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Abstract- In the modern era, the more usage of the non-linear load has increased the importance of power quality (PQ) 
monitoring. This paper purposes the novel algorithm based on Multivariate singular spectral analysis (MSSA), Wavelet Packet 
Decomposition (WPD) and 1-Dimensional Convolution Neural Network (1-D-CNN) for monitoring, mitigation, and 
classification of power quality disturbances (PQDs). Twelve types of synthetic and simulated single and multiple PQDs data 
are generated from MATLAB R2017b and Modified IEEE 13-bus system using wind energy penetration. In this research, 
MSSA and WPD are decomposed into four levels to extract the statistical features such as energy, entropy, standard deviation, 
root mean square, skewness, and kurtosis. The experimental results are well explained to compare the best-suited feature 
extraction technique in terms of feature extraction accuracy and computational complexity. Optimally selected features are 
fed to a convolution neural network (CNN) based softmax classifier for classification of PQ disturbances. The proposed 
algorithm is also tested under no noise and 20 dB to 50 dB noisy environment. The performance of the proposed method is 
compared with recently published articles to justify the competency of this study. The results show that the proposed 
framework has obtained reliable highest classification accuracy. 

Keywords Power quality disturbances, Wavelet packet decomposition, multivariate singular spectral analysis, 
convolution neural network, wind distributive system. 

 

1. Introduction 

 The introduction of renewable energy technologies 
in recent time widely opens the researches in many fields. 
Power quality (PQ) problems are one of the major concerns 
that arise from the involvement of renewable sources and its 
interconnection with power grids [1-3]. Among different 
sources of renewable distribution generation (DG), the usage 
of wind generation is increasing. Due to the large penetration 
in DG based on wind energy. The synchronization problems 
between the power grid and wind destructive system may 
increase. As a result, many PQ disturbances (PQDs) such as 
notch, sag, harmonics, swell and their multiples may 
malfunction the protection system and shut-down the entire 
system [4, 5]. 

 In order to mitigate these issues, PQ disturbances 
identification and monitoring is very important so that 

synchronization between conventional grid and renewable 
energy sources can be made smooth and stable [6]. In 
general, the identification and monitoring of PQ disturbances 
consist of three parts, feature extraction, feature selection and 
classification [7, 8]. Many signal processing techniques have 
been assessed such as, Fourier transform (FT), Fast Fourier 
transform (FFT), Short-time Fourier transform (STFT) and 
Discrete Fourier transform (DFT) for the detection and 
feature extraction [9-11].  

 Wavelet and multiresolution analysis (MRA) is one 
of the traditional signal processing techniques, which 
provides variable size window such as a long window for 
low-frequency components and short window for high-
frequency components. As a result, it provides excellent 
time-frequency resolution [12]. WT helps to analyze the PQ 
event and classifying the low and high-frequency issues of 
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PQ disturbances. However, the calculation of appropriate 
sampling frequency and mother wavelet is one of the key 
issues that arise in WT to find out the suitable frequency 
components [13]. Wavelet packet decomposition (WPD) 
decomposes the scale and wavelet coefficients at a specific 
level. Which provides detail and accurate information about 
time-frequency resolution. WPD is better decomposition 
technique than DWT due to the fix frequency band [14]. 

Singular spectral analysis (SSA) based on M lagged 
copies of time series. The estimation of the correlation matrix 
relies on Karhunen-Loève decomposition. The eigenvectors 
of this matrix are called empirical orthogonal functions 
(EOFs) [15]. SSA decomposes the time-series signal into 
various fluctuation trends, a small number of signals, 
oscillation, and noises. Instead of reducing the dimension of 
data, SSA smooths the spectral profile of given data which 
improves the feature extraction, and classification accuracy 
can be enhanced accordingly [16, 17]. Additionally, 
Multiscale SSA (MSSA) is the extension of SSA and applied 
to many applications such as hyperspectral imaging(HIS), 
bearing fault diagnosis physiological signals, geophysics, 
murmur detection of a heart sound, vibration signal, and 
economic data [18-23]. 

