
INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
R. Rabeh et al., Vol.9, No.4, December, 2019 

Secondary Control of Islanded Microgrids Using PI-
Evolutionary Algorithms Under Uncertainties 

 

Reda Rabeh*’**‡, Mohammed Ferfra*, Ahmed Ezbakhe** 

 

*Electrical Engineering department, Research Team in power and control (EREEC), Ecole Mohammadia d’Ingénieurs, 
Mohammed V University in Rabat, Morocco. 

** Laboratory LERMA, ECINE, International University of Rabat, Sala Al Jadida, 11000, Morocco 

 (reda.rabeh93@gmail.com, ferfra@emi.ac.ma, ahmed.ezbakhe@uir.ac.ma) 

‡ 
Corresponding Author; Reda Rabeh, Groupe Yasmine, Imm6, Apt 7, Mohammedia, Morocco, Tel: +212 697 244 699, 

reda.rabeh93@gmail.com 
 

Received: 17.09.2019 Accepted:21.10.2019 

 
Abstract- Electrical grids converge now to a novel concept which named Microgrids (MG). it consists on producing energy in 
order to reduce dependency on fuel known by its fluctuant cost and to decrease harmful emission in the atmosphere. Constituted 
by renewable sources, energy storage system and controllable sources, a hybrid combination of these DERs is adopted to 
maintain MG reliability, transparency and efficiency of the whole system under deregulated power production. MG always are 
influenced by random weather conditions (e.g. temperature, solar radiation, wind speed. . . ) of the non-controllable sources and 
load. These perturbations affect quality of energy especially frequency as a sensitive parameter to active power balance. To deal 
with this issue, a smart management of controllable sources is highly recommended to minimize frequency deviation. In this 
paper, a dynamic model is adopted with PI controller in controllable sources and storage system and presents a novel approach 
to design PI controller parameters by hybrid Evolutionary Algorithm (EA) GA-TLBO as a robust control of frequency regulation 
under uncertainty. A simulated isolated MG is tested on scenarios to validate the approach adopted in conceiving the PI 
parameters to avoid the frequency fluctuation in the different cases of study. 

Keywords Isolated MG; controlled sources; noncontrolled sources; frequency control; PI controller; evolutionary algorithm; 
genetic algorithm; teaching-learning based optimization. 

 

Nomenclature: 

BBO :Biogeography-Based Optimization 
DE :Differential evolution 
DEG :Diesel generator 
DER :Distributed energy resource 
DG :Distributed generator 
DGA :Differential genetic algorithm 
EA :Evolutionary algorithm 
ESS :Energy storage system 
FA :Firefly Algorithm 
FC :Fuel cell 
GA :Genetic algorithm 
hDE :hybrid Differential Evolution 

HS :Harmony search 
HIS :High Suitability Index 
ISE :Integral square error 
IAE :Integral Absolute Error 
LFC :Load frequency control 
MID :Modified Integral Derivative 
MOBHA :Modified black hole optimization algorithm 
MOEO :Multi-objective extremal optimization 

fractional order PID 
MOFOFPID :Multi-objective Fuzzy-Order-Fractional 

proportional integral derivative 
MOFPI :Multi-objective fractional proportional 

integral 
MOPI :Multi-objective proportional integral 
MT :Micro turbine 
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PI :Proportional Integral 
PSO :Particle swarm optimization 
PV :Photovoltaic panel 
QOHSA :Quasi-oppositional harmony search 

algorithm 
SA :Simulated annealing 
TLBO :Teaching Learning-Based Optimization 
WT :Wind turbine 

 

1. Introduction 

Microgrids are considered now as innovative idea to deal 
with economic and ecological problems of classical grids. 
These entities are implanted in autonomous mode in rural and 
far areas from the main grid. So, it’s a perfect solution to 
prevent expensive cost of electrical installation and 
connection losses. Despite of intermittence of renewable 
sources as non-controlled sources, MG are known by their 
transparency, flexibility and intelligence ensured by the 
implementation of ESS and controllable sources like DEG, FC 
also MT. Adopting an autonomous MG, LFC becomes one of 
the major challenges dealing with low inertia, time varying 
delays, parametric uncertainties and fluctuant renewable 
source and load power. The main idea of this paper is to solve 
this problem referring to a novel robust approach. In fact, LFC 
is conceived by a hierarchical strategy [1] based on three 
dissociated parts or layers: a primary [2] and secondary and 
tertiary control. This partition depends on duration of 
frequency perturbation. This matter was discussed also with 
interconnected classical girds based on synchronous and 
induction generators [3-4] and more debated with MG. 

