Interior Search Optimization Algorithm for Modeling Power Curve of Wind Turbine
Abstract
Keywords
Full Text:
PDFReferences
Mohammed I. R., Saleh A. A., Saleh A. M., “Consolidity analysis of wind turbines in wind farmsâ€, International Journal of Renewable Energy Research, Vol.10, No.1, pp. 205-216, 2020.
Bao Y., Pan D., Wang X., Liao L., Yang Q., “Least-square B-spline approximation based wind turbine power curve modelingâ€, Chinese Automation Congress (CAC), Jinan, China, DOI: 10.1109/CAC.2017.8243986, pp. 6711-6716, 20-22 October 2017.
Bao Y., Yang Q., Sun Y., “Iterative modeling of wind turbine power curve based on leastâ€square Bâ€spline approximationâ€, Asian Journal of Control, DOI: 10.1002/asjc.2150, Vol. 21, pp. 2004-2016, 2019.
Howlader A. M., Urasaki N., Uchida K., Yona A., Senjyu T., Kim C. K., Saber A. Y., “Parameter Identification of Wind Turbine for Maximum Power-point Tracking Controlâ€, Electric Power Components and Systems, DOI: 10.1080/15325000903376974, Vol. 38, Issue 5, pp. 603-614, 2010.
Goudarzi A., Davidson I. E., Ahmadi A., Venayagamoorthy G. K., “Intelligent analysis of wind turbine power curve modelsâ€, IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), Orlando, Florida, USA, DOI: 10.1109/CIASG.2014.7011548, pp. 1-7, 9-12 December 2014.
Kusiak A., Zheng H., Song Z., “Models for monitoring wind farm powerâ€, Renewable Energy, DOI: 10.1016/j.renene.2008.05.032, Vol. 34, Issue 3, pp. 583-590, 2009.
Lydia M., Selvakumar A. I., Kumar S. S., Kumar G. E. P., “Advanced Algorithms for Wind Turbine Power Curve Modelingâ€, IEEE Transactions on Sustainable Energy, DOI: 10.1109/TSTE.2013.2247641, Vol. 4, Issue 3, pp. 827-835, 2013.
Seo S., Oh S. D., Kwak H. Y., “Wind turbine power curve modeling using maximum likelihood estimation methodâ€, Renewable Energy, DOI: 10.1016/j.renene.2018.09.087, Vol. 136, pp. 1164-1169, 2019.
Goudarzi A., Swanson A. G., Kazemi M., Wang K., “Intelligent wind turbine power curve modelling using the third version of cultural algorithm (CA3)â€, International Journal of Renewable Energy Research, Vol.7, No.3, pp. 1340- 1351, 2017.
Ma J., Yang M., Lin Y., “Ultra-Short-Term Probabilistic Wind Turbine Power Forecast Based on Empirical Dynamic Modelingâ€, IEEE Transactions on Sustainable Energy, DOI: 10.1109/TSTE.2019.2912270, Vol. 11, Issue 2, pp. 906-915, 2020.
Zierath J., Rachholz R., Rosenow S. E., Bockhahn R., Schulze A., Woernle C., “Experimental identification of modal parameters of an industrial 2-MW wind turbineâ€, Wind Energy, DOI: 10.1002/we.2165, Vol. 21, pp. 338-356, 2018.
Jin R., Wang L., Huang C., Jiang S., “Wind turbine generation performance monitoring with Jaya algorithmâ€, International Journal of Energy Research, DOI: 10.1002/er.4382, Vol. 43, pp. 1604-1611, 2019.
MarÄiukaitis M., ŽutautaitÄ— I., MartiÅ¡auskas L., JokÅ¡as B., GeceviÄius G., Sfetsos A., “Non-linear regression model for wind turbine power curveâ€, Renewable Energy, DOI: 10.1016/j.renene.2017.06.039, Vol. 113, pp. 732-741, 2017.
Tao S., Xu Q., Feijóo A., Kuenzel S., Bokde N., “Integrated Wind Farm Power Curve and Power Curve Distribution Function Considering the Wake Effect and Terrain Gradientâ€, Energies, DOI: 10.3390/en12132482, Vol. 12, 2482, 2019.
Yesilbudak M., “A novel power curve modeling framework for wind turbinesâ€, Advances in Electrical and Computer Engineering, DOI: 10.4316/AECE.2019.03004, Vol. 19, Issue 3, pp. 29-40, 2019.
Rose J., Hiskens I. A., “Estimating wind turbine parameters and quantifying their effects on dynamic behaviorâ€, IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, Pennsylvania, USA, DOI: 10.1109/PES.2008.4596862, pp. 1-7, 20-24 July 2008.
Jaya K. M., Bhargava V., Donepudi J., “BEM prediction of wind turbine operation and performanceâ€, International Journal of Renewable Energy Research, Vol.8, No.4, pp. 1962-1973, 2018.
Cao Y., Hu Q., Shi H., Zhang Y., “Prediction of wind power generation base on neural network in consideration of the fault timeâ€, IEEJ Transactions on Electrical and Electronic Engineering, DOI: 10.1002/tee.22853, Vol. 14, pp. 670-679, 2019.
Demirdelen T., Tekin P., Aksu I. O., Ekinci F., “The Prediction Model of Characteristics for Wind Turbines Based on Meteorological Properties Using Neural Network Swarm Intelligenceâ€, Sustainability, DOI: 10.3390/su11174803, Vol. 11:4803, 2019.
Bai L, Crisostomi E., Raugi M., Tucci M., “Wind turbine power curve estimation based on earth mover distance and artificial neural networksâ€, IET Renewable Power Generation, DOI: 10.1049/iet-rpg.2019.0530, Vol. 13, Issue 15, pp. 2939-2946, 2019.