In, doubly fed induction generator (DFIG) based wind 
grid system is utilized for the generation of PQ disturbance 
and mathematical morphology (MM) is applied for the 
detection of PQ issues. This technique eliminates the noise 
with high computational speed but the performance is 
critically depending on the parameters of MM [24]. In, 
probabilistic PQ indices are proposed for the DG system 
[25]. In [26], hyperbolic S-transform (ST) and decision tree 
based classifier are utilized and  PQ disturbances are 
generated due to the load variation and environment 
situations in DG. In [27], ST for feature extraction and least 
square support vector machine (LS-SVM) for classification 
is proposed for PQ disturbances generated from 17-bus test 
system. Diverse extreme learning machine (DELM) is used 
for the trasient stability classification problem [28]. İn [29], 
Deep convolution neural network (DCNN) based classifier is 
utilized for the efficient classification of solar array detection 
in aerial imagery. Multi resolution analysis (MRA) used for 
extracting FFT coefficient for diagonsis task [30]. 

In this study, twelve types of single and multiple PQ 
disturbances are generated using the modified IEEE 13 bus 
system with a wind grid integration system [31]. The three-
phase disturbances are segmented into single-phase and the 
feature set is computed through the MSSA and WPD 
techniques. Deep Convolution neural network (DCNN) 
based softmax classifier is used for efficient classification. A 
range of Gaussian noises is added in the signals (20 dB-

50db) and support vector machine (SVM) classifier is also 
utilized to check the robustness of the proposed algorithm.  

This article is organized as follows: Section 2 explains 
the proposed feature extraction methods, classifier, feature 
selection based on statistical parameters and proposed 
classifier. Section 3 describes the experiment. Section 4 
explicates the results and discussion and finally, section 5 
concludes the research work.  

2. Methodology 

2.1. Discrete Wavelet Transform 

Generally, PQ disturbances are non-stationary due to 
the sudden change in voltage, current, and magnitude of the 
signal [32]. Discrete Wavelet Transform (DWT) can extract 
both time and frequency information, as well as reduce the 
computational complexity [33]. DWT decomposes the 
discrete-time signal  into different levels of wavelet 

coefficients. The important factor is to choose a suitable 
mother wavelet. Firstly, the appropriate number of 
decomposition levels are picked, gm. Then, this initial level 
discrete-time signal passes through the High Pass (HP) and 
Low Pass (LP) filters. Figure 1 demonstrates the detailed 
mechanism of DWT. The high-frequency component (detail 
coefficients) are provided by the HP filters of their respective 
level (D1) and LP filter provides the low-frequency 
component (approximation coefficients A1) of the discrete-
time signal, followed by the process of down-sampling by 2. 
the scale  and wavelet  of approximate  and 

detail coefficients  for a signal can be represented as: 

  (1) 

  (2) 

In the next level, the  is set as   and  is 

increased by 1. The above mentioned process repeats until  
 reaches the limit of the selected number of levels, as 

shown in Fig.1. 

2.2. Wavelet Packet Decomposition  

WPD is the extension DWT, such as the detail 
coefficients  also decompose as well as with the 

decomposition of . The slight difference increases the 

number of wavelet coefficients by  rather than  in 
DWT. This change effects to achieve better frequency 
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resolution for the decomposition of the signal [34]. DWT 
may miss important information at high-frequency 
components. This detail is shown in Fig.2. 

2.3. Multiclass Singular spectral analysis  

The multiclass singular spectral analysis is another 
method for feature decomposition of nonstationary signals of 
PQ disturbances [15]. MSSA method consists of generally 
four steps. 1) Embedding 2) singular value decomposition 
(SVD) 3). Grouping 4). Reconstruction of the signal.  

Assume that we have uniformly sampled PQ 
disturbance, which is a 1-D signal in a vector array A define 

as of length N where N is  

 where b is the position and window 

size W .  The trajectory matrix C of the matrix 

A can be formulated as 

 
Figure 1. Decomposition of DWT for level 

Figure 2. Decomposition of WPD for level 2 

 

 (3) 

  (4) 

Each column of C  mapped to lagged vector K, that is 

, where  and 

.  The covariance matrix keeps the whole 
information about input signals.  

The lagged covariance matrix S is obtained from the 
trajectory matrix C, , its eigenvalues are calculated 
and sort in descending order as, ,  and 

equivalent eigenvectors be , and the 

trajectory matrix after SVD is presented as 

 

Where  is the rank of matrix C but for 
simplicity, we consider . As it can be noted, trajectory 
matrix C is a combination of several matrices. Each matrix 

 is called an elementary matrix and it is 

equivalent to its respective eigenvalue, the decomposition of 
the signal is defined by 

 
 (5) 

Where  is define as 

 
 (6) 

 and  matrices are denoted as the matrix of 
empirical orthogonal functions and the matrix of principal 
components respectively at a selected position of b. 