Several robust control methods are applied to minimize 
frequency fluctuation on an islanded MG. For example, 
Bervani in [5,6] compares between H∞ , µ-synthesis robust 
control techniques to balance load and power under 
uncertainties, based on linearized MG state-and confirms 
robustness of µ-synthesis approach. PI controller can be tuned 
efficiently by several strategies, despite of empiric Ziegler-
Nichols method or adopting fuzzy logic approach [7]. As 
application of MG in shipboards, Khooban in [8] presents a 
new adaptive and time-varying controller using MOBHA as 
stochastic multi-objective optimization algorithm for tuning 
controller parameters in the presence DERs and load 
disturbances without considering communication delays. In 
reference [9], an adaptive multi-objective algorithm MOBHA 
in MOFOFPID to tune the non-integer fuzzy PID controller 
coefficients. Other authors in [10-11] study another 
application of MG adopting the same MOBHA with time-
delay to improve the performance of the LFC with low 
computation burden and complexity. 

As other approaches, authors of [12-23] tune their 
controllers using EA. For example, in [12], SA optimization 
strategy was used to approximate sensitivity of the stability 
performance of secondary cooperative control to 
adding/removing data communication links. Reference [13] 
compares the well-tuned controller with intelligent fuzzy and 
particle swarm optimization-fuzzy controllers.  

The designed controllers are examined under different 
step, random, and noise disturbances depending on analysis 
and the ISE indexes. In [14], authors deal with the conception 
of a robust controller based on a new hybrid DGA-PSO 
algorithm to enhance the system oscillation damping under 
various disturbances with different loading conditions by 
studying the impact of the fractional parameter for an optimal 
dynamic performance of the system over various perturbed 
conditions by the low IAE and FD indices. Regarding PI 
controller the authors in [15] designed a multiple PI 
controllers parameter in cascade control loop using HSA 
implemented in a complex and nonlinear system as an 
efficient comparing with GA and Generalized Reduced 
Gradient methods. A novel QOHSA was proposed in [16] to 
obtain the best solution vectors and faster convergence rate by 
simulating the problem in a dynamic model of MG. In [17,18], 
TLBO was used to tune the parameters of fuzzy and sliding 
mode controllers to enhance power stability of the studied 
system. In [19], the proposed FA optimized PID controller 
was tested with changing the number of iterations of each 
algorithm FF algorithm tuned PID controller gained 
superiority compared to using the GA-PI and PSO-PI tuned 
controller performance by increasing iteration numbers. The 
objective function to minimize is ITAE of frequency. Wang in 
[20] was proposed an effective fractional order frequency PID 
controller by using a multi-objective extremal optimization 
algorithm. the proposed MOEO-FOPID can be considered as 
a competitive multi-objective optimization method for the 
fractional order frequency control of an islanded microgrid 
from the perspective of the complexity of algorithm design 
and computational efficiency. Sahu in [21] demonstrates the 
effectiveness of hDE-PS optimized MID controller to regulate 
frequency in a multi-area multi-source power system with 
perturbed renewable source and load profiles over GA and DE 
technics. Then authors of [22] compare also between 
fractional order and integer order controllers to highlight the 
advantages and disadvantages of type of controller under 
uncertainty tuned by PSO with unreliable communication 
network with stochastic delay. BBO was implemented by 
Rahman in [23] in some specific controllers and presents best 
results in an interconnected two-area power system. This 
paper makes in evidence the accuracy of a novel approach for 
LCF based on hybrid EA under uncertainties as extension of 
the conference paper [24]. The study in [25] presents a control 
strategy for the frequency regulation in a MG The proposed 
method enhances MG reliability, diesel generator efficiency, 
reducing polluting and optimizing the engine life span. Others 
control strategy can be adopted in frequency regulation as 
mentioned in [26] using the droop control method in the 
primary control and a frequency restoration function in the 
secondary control with a single and constant time delay. 
Rezaei in [27] proposes a robust energy and frequency 
management in islanded MG considering a static modelling of 
system frequency under uncertainty handling strategy without 
relying on probability distribution functions. A double sliding 
mode controller is adopted in the same studied MG to achieve 
flexible output power control [28]. Application of consensus 
theory for frequency restoration in secondary control was the 
main idea of [29] in islanded MG by respecting 
communication parameters and designing the consensus 
controller gains taking care of the network communication 
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state. Authors can also take into consideration uncertainties as 
presented in [30] and predicted error of renewable fluctuant 
sources [31]. This paper starts by presenting the dynamic 
model of the studied MG and EAs adopted to tune PI 
controller parameters in section 2. Section 3 illustrates the 
problem of our work, and section 4 presents a state of art d 
some classical evolutionary algorithms. Simulation results to 
introduce the proposed method and demonstrate its efficiency 
constitutes section 5, then conclusion as section 6. 

