/kW] 1,335.71 

CapEx [$/kW] 2,054.94 
Discount rate [%] 4.5 
Useful life [years] 25 

SMP [$/kWh] 0.08 
OpEx** [$/kW/yr] 61.65 

*   :  Price	of	wind	turbine = CapEx×0.65			 
** :  OpEx = 0.03	×	CapEx 
 

Four financial indicators were considered for economic 
feasibility analysis: Net Present Value (NPV), Benefit-Cost 
Ratio (BCR), Internal Rate of Return (IRR), and Simple 
Payback Period. Table 5 shows the results of economic 
feasibility analysis. As expected, the NPV became higher with 
an increase of the wind turbine capacity. When the NPV 
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values were not taken into account for the analysis, WT A had 
the best financial performance among the three types of WTs. 
Even so, WT A had very similar financial indicators of the 
BCR, IRR, and Payback Period to those of WT C. WT B had 
the worst financial performance. 

Table 5. Results of economic analysis 

Items WT A WT B WT C 
NPV [Thousand $] 4,549.96 5,792.52 7,442.46 

BCR [-] 1.77 1.65 1.76 
IRR [%] 13.63 12.68 13.59 

Payback Period [years] 8.7 9.6 8.7 
 

5. Year-to-year Electricity Consumption Analysis 

In order to determine the possibility of energy self-
sufficiency on Chuja Island, the year-to-year electricity 
consumption was estimated under the assumptions below: 

1) The year-to-year electricity consumption has no 
tendency of increasing or decreasing over time. 

2) The annual variability in electricity consumption 
follows the normal distribution based on actual 
electricity consumption on Chuja Island from 2014 
to 2016. 

The annual average electricity consumption from 2014 to 
2016 on Chuja Island was 13,606,476 kWh, which was used 
as the mean value of the normal distribution. Then, the inter-
annual variability in electricity consumption was calculated by 
the following equation: 

 

𝐸𝑙𝑒𝐶𝑜𝑛6 = µ 𝐸𝑙𝑒𝐶𝑜𝑛n%opL + 𝐸𝑙𝑒𝐶𝑜𝑛!LQ,6                              (5) 

𝐸𝑙𝑒𝐶𝑜𝑛!LQ,6 = 𝜇 𝐸𝑙𝑒𝐶𝑜𝑛n%opL ×𝜎IuFnOv, 	𝜎IuFnOv~	𝑁(0, 1)    (6) 

 

where, 𝐸𝑙𝑒𝐶𝑜𝑛6  is the electricity consumption in year i. 
µ 𝐸𝑙𝑒𝐶𝑜𝑛n%opL  is the annual average electricity 
consumption of Chuja Island. 𝐸𝑙𝑒𝐶𝑜𝑛!LQ,6 is the variability of 
electricity consumption of the island in year i. σIuFnOv is the 
standard deviation of electricity consumption. 

 σ𝐸𝑙𝑒𝐶𝑜𝑛 values of 1,000 samples were generated using a 
random number generator based on standard normal 
distribution. Then, the 25 samples corresponding to the useful 
life of wind turbines were extracted at random. 

Fig. 10 shows the annual electricity consumption of Chuja 
Island estimated under the assumption above. As expected, 
they fluctuated around the average of 13.6 GWh. The 
coefficient of variation for the annual electricity consumptions 
was about 1 %. 

 
Fig. 10. Estimated electricity consumption of Chuja Island. 

In order to reveal the possibility of electric energy self-
sufficiency on Chuja Island, the annual ratio of the estimated 
net AEP to electricity consumption, which was named energy 
self-sufficiency ratio in this work, was calculated. Fig. 11 
presents the result. The larger the wind turbine capacity was, 
the higher the energy self-sufficiency ratio. WT C had an 
average ratio of 1.0 with the range from 0.93 to 1.08, which 
meant that ideally, electricity demand on Chuja Island could 
be nearly satisfied by operating WT C by itself. An average 
ratio of 0.85 was calculated for WT B with the range of 0.79 
~ 0.93. The ratio for WT A was in the range of 0.57 ~ 0.66 
with an average of 0.61. That is, in theory, energy self-
sufficiency could be possible on Chuja Island when any two 
wind turbines among the studied ones are operating, which 
results from the abundant wind resource on Chuja Island 
discovered in this work. 

In addition, if solar energy as well as wind energy is 
utilized with the Energy Storage System (ESS) for electricity 
generation, Chuja Island could achieve energy self-sufficiency 
successfully. 
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Fig. 11. Estimated annual energy self-sufficiency ratio. 

6. Conclusions 

The one-year wind data from the LiDAR system were 
used to assess the feasibility of energy self-sufficiency on 
Chuja Island, South Korea. The 25-year wind data were 
predicted using the MCP technique, which were used to 
estimate the 25-year AEPs of three commercial wind turbines. 
Then, an economic feasibility analysis was performed for the 
island. The results are as follows: 

1) The estimated 25-year average net AEPs were more 
than 8.29 GWh, and the CFs were approximately 40 
% to 50 %, which correspond to those of generic 
offshore wind farms. 

2) The estimated IRRs and BCRs were at least 12.68 % 
and 1.65, respectively. Also, the Simple Payback 
Period was from 8.7 to 9.6 years. Therefore, a wind 
project could be economically viable at the studied 
site of Chuja Island in the aspect of wind energy 
potential. 

3) As for the three wind turbines, the averages of energy 
self-sufficiency ratios were in the range of 0.61 to 1.0, 
which showed the possibility of energy self-
sufficiency on Chuja Island. 
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