  (7) 

  (8) 
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   Figure 3.  The comprehensive architecture of 1-D Convolutional neural network 

2.4. Convolution neural network 

 In a wide context, Convolution neural network 
(CNN) is feature extraction and classification neural network 
topology. CNN can become complex with feature extraction 
and classification capabilities. The complex architecture of 
CNN can consist of multiple layers that extract different 
features from the PQDs [35]. Fewer examples of CNN 
complex architecture for different applications can be seen 
from the literature [36, 37]. In general, CNN is implemented 
in 2-dimensional with multi-dimensional kernels and 
complex configuration. Our network is further refined by 
adding dropout and regularization [38]. The PQDs data can 
be classified in a single dimension. In this paper, only the 
classification layer (softmax layer) with max pooled layer is 
utilized, which make the network simple for the 
classification of PQDs.  

However, the architecture of 1-DCNN comprises of 
input, the convolution layer connected with network max 
pooling that feeds to fully connected softmax and output 
layers that are shown in Fig.3. the initial kernel was set at 24 
for MSSA and 64 for WPD decompositions. The training 
process of CNN consists of forward propagation and 
backpropagation. Forward propagation trains the data for the 
classification and backpropagation is utilized to upgrade the 
training parameters to improve the classification accuracy.  

2.4.1. Forward propagation 

For (L+1) layer CNN network, m1 is the input layer 
and m7 is the output layer, l is the current layer, m2 to m6 

numerous hidden units of convolution layer, max pooling 
layer, fully connected layers, and regularization layer, and 
expressed as: 

  (9) 

Where   is the convolution feature map of the 

previous layer.  is convolution feature map of current 

layer, M is the number of input features. is the additive 

bias vector. ‘ ’ is the convolution operator. The output can 
be written as 

  (10) 

 is the output, is the non-linear function, rectified 
linear units (ReLU) is a widely used non-linear operator and 
used as an activation function in this study. The advantage of 
this function is, it accepts the output of neuron if positive 
means it does not active all the neurons at the same time and 
converts all negative inputs to zero, which makes it efficient 
gradient propagation and low computational burden. max(w) 
function is used in pooling layer, fully connected layer with 
softmax layer is connected to the output layer as CNN is a 
multiclass classifier, the softmax layer is expressed as: 
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 ,  (11) 

Where  is the input from a fully connected layer, J 

is the number of classes or softmax layer units. 

2.4.2. Backpropagation:  

Backpropagation is used to tune the trainable 
parameters and the gradient descent method is used for this 
purpose. The output of max pooling layer is connected to 
backpropagation to sense the errors. The mean square error 
of the output can be calculated as:  

 

l is the number of classes and q is the input vector and 
 is the corresponding target and  is the output 

vector. 
2.5. Feature extraction 

The efficient feature extraction from the preprocess 
PQDs is very important to improve the classification 
accuracy [39]. In this paper, features are extracted and 
selected through the MSSA, WPD and statistical parameters. 
The use of all input data coefficient may decrease the 
classification accuracy and increase the computation load. 
Therefore, the statistical parameters such as energy, entropy, 
standard deviation, mean, kurtosis, and skewness are chosen 
[9]. For each decomposition technique, the total number of 
features obtained per phase is 24 for MSSSA and 64 for 
WPD decomposition technique. The mathematical 
relationship of these statistical parameters are given as 

1) The coefficients of Energy for all sub-bands  
 

 (12) 

2) The coefficients of Entropy for all sub-band, 

  (13) 

3) The coefficients of Standard deviation for all sub-
bands, 

  (14) 

 

4) The coefficients Mean (signal) value for all sub-band, 

  (15) 

5) The coefficients of Kurtosis for all sub-band, 

  (16) 

6) The coefficients of Skewness for all sub-band, 

  (17) 

2.6. Proposed Methodology 

 The proposed methods are divided into three 
sections 1) feature extraction 2) feature selection 3) 
classification. Firstly, the two selected feature extraction 
techniques are compared in terms of feature extraction 
accuracy and computational speed. Four level decomposition 
is used for these two methods. Secondly, optimal features are 
chosen through statistical parameters. And lastly, the 
optimally selected features are fed to the CNN based softmax 
classifier for the classification of PQDs. The detail of the 
proposed methods is shown in Fig. 4.  