2. Modeling of the studied MG 

2.1. Dynamic model of MG 

The main study in this paper focuses on secondary 
frequency regulation of autonomous MG by adopting a 
dynamic model presented in Fig 1. The architecture contains 
a common AC bus connected to each DRs via electronics 
devises (inverter for DC DER such as PV, FC and ESS and 
rectifier inverter in cascade for AC DER specially DEG, MT 
and WT). Maintaining frequency depends on balancing 
between production and load as illustrated in Eq. (1). 

 

Fig 1. MG dynamical frequency response model 

P"#$% 	= 	P() 		+ P+, 	+ P-./ 	+ P0, 	+ P12 	
+ P3.4 

(1) 

Where: P() is PV output power, P+, is WT output power, 
P-./ is DEG output power, P0, is MT output power PFC is 
FC output power, P3.4 is BES output power and P"#$% is the 
load power. P3.4 is positive in discharging mode and negative 
in charging mode. 

         As already said in the previous paragraphs, PV, WT and 
load are considered as perturbation in the MG system to 
provide frequency fluctuation. To compensate this unbalanced 
power, a control of MT, DEG, and FC is applied named 
secondary frequency control. In the dynamic model of the 
studied MG, each DER represented by a simple low-order 
linearized model to express the change of output power of the 
DER. The followed equation is obtained to present changes in 
DRs of MG: 

ΔP"#$% 	= 	ΔP() 		+ ΔP+, 	+ ΔP-./ 	+ ΔP0, 	
+ ΔP12 + ΔP3.4 

(2) 

       Referring to the dynamic model, equations of the MG 
dynamic frequency response model are introduced in the 

followed Eq.  (3-8) and MG parameters are shown in the two 
tables Table. 1-2: 

Table 1. MG rated power 

Rated power (kW) Rated power (kW) 
PV 5 BES 10 
WT 5 DEG 20 
FC 10 Load 60 
MT 10   

Table 2. Parameters of the studied MG 

Parameter Value Parameter Value 
D (pu/Hz) 0.015 T12 (s) 4 

M (pu) 0.1667 T0,  (s) 2 

T()  (s) 1,8 T7 (s) 0,4 

T+, (s) 1,5 T8 (s) 0,08 

T3.4  (s) 0,1   

2.2. Renewable resources 

Renewable resources are known also as non-controlled 
sources. In fact, the electrical PV power is generated from 
solar radiation power and the output power change ΔP() is 
expressed in Eq. (3). WT converts kinetic power of wind to 
electrical power expressed in Eq. (4). 

ΔP() = ΔP9::. G() = ΔP9::.
1

1 + T(). s
 (3) 

ΔP+, = ΔP?9@%. G+, = ΔP?9@%.
1

1 + T+,. s
 (4) 

2.3. Controlled resources: 

MT is a small DER which converts hydraulic power to 
electrical power and the power change ΔP0, is defined in the 
Eq. (5). FC is a cell that concerts a chemical energy from 
electrochemical reaction of Hydrogen fuel with oxygen to 
extract DC electrical power illustrated in Eq. (6). As one of 
the classical DR, DG is a controlled resource which combine 
an electrical motor and governor (engine). The control of this 
DR is made in the governor and its power change can be 
presented in Eq. (7). 

