Intra-day Variability Quantification from Ground-based Measurements of Global Solar Irradiance
Abstract
Keywords
Full Text:
PDFReferences
S. Sobri, S. Koohi-Kamali, and N. A. Rahim, “Solar photovoltaic generation forecasting methods: A review,†Energy Conversion and Management, vol. 156, pp. 459–497, 2018.
E. Taibi et al., “Power system flexibility for the energy transition: Part 1, Overview for policy makers,†2018.
A. M. Ismail, R. Ramirez-Iniguez, M. Asif, A. B. Munir, and F. Muhammad-Sukki, “Progress of solar photovoltaic in ASEAN countries: A review,†Renewable and Sustainable Energy Reviews, vol. 48, pp. 399–412, 2015.
“Market Report Series: Renewables 2017 – Analysis,†IEA. https://www.iea.org/reports/renewables-2017 (accessed Aug. 31, 2020).
M. Lave, M. J. Reno, and R. J. Broderick, “Characterizing local high-frequency solar variability and its impact to distribution studies,†Solar Energy, vol. 118, pp. 327–337, 2015.
M. Schroedter-Homscheidt, M. Kosmale, S. Jung, and J. Kleissl, “Classifying ground-measured 1 minute temporal variability within hourly intervals for direct normal irradiances,†Meteorologische Zeitschrift, vol. 27, no. 2, pp. 161–179, 2018.
R. Blaga, A. Sabadus, N. Stefu, C. Dughir, M. Paulescu, and V. Badescu, “A current perspective on the accuracy of incoming solar energy forecasting,†Progress in Energy and Combustion Science, vol. 70, pp. 119–144, 2019.
V. Badescu and M. Paulescu, “Statistical properties of the sunshine number illustrated with measurements from Timisoara (Romania),†Atmospheric research, vol. 101, no. 1–2, pp. 194–204, 2011.
R. Perez, S. Kivalov, J. Schlemmer, K. Hemker, and T. E. Hoff, “Short-term irradiance variability: Preliminary estimation of station pair correlation as a function of distance,†Solar Energy, vol. 86, no. 8, pp. 2170–2176, Aug. 2012, doi: 10.1016/j.solener.2012.02.027.
J. Stein, C. Hansen, and M. J. Reno, “The variability index: A new and novel metric for quantifying irradiance and PV output variability.,†Sandia National Laboratories, 2012.
B. O. Kang and K.-S. Tam, “A new characterization and classification method for daily sky conditions based on ground-based solar irradiance measurement data,†Solar Energy, vol. 94, pp. 102–118, 2013.
P. Lauret, R. Perez, L. M. Aguiar, E. Tapachès, H. M. Diagne, and M. David, “Characterization of the intraday variability regime of solar irradiation of climatically distinct locations,†Solar Energy, vol. 125, pp. 99–110, 2016.
R. Blaga and M. Paulescu, “Quantifiers for the solar irradiance variability: A new perspective,†Solar Energy, vol. 174, pp. 606–616, 2018.
G. M. Lohmann, “Irradiance variability quantification and small-scale averaging in space and time: A short review,†Atmosphere, vol. 9, no. 7, p. 264, 2018.
X. Sun, J. M. Bright, C. A. Gueymard, B. Acord, P. Wang, and N. A. Engerer, “Worldwide performance assessment of 75 global clear-sky irradiance models using Principal Component Analysis,†Renewable and Sustainable Energy Reviews, vol. 111, pp. 550–570, Sep. 2019, doi: 10.1016/j.rser.2019.04.006.
M. Lefèvre et al., “McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions,†Atmospheric Measurement Techniques, vol. 6, pp. 2403–2418, 2013.
M. Schroedter-Homscheidt et al., “The Copernicus atmosphere monitoring service (CAMS) radiation service in a nutshell,†2016.
O. E. Alani, A. Ghennioui, A. A. Merrouni, H. Ghennioui, Y.-M. Saint-Drenan, and P. Blanc, “Validation of surface solar irradiances estimates and forecast under clear-sky conditions from the CAMS McClear model in Benguerir, Morocco,†2019, vol. 2126, no. 1, p. 190005.
C. F. Coimbra, J. Kleissl, and R. Marquez, “Overview of solar-forecasting methods and a metric for accuracy evaluation,†Solar energy forecasting and resource assessment, pp. 171–194, 2013.
“World Meteorological Organization,†World Meteorological Organization. https://public.wmo.int/en (accessed Aug. 31, 2020).
L. M. Aguiar, B. Pereira, M. David, F. DÃaz, and P. Lauret, “Use of satellite data to improve solar radiation forecasting with Bayesian Artificial Neural Networks,†Solar Energy, vol. 122, pp. 1309–1324, 2015.
J. Ascencio-Vásquez, K. Brecl, and M. TopiÄ, “Methodology of Köppen-Geiger-Photovoltaic climate classification and implications to worldwide mapping of PV system performance,†Solar Energy, vol. 191, pp. 672–685, 2019.
DOI (PDF): https://doi.org/10.20508/ijrer.v10i4.11308.g8042
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4