3. Experiments 

3.1 Generation of PQ disturbances dataset by modified 
IEEE 13 node system 

To generate the typical PQ disturbances, a modified 
IEEE 13 node bus with wind distribution system  is selected 
[31]. The parameters of the original system are 50 Hz, 5 
MVA of two voltage levels i.e. 4.16 kV and 0.48 kV with 
balanced and unbalanced loads with no renewable energy 
(RE) sources. This modified model with wind energy 
penetration is simulated in MATLAB/Simulink to produce 
the dataset 1 and some of the simulated PQ disturbances are 
shown in Fig. 6. In dataset 1, 5390 samples were created 
with a sampling frequency of 10 kHz for 12 types of PQ 
disturbances. Two wind turbines of 1.5 MV each are added at 
bus 680 that are shown in Fig. 5 and they are connected 
through the transformer T-2 and an 8 km overhead 
transmission line. The transmission line has the following 
parameters.  (zero sequences) resistance 0.413 Ohms/km,  
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Figure 4. Block diagram of the proposed scheme 

and  (positive sequence) resistance 0.1153 Ohms/km, 

capacitance 5.09 × 10−9 F/km and  capacitance 11.33 × 

10−9 F/km and inductance 3.3 × 10−3 H/km and 
inductance 1.05 × 10−3 H/km, respectively. The location of 

modification in the IEEE 13 bus system is presented in Table 
1.  

Three-phase voltage sag and swell are generated by 
multistage and line to line faults, and line to line faults 
between two phases at generation end. The three-phase 
voltage notch, oscillatory transients, harmonics, flickers, and 
impulsive transients are generated by the three-phase 
nonlinear load, three-phase capacitor bank, arc furnace, and 
lightning at distributive end respectively. Multiple PQ 
disturbances are generated from their combinations.  

Table 1. System load and data status of the modified IEEE 
bus system. 

Bus 
Nodes 

Load 
Model Load 

Capacitor 
Bank 

Modified 
data 

- - kW kVAr kVAr - 
634 
645 
646 
652 
671 
675 
692 
611 
632-
671 

Y-PQ 
Y-PQ 
D-Z 
Y-Z 

D-PQ 
Y-PQ 
D-I 
Y-I 

Y-PQ 

400 
170 
230 
128 
1155 
843 
170 
170 
200 

290 
125 
132 
86 
660 
462 
151 
80 
116 

- 
- 
- 
- 
- 

600 
- 

100 

- 
- 
- 
- 
- 

Switching 
Fault 

- 
Switching 

Fault 

650 
680 

- 
Grid 

WG/non-
linear load 

 

 
Figure 5. Modified IEEE 13 bus system with Wind system 
connected at node 
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Figure 6. Three-phase PQDs generation from Wind grid 
integration model (a) voltage notch (b) voltage sag and swell 
(c) voltage flicker (d) harmonics with sag and swell 

3.2 Generation of synthetic PQ disturbances dataset 

The synthetic PQ disturbances dataset were generated 
based on parametric equations model [8]. This model was 
simulated in MATLAB 2017b and PSCAD/EMTDC 
software. Each waveform was created with specific 
parameters, the sampling points are 2000, 10 cycles, 10 kHz 
sampling frequency. The 12 types of synthetic PQ 
disturbances are shown in Fig.7. 

  In this study, Gaussian noise was also added (20 dB 
to 50 dB) to analyze the classification accuracy. Some of the 
noisy (50dB) PQ disturbances are presented in Fig. 8. This 
algorithm was tested more than 20 times to confirm the 
classification performance. Training and testing sets were 
separated by 75% and 25% respectively.  

However, the number of decomposition levels for 
WPD is also four that resulted in  =  sub-bands. 
In Table 2, details of frequencies in sub-bands of WPD are 
discussed with corresponding relations to MSSA sub-bands. 
WPD has eleven additional sub-bands than the other 

decomposition methods which would result in features 
difference. Figure 9 and 10 show the details about PQ 
disturbance signals decomposition using MSSA, and WPD.  

Table 2. Detail of sub-bands frequencies of 4 level WPD and 
MSSA. 

Sub-
band 
No. 