ΔP0, = U.G0, = U.
1

1 + T0,. s
		 (5) 

ΔP12 = U.G12 = U.
1

1 + T12. s
 (6) 

ΔP-./ = U. G-./ = U
1

(1 + T7. s). D1 + T8. sE
 (7) 

2.4. Energy storage system: 

These resources are used to supply the load demand, they 
are solicited in charging or discharging mode to ensure the 
power balance according to the frequency fluctuation. 
Equation (8) present the power changes in BES. 

ΔP3.4 = Δf. G3.4 = Δf.
1

1 + T3.4. s
	 (8) 
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We define the power fluctuation ΔP and the dynamic model of 
as follow: 

ΔP = ΔP() + ΔP+, + ΔP-./ + ΔP0, + ΔP12
− ΔP3.4 − ΔP"#$%	 

(9) 

Δf = ΔP. GHIH = ΔP
1

D +M. s	 
(10) 

3. Problem formulation 

This paper deals with secondary frequency control based 
on PI controller. In fact, a classical PI controller is usually 
tuned by simple and classical methods like Ziegler Nichols 
method to have a best disturbance rejection. However, it’s 
inappropriate in some cases because of the empiric values of 
controller parameters. For that reason,  other methods are 
applied to characterize the PI controller parameters using EA. 
Tuning K9 and  KM using EA involves minimizing IAE of 
frequency deviation as objective function. The idea is to 
compare between PI-EA and to choose the two best EA to 
create a robust hybrid algorithm. Equation (11) illustrates the 
objective function employed using 𝑥 = [𝐾QR;𝐾TR;𝐾QU; 𝐾TU] as 
variable decision and taking into account some constraints; 
bounds of decision variables and DERs output power. The 
mathematical model is illustrated in the followed equations 
(11-17): 

𝐹XYZ = [ |𝛥𝑓|U𝑑𝑡
a

b
		 

(11) 

c𝐾Qdefg
h
ZiR,U

≤ 	 c𝐾QdhZiR,U
≤ 	 c𝐾Qdelm

h
ZiR,U

 (12) 

c𝐾Tdefg
h
ZiR,U

≤ 	 c𝐾TdhZiR,U
≤ 	 c𝐾Tdelm

h
ZiR,U

 (13) 

𝑃opqefg ≤ 	𝑃opq ≤ 	𝑃opqelm	 (14) 
𝑃rsefg ≤ 	𝑃rs ≤ 	𝑃rselm			 (15) 
𝑃taefg ≤ 	𝑃ta ≤ 	𝑃taelm (16) 
𝑃upvefg ≤ 	𝑃upv ≤ 	𝑃upvelm (17) 

where: 𝑃opqefg  ; 𝑃rsefg ; 𝑃taefgand 𝑃upvefg  are the 
minimum DG power values and 𝑃opqelm  ; 𝑃rselm; 𝑃taelm and 
𝑃upvelm are the maximum DG power value resumed in the 
followed Table. 

Table 3. Minimum and maximum DG power values 
Minimum power value 

(kW) 
Maximum power value 

(kW) 
𝑃opqefg  0 𝑃opqelm  20 

𝑃rsefg  0 𝑃rselm  10 

𝑃taefg  0 𝑃taelm  10 

𝑃upvefg  -20 𝑃upvelm  20 

Choosing the best EA is based on two principal criterions: 
global and local best search performances. The first one is the 
best objective function value, and the minimum iteration 
number is considered as the best according to this criterion. 
The second one is measured by the variance of the population 
in Eq. (18). In fact, EA stop of running when the candidate 
solution doesn’t change, so the fitness function will stabilize 
then the variance of population. 

𝑆U =
1

𝑁 − 1 .
y(𝑓T − 𝑓)
z

TiR

 (18) 

Where N is the number of particles, 𝑓T is the fitness values of 
the 𝑖|}  individual and f is the mean of fitness values of 
population. 

In the next sections 4 and 5, we will define the six EA adopted 
in this work and we will run and explore results to select the 
two best algorithms in the two criterions. 