Bartolomé M., Sehnke F., Lazzús J. A., Salfate I., Felder M., Montecinos S., “Wind turbine power curve modeling based on Gaussian Processes and Artificial Neural Networksâ€, Renewable Energy, DOI: 10.1016/j.renene.2018.02.081, Vol. 125, pp. 1015-1020, 2018.
Ciulla G., D’Amico A., Dio V. D., Brano V. L., “Modelling and analysis of real-world wind turbine power curves: Assessing deviations from nominal curve by neural networksâ€, Renewable Energy, DOI: 10.1016/j.renene.2019.03.075, Vol. 140, pp. 477-492, 2019.
Renani E. T., Delshad M. M., Elias M. F. M., Rahim N. A., “Development of an enhanced parametric model for wind turbine power curveâ€, Applied Energy, DOI: 10.1016/j.apenergy.2016.05.124, Vol. 177, pp. 544-552, 2016.
Caro F. D., Vaccaro A., Villacci D., “Adaptive Wind Generation Modeling by Fuzzy Clustering of Experimental Dataâ€, Electronics, DOI: 10.3390/electronics7040047, Vol. 7, 47, 2018.
Ouyang T., Kusiak A., He Y., “Modeling wind-turbine power curve: A data partitioning and mining approachâ€, Renewable Energy, DOI: 10.1016/j.renene.2016.10.032, Vol. 102, pp. 1-8, 2017.
Pei S., Li Y., “Wind Turbine Power Curve Modeling with a Hybrid Machine Learning Techniqueâ€, Applied Sciences, DOI: 10.3390/app9224930, Vol. 9, 4930, 2019.
Pandit R. K., Infield D., “Comparative analysis of Gaussian Process power curve models based on different stationary covariance functions for the purpose of improving model accuracyâ€, Renewable Energy, DOI: 10.1016/j.renene.2019.03.047, Vol. 140, pp. 190-202, 2019.
Mehrjoo M., Jozani M. J., Pawlak M., “Wind turbine power curve modeling for reliable power prediction using monotonic regressionâ€, Renewable Energy, DOI: 10.1016/j.renene.2019.08.060, Vol. 147, pp. 214-222, 2020.
Gandomi A. H., “Interior search algorithm (ISA): A novel approach for global optimizationâ€, ISA Transactions, DOI: 10.1016/j.isatra.2014.03.018, Vol. 53, Issue 4, pp. 1168-1183, 2014.
Moravej M., Moghari S. M. H., “Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approachâ€, Water Resources Management, DOI: 10.1007/s11269-016-1358-y, Vol. 30, Issue 10, pp. 3389-3407, 2016.
Kumar M., Rawat T. K., Jain A., Singh A. A., Mittal A., “Design of Digital Differentiators Using Interior Search Algorithmâ€, Procedia Computer Science, DOI: 10.1016/j.procs.2015.07.351, Vol. 57, pp. 368-376, 2015.
Bentouati B., Chettih S., Chaib L., “Interior search algorithm for optimal power flow with non-smooth cost functionsâ€, Cogent Engineering, DOI: 10.1080/23311916.2017.1292598, Vol. 4, Issue 1, 1292598, 2017.
Trivedi I. N., Jangir P., Bhoye M., Jangir N., “An economic load dispatch and multiple environmental dispatch problem solution with microgrids using interior search algorithmâ€, Neural Computing and Applications, DOI: 10.1007/s00521-016-2795-5, Vol. 30, pp. 2173-2189, 2018.
Khan K., Kamal A., Basit A., Ahmad T., Ali H., Ali A., “Economic Load Dispatch of a Grid-Tied DC Microgrid Using the Interior Search Algorithmâ€, Energies, DOI: 10.3390/en12040634, Vol. 12, 634, 2019.
Kler D., Rana K. P. S., Kumar V., “Parameter extraction of fuel cells using hybrid interior search algorithmâ€, International Journal of Energy Research, DOI: 10.1002/er.4424, Vol. 43, pp. 2854-2880, 2019.
El-Hay E. A., El-Hameed M. A., El-Fergany A. A., “Parameters’ optimization of SOFC for steady state and transient simulationsâ€, Energy, DOI: 10.1016/j.energy.2018.10.038, Vol. 166, pp. 451-461, 2018.
Kler D., Goswami Y., Rana K. P. S., Kumar V., “A novel approach to parameter estimation of photovoltaic systems using hybridized optimizerâ€, Energy Conversion and Management, DOI: 10.1016/j.enconman.2019.01.102, Vol. 187, pp. 486-511, 2019.
Villanueva D., Feijóo A. E., “Reformulation of parameters of the logistic function applied to power curves of wind turbinesâ€, Electric Power Systems Research, DOI: 10.1016/j.epsr.2016.03.045, Vol. 137, pp. 51-58, 2016.
Villanueva D., Feijóo A. E., “Comparison of logistic functions for modeling wind turbine power curvesâ€, Electric Power Systems Research, DOI: 10.1016/j.epsr.2017.10.028, Vol. 155, pp. 281-288, 2018.
Wang Y., Hu Q., Li L., Foley A. M., Srinivasan D., “Approaches to wind power curve modeling: A review and discussionâ€, Renewable and Sustainable Energy Reviews, DOI: 10.1016/j.rser.2019.109422, Vol. 116, 109422, 2019.
Gandomi A. H., Roke D. A., “Engineering optimization using interior search algorithmâ€, IEEE Symposium on Swarm Intelligence, Orlando, Florida, USA, DOI: 10.1109/SIS.2014.7011771, pp. 1-7, 9-12 December 2014.
DOI (PDF): https://doi.org/10.20508/ijrer.v10i3.11011.g8010
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4