Decomposition 
Signal 

Frequency 
Range (Hz) 

MSSA 
level 

i SB40 0-3.1 APP.4 
ii SB41 3.1-6.3 DC.4 
iii SB42 6.3-9.4 DC.3 
iv SB43 9.4-12.5 - 
v SB44 12.5-15.6 DC.2 
vi SB45 15.6-18.8 - 
vii SB46 18.8-21.9 - 
viii SB47 21.9-25.0 - 
ix SB48 25.0-28.1 DC.1 
x SB49 28.1-31.3 - 
xi SB4A 31.3-34.3 - 
xii SB4B 34.3-37.5 - 
xiii SB4C 37.5-40.6 - 
xiv SB4D 40.6-43.8 - 
xv SB4E 43.8-46.9 - 
xvi SB4F 46.9-50.0 - 

 

 

Figure 7.   Twelve types of synthetic PQ disturbance  

2g 42 16=
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Figure 8. The waveform of PQ disturbance (50dB) 

 

Figure 9. PQ disturbance four level decomposition using 
MSSA 

4. Results and Discussion 

 In this section, the results of two selected feature 
extraction techniques with CNN based softmax classifier are 
discussed. Two different datasets with different noise levels 

are used to evaluate the outcomes of the classifier. The first 
dataset is based on the syndetic PQ disturbances and the 
second dataset is generated from modified IEEE 13 bus 
system with the wind-grid distributive system. 

 
Figure 10. PQ disturbance decomposition using WPD 

In Table 3, the classification accuracies of CNN based 
softmax classifier along with MSSA and WPD 
decomposition technique are presented.  The classification 
accuracies with dataset 1 (synthetic PQDs), dataset 2 
(Modified IEEE 13 bus system with wind grid distributive 
system-generated PQDs) and different noise levels are also 
described. WPD has higher classification accuracy (99.8%) 
as compared to MSSA (99%) for noiseless condition and 
dataset 1. This algorithm also shows significance 
classification performance under noisy environment and 
dataset 2. Table 2 well explained better classification results. 
It can be observed that the maximum frequency sub-bands 
are of MSSA i.e. detail DC1, 25 to 28.1 Hz. However, WPD 
will produce much more features in the frequency range of 
25-50 Hz, which will result in the depth insight between the 
classes. It means that WPD results in fining the 
decomposition for the highest frequencies using lower scale 
levels as compared to MSSA.  

For the same number of decomposition levels, WPD 
generates a fine range of features. While other decomposition 
methods require a high number of decomposition levels to 
achieve the same distinctive number of features. In case the 
of MSSA, The two parameters decide an effective feature 
extraction of PQDs. Firstly, the value  determines the total 
number of eigenvalues extracted during the decomposition 
stage. Secondly, the eigenvalue group (EVG) describes how 
extracted components are grouped to extract the best 
features. If it contains all the eigenvalues, then it extracts all 
features in the PQD signal. If the EVG dismisses the small 
value of eigenvalues, then extracted features are more  

α
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Table 3. Classification accuracy (%) of PQ disturbances 

 Power Quality 
Disturbances 

Class 
Labelled 

Training/ 
Testing 

sets 

MSSA WPD 

Dataset 1 Dataset 2 Dataset 1 Dataset 2 

0 dB 50 dB 0 dB 50 
dB 

0 dB 50 dB 0 dB 50 dB 

Normal C1 200 100 99 100 99 100 100 100 100 
Sag C2 200 100 99 100 99 100 99 100 99 
Notch C3 200 99 98 99 98.5 100 99 100 99 
Flickers C4 200 98 97 97.8 97.1 100 99 100 98.8 
Impulsive Transients C5 200 99 99 98.9 97.9 100 99 99.8 99 
Oscillatory Transients C6 200 99 98 99 98.5 99 99 99.7 98.7 
Harmonics C7 200 99 99 98.4 97.3 99.5 99.1 99.6 99 
Sag with Swell C8 200 99 98 98.1 97.1 100 99.5 99.8 99 
Sag with Harmonics C9 200 98 98 98 96.9 99.7 98.2 99.6 97.9 
Harmonics with Sag 
and Swell C10 200 99 98 98.9 97.4 99.6 99.2 99.5 99 

Sag with Oscillatory 
Transients C11 200 99 99 99 98.3 99.8 99.25 99.3 98.9 

Oscillatory Transients 
with Swell, and Sag C12 200 99 98 99 98.7 99.7 99.3 99.3 99 

Classification 
Accuracy (%) 

  99 98.3 98.8 97.9 99.8 99.12 99.7 98.9 

effective because small eigenvalues usually contain noise. 
After several simulation attempts, we came to the conclusion 
that the best value  is chosen for the decomposition of 

PQDs. MSSA decomposition also extracts the most effective 
features and this technique performs adequately well to 
eradicate the noise.  