4. Evolutionary Algorithms 

This paper presents some EA algorithms as genetic 
algorithm (GA), differential evolution (DE), harmony search 
(HS) and teaching learning-based optimization (TLBO). 

4.1. Genetic algorithm 

GA is a metaheuristic optimization inspired by natural 
selection process [16]. This algorithm is defined by three 
operators: mutation, crossover and selection used in the 
process of evolution of the optimal solution. 

Where: 
- Mutation is the first part of GA. It’s inspired from biological 
mutation and create some changes in the individual from the 
previous population to have better candidate (solution). This 
process should have a low probability to not be turned to 
random search. 
- Crossover is the second part of the GA also named 
recombination. It’s used to combine the genetic information 
of two parents to generate new offspring. 
- Selection is the last part of GA which individual genomes 
are chosen from a population for later breeding using the 
second operator. It’s done by evaluating individuals according 
to the fitness function and catch the best individual for the next 
step or to stop the algorithm. 

4.2. Particle swarm optimization method 

Particle swarm optimization (PSO) is a metaheuristic 
algorithm accredited to Kennedy and Eberhart in 1995 [15]. It 
optimizes a problem defined by an objective function by 
generating generation to improve a candidate solution in very 
large spaces of candidate solutions, starting from a randomly 
population. This method consists on particles movement 
inspired from behavior of birds flocking and fiches schooling 
the search-space according to their position and velocity. The 
particle’s movement is influenced by its local best-known 
position to reach the best-known positions in the search space. 
This is expected to move the swarm toward the best solutions. 
we define Velocity as: 

𝑉��R = 𝑤. 𝑉� + 𝑏R. (𝑃T − 𝑋�) + 𝑏U. (𝑃� − 𝑋�) 
variable decision: 𝑋��R = 𝑋� + 𝑉��R 
where: 
𝑉��R is the updated velocity, 𝑉�  is the actual velocity, w is the 
inertia weight, 𝑏R is the global learning coefficient, 𝑃T is the 
global best particle, 𝑋� is the 𝑘}� particle, 𝑏U is the personal 
learning coefficient and 𝑃� is the local best solution. 
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4.3. Differential Evolution 

DE is an EA and a stochastic, population-based 
optimization algorithm introduced by Storn and Price in 1996 
and developed to optimize real parameter, real valued 
functions. In this algorithm, population is constituted by 
agents who moves to reach the best position. It’s composed by 
mutation, recombination and selection [21]. These parts are 
repeated until some stopping criterion is reached. 

Where: 
-Mutation: this step consists on creating a new vector named 
donor vector Vf/�R from previous ones named target vectors 
X9 using a mutation factor F: 

Vf/�R = XR + F(XU + X�) 
-Recombination: It combines successful solutions from the 
previous generation to develop the trial from the target vectors 
and the donor vector from the previous step with a probability 
Cr. 
-Selection: in this level, the target vector is compared with the 
trial vector and the one with the lowest function value is 
admitted to the next generation. 

4.4. Teaching Learning-Based Optimization 

TLBO algorithm is a teaching-learning process inspired 
algorithm based on the effect of influence of a teacher on the 
output of learners in a class [17-18]. It describes two basic 
modes of the learning: through teacher (known as teacher 
phase) and through interaction with the other learners (known 
as learner phase). In this algorithm, the population concerned 
are learners and the main goal is to converge into population 
with teachers. 

Where: 
- The teacher phase means learning of the students from the 
teacher who tries to help them to obtain good marks. However, 
learner’s mark depends on the quality of teaching and the 
quality of students present in the class. The algorithm 
considers the best students as teachers and others as simple 
students. 
Students are improved and hope to change their status to 
teachers (feasible solutions). New individuals of the 
population are considered as students. 
- Student phase: Student learning relay on the randomly 
student’s interaction with others. In this phase, a student is 
connected randomly with another student. If the second 
learner gain less knowledge than the first one, then he will 
move toward his colleague otherwise he will go away.  
This process is repeated until satisfy the stopping criteria 

4.5. Biogeography-Based Optimization 

BBO [23] is the new approach to problem solving and 
shares some features with other biology-based algorithms. 
According to the theory of BBO, a good solution is related to 
an island with a high, HSI, and a poor solution signifies an 
island with a low HSI. High HSI solutions resist change more 
effectively than low HSI solutions. BBO is the study of 
migration, speciation and extinction of species. Mathematical 
models of BBO describes how a species migrates from one 

island (habitat) to another, how new species arise and how 
species become extinct. The BBO optimization algorithm is 
the first presented as an example of how a natural process can 
be generalized to solve optimization problems. 

4.6. Harmony Search 

HS is a music-based metaheuristic optimization algorithm 
[16]. The search process in optimization can be compared to a 
jazz musician’s improvisation process. The objective is to 
produce the best or optimum by transforming the qualitative 
improvisation process into some quantitative rules by 
idealization, and thus turning the beauty and harmony of 
music into an optimization procedure through search for a 
perfect harmony. 

5. Simulation results 

In this section, we apply step variations to PV panels, to 
WT and to load (see Fig. 2 and Fig. 3). The six EA are run 
using MATLAB/Simulink software defining common 
population size of 50 individuals and maximum iteration is 
fixed on 200 iterations. Simulation results are presented in 
Table. 4 and frequency deviations at T=20s of the different EA 
are illustrated in Fig 4. 

Table 4. Simulation results 

Algorithm Iteration Variance 10�� x Objective 
function 

GA 71 2,35	x	10�R� 6,3669 
TLBO 142 7,13	x	10��� 8,4841 
DE 118 7,74		x	10�R� 8,5321 
PSO 151 1,76	x	10�R� 8,5601 
HS 82 3,17	x10��R 8.5876 
BBO 200 1,41	x10�R� 8.6033 

 

Fig 2. Wind turbine and irradiation power changes 
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Fig 3. Load power changes 

 

Fig 4. Frequency deviation using EA 

      According to the results in Table 4, GA is the fastest EA 
with the lowest objective function value and TLBO has the 
minimum variance value. The idea is to benefit from 
performances of both two EA by combining them (as 
explained in the previous section). This novel approach mixes 
the randomness of GA with its excellent global performance 
and local convergence of TLBO proved by the homogeneity 
of population with its low variance value of population. The 
application of this proposed method in reducing frequency 
deviation is the main contribution in this paper.  

        The hybrid algorithm benefits from the advantages of 
both of GA and TLBO by switching those two algorithms. In 
fact, GA makes a diversity in population due to the random 
aspect of this algorithm and creates an elite population but 
with some pour individuals. These worst solutions will be 
eliminated by the TLBO algorithm to save the best individuals 
and improve the worst. This alternance of these two 
algorithms are based on variance of population of solutions 
and by iteration value of each algorithm. 

       This proposed method starts by initializing the program 
parameter (defining population size, bounds of decision 
variable, GA and TLBO parameter) and random creation of 

initial population. Because of the excellent ability of global 
search, GA is the first algorithm to start and it’s repeated until 
the variance of population will be less than Set Variance 
Value, then TLBO is run to eliminate poor individuals 
generated by GA. Despite of its best local search performance, 
TLBO can take much time and much iteration until reaching 
the stopping criterion. That’s why the variation of the optimal 
fitness function 𝐹XYZ  should be compared to a 𝑆𝑒𝑡	𝐹XYZ	𝑉𝑎𝑙𝑢𝑒 
to switch or not to GA. The following figure illustrates the 
combined GA-TLBO algorithm explained. Parameter are 
selected as Set Variance Value=10-5, 𝑆𝑒𝑡	𝐹XYZ	𝑉𝑎𝑙𝑢𝑒=10-5, 
Set_Cpt1=5 and Set_Cpt2=5. 

 
Fig 5. Flowchart of GA-TBLO algorithm 

        As shown in Fig 5, the proposed method starts by 
initialization of the first population, ΔF���  by infinity and let 
index=0 in the step 0. In the step 1, we calculate the fitness 
value of the population then we check if index=0 and ΔF��� 
and variance are less than their set values to select the EA to 
run (GA or TLBO) and create the next population. We define 
two counters Cpt1 and Cpt2 to calculate the consecutive 
iteration number respectively of GA or TLBO.  