 

 

 

 

 

 

 

 

 

 

 
 
Figure 11. Accuracy comparison of proposed method with SVM classifier (a) dataset 1 (b) dataset 2  

4.1. Accuracy comparison with SVM Classifier 

The proposed feature extraction techniques have also 
been tested with support vector machine (SVM) classifier. 
The classification accuracies of MSSA, WPD with CNN 

based softmax and SVM classifiers respectively, are shown 
in Fig.11. It is observed that the MSSA and WPD with SVM 
has least classification accuracy as compared to MSSA and 
WPD with CNN classifier. The results of the proposed 

3=α
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algorithm validate that the proposed algorithm can be applied 
to the real system.  

4.2 Computational Complexity 

In this subsection, one of the important features of this 
study computational complexity is discussed.  Figure 12 
shows the computational complexity analysis of different 
datasets with SVM and CNN classifiers based algorithms. 
However, it can be observed from the figure that CNN based 
classifier algorithm has the least computational burden as 
compared to SVM classifier. On the other side, WPD has 
higher complexity due to in-detail analysis of frequency sub-
bands. MSSA has less complexity due to the optimal value of 

 and less number of features are considered as compared to 
WPD. We can conclude that the MSSA is best-suited 
decomposition technique if we are considering the important 
factor of computational speed.  

 
Figure 12. Comparison of Computational time (S) 
Complexity  

Table 4. Performance comparison with recent articles. 

Ref# Classifier Feature 
Extraction 

No. of 
PQDs 

Data type Phase Type Classification 
Accuracy (%) 

[40] SR-ELM FTT  12 Real 3-  99.71 

[41] SVM DWT, HST 9 
Simulated and 

Real 3-  99.44 

[42] RF MODWT, 
SGWT, ST 

10 Simulated and 
Real Single-  97.39 

[43] DTB MSMGF, 
STMHT 

10 Simulated and 
Real Single-  99.7 

Proposed 1-DCNN MSSA, WPD 12 
Synthetic, 
Simulated 3-  99.8 

4.3. Performance Comparison 

Table 4 presents a detailed comparison between 
published articles with the proposed algorithm. In [40], 12 
types of single and multiple PQDs were considered and 
Fast time-time transform (FTT) with small residual 
extreme learning machine (SR-ELM) were successfully 
implemented but this method has relatively less 
classification accuracy than the proposed method. Only 
nine types of three-phase PQDs were classified with 
Discrete WT, hyperbolic ST, and SVM. The classification 
accuracy 99.44 was achieved [41]. However, this article 
considered less number of PQDs and having less 
classification accuracy as compared proposed algorithm.  

In [42], maximum overlapping DWT (MODWT), 
second-generation WT (SGWT) and ST were compared to 
accomplish the best classification results. ST retained the 
best classification rate of 97.39%. only ten single-phase 
PQDs and multi-scale morphological gradient filter 
(MSMGF) and short-time modified Hilbert transform 
(STMHT) with decision tree-based (DTB) classifier were 
studied to achieve better classification results [43]. This 

comparative study shows that the proposed study attained 
higher classification results. 

5. Conclusions  

In this study, two feature extraction techniques 
(MSSA, WPD) have successfully examined with CNN 
based softmax and SVM classifiers in terms of 
classification accuracy and computational complexity. 
Two types of datasets for 12 type of single and multiple 
PQ disturbances were considered. The synthetic dataset 
has been generated from MATLAB R2017b and simulated 
dataset of three-phase PQ disturbance were generated from 
a modified IEEE 13 bus system with interconnection of 
wind distributive system. Three-phase PQDs were 
separated into single phase to analyze and extract the 
features. Six statistical parameters such as energy, entropy, 
standard deviation, mean, skewness, and kurtosis were 
considered to select the optimal features. The classification 
results show that WPD and CNN based softmax classifier 
has better accuracy among other comparative techniques. 
In CNN, dropout and ReLU were utilized to tune the data, 
which helps to improve the classification accuracy. 

α

0

1

2

3

4

5

6

MSSA-SVM WPD-SVM MSSA-CNN WPD-CNN

Ti
m

e 
(s

)

Dataset 1 Dataset 2

Æ

Æ

Æ

Æ

Æ



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
M. Abubakar et al., Vol.9, No.3, September, 2019 

 1416 

However, MSSA and CNN based softmax classifier 
method have less computational complexity. The SVM 
classifier and different range of Gaussian noises were also 
applied to validate the proposed algorithm. The higher 
classification accuracy validates that this study can also be 
applied to different applications such as images, facial 
detection, fault detection, and classification.  
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