       The program is ended if Cpt1 and Cpt2 are less than their 
Set values respectively Set_Cpt1 and Set_Cpt2 or the 
maximum of iteration is reached, otherwise we repeat the first 
step. Table 5 followed table illustrates the performance of the 
proposed method compared to GA and TLBO: 

Table 5. Results proposed method 

Algorithm Iteration Variance 
10� x 

Objective 
function 

GA 71 2,35	x	10�R� 6.3669 
TLBO 142 7,13	𝑥	10��� 8.4841 
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Proposed 
method: GA-
TLBO 

66 5,96	𝑥	10��� 6,2571 

 

Fig 6. Frequency deviation using proposed method 

5.1. Robustness of proposed method 

To ensure the robustness of the proposed algorithm, MG 
parameters uncertainties are considered as illustrated in Tab 6. 

Table 6. Variation of MG parameters 

Parameter Value Parameter Value 
D (pu/Hz) +40% T12 (s) 15% 

M (pu) +40% T0, (s) -10% 
T() (s) +20% T7 (s) 25% 
T+, (s) +25% T8 (s) -35% 
T3.4 (s) +20%   

A new scenario was established to test the accuracy of the 
proposed method under strict changes of MG parameters. A 
comparison between EA is illustrated in Fig. 7-8 and Tab 7-8. 

 

Table 7. Simulation results under MG uncertainty parameters 

Algorithm Iteration Variance 10� x Objective 
function 

GA 68 2,35	x10�R� 7.7365 
TLBO 167 9,04	x10�U� 7.7383 
DE 136 1,13	x10�R� 7.9040 
PSO 200 1,18	x10�Ub 7.9406 
HS 94 3,68	x10�R¡ 7.9772 
BBO 200 4,45	x10�R� 8.2459 

Table 8. Simulation results robust. 

Algorithm Iteration Variance 
10�� x 

Objective 
function 

GA 68 2,35	x10�R� 7.7365 
TLBO 167 9,04	x10�U� 7.7383 
Proposed 
method: GA-
TLBO 

61 5,137	x10��� 7.7275 

 

Fig 7. Frequency deviation using EA under uncertainty MG 
parameters. 

 

Fig 8. Frequency deviation using EA under uncertainty MG 
parameters 

Simulation results confirm again that GA algorithm 
provide the best global performances with less iteration 
number then TLBO show its excellent local performance. 
That’s why the proposed method hybrid GA-TLBO is 
accurate in front of the studied EA algorithms in this paper and 
presents the best values. 

5.2. Simulation under uncertainty 

In this part, a small perturbance is introduce to each DER 
of 10%. The goal is to validate the efficiency of the proposed 
method under uncertainty of inputs profile of non-controllable 
sources.  
Under this uncertain perturbation, output power will be 
affected. As consequence, power balance will be destabilized 
then frequency deviation will be more important comparing to 
previous scenarios. Simulation results are shown in Fig 9-10 
and Table 9-10. 
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Table 9. Simulation results under uncertainty 

Algorithm Iteration Variance 10�� x Objective 
function 

GA 88 4.35	x10�Rb 12.9407 
TLBO 133 1.26	x10��� 12.9707 
DE 200 6.65	x10�RR 12.9808 
PSO 144 3.27	x10��b 13.0897 
HS 156 5.07	x10�Ub 13.1484 
BBO 200 8.76	x10�RU 13.2593 

Table 10. Simulation results of proposed method under 
uncertainty. 

Algorithm Iteration Variance 
10�� x 

Objective 
function 

GA 88 4.35	x10�Rb 12.9407 
TLBO 133 1.26	x10��� 12.9707 
Proposed 
method: GA-
TLBO 

81 3.27	x10��R 12.8824 

 

Fig 9. Frequency deviation using EA under uncertainty of 
output power 

 

Fig 10. Frequency deviation using proposed method 

         According to the results, GA maintain its performance 
as the faster EA with the minimum Objective function and 
frequency fluctuation. By highlighting variance of population, 
TLBO conserve the best local behavior against other EAs. 
These conclusions demonstrate the combination between GA 
and TLBO as proposed method in this paper. 

Table 9-10 show the efficiency of the proposed method 
with the minimum frequency deviation. In summary, results 
show that the proposed method searches out the optimal 
estimated values quickly and effectively than two other 
algorithms with uncertainty. 

5.3. Simulation under variable Renewable power profiles 

In general, MG deals with variable profile of irradiation, 
and load wind power unlike step profiles used specially to test 
controller performances.  In this section we apply a variable 
random radiation, wind and load power profile as illustrated 
in Fig 11-13. 

 

Fig 11. Wind turbine power variable changes. 

 

Fig 12. Irradiation power variable changes 
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Fig 12. Load power variable changes 

Table 11 shows results of classical algorithms and confirms 
the global best performances of GA and the local best 
performance of TLBO proved in the previous three scenarios. 
These results justify the combination of GA and TLBO in this 
case already presented in the first part of this section. In 
addition, the proposed method was compared to classical EA 
algorithms in order to verify its accuracy and best performance 
against other approaches and global resus are resumed in 
Table 12. 

Frequency deviation of the six classical EA are illustrated 
in Fig 14 and a zooming between T1=29s and T=30s is 
presented in Fig 15 to compare easily these curves. Figure 16 
contains only the two best classical EA and the proposed 
method. Fig 17 zooms the profile between T1=29s and 
T2=30s and reveals the robustness of GA-TLBO algorithm to 
minimize frequency deviation better than GA as the most 
efficient classical algorithm presented in this paper.  

Table 11. Simulation results under variable WT and PV 
profiles. 

Algorithm Iteration Variance 10�� x Objective 
function 

GA 102 3.17	𝑥10�U� 6.0904 
PSO 170 2.88	𝑥10�R� 6.2977 
BBO 200 2.46	𝑥10�R� 6.8829 
DE 83 1.27	𝑥10��U 7.0129 
TLBO 76 1.267	𝑥10��� 7.2029 
HS 85 3.17	𝑥10�U� 7.2729 

Table 12. Simulation results of proposed method under 
variable perturbations. 

Algorithm Iteration Variance 
10�� x 

Objective 
function 

GA 102 3.17	𝑥10�U� 6.0904 
TLBO 76 1.267	𝑥10��� 7,2029 
Proposed 
method: GA-
TLBO 

63 8.231	𝑥10��� 5,6584 

 

Fig 13. Frequency deviation using EA under variable WT and 
PV profiles 

 

Fig 14. Frequency deviation using proposed method under 
variable WT and PV profiles. 

        This scenario is considered as the real scenario which can 
affect the MG. Referring to Fig 15, GA is the best EA in terms 
of cost function and according to Fig 16 the proposed method 
provide the minimum of frequency deviation compared to GA 
and TLBO. Tables 11 and 12 resume all results that confirm 
the robustness of the proposed method in local ang global 
algorithm performances. 
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Fig 15. Frequency deviation using EA under variable WT and 
PV profiles at T=29s. 

 

Fig 16. Frequency deviation using proposed method under 
variable WT and PV profiles at T=29s 

6. Conclusion 

In this paper, PI controller tuned by EA is used for 
secondary frequency control design problem in an 
autonomous MG. In order to control frequency deviation, a 
linearized MG state-space model is made. In the first part, a 
comparison between classical and EA tuned methods are done 
to make in evidence the accuracy EA taking into account the 
effects of ΔP?9@%, ΔP9::, and ΔP¢#$% disturbances. As it shown, 
a novel GA-TLBO algorithm with cascade structure, which is 
used to minimize the frequency deviation with the 
intermittence of renewable and the variation load. The 
variance of fitness value of population as a criterion has been 
given to evaluate the population convergence and local 
convergence of population has been selected as the switching 
condition of TLBO to GA. Moreover, elite population 
replacement in GA is applied to TLBO to accelerate the 
convergence of population. Results from the simulations 

indicate that the proposed GA-TLBO algorithm represents a 
feasible and promising scheme for estimating the parameters 
of the equivalent admittance circuit model. Simulations about 
some similar algorithms have also been carried out. 
Comparing the simulation results, the GA-TLBO shows the 
best efficiency in frequency control in MG. Future work can 
include the forecasting of the considered perturbations; 
namely kinetic power, solar irradiation power and load 
demand to anticipate changes and reinforce frequency 
fluctuation in a more complex MG system. 
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