Simulation and performance optimization of high efficiency triple-junction solar cells using an advanced MSCS-1D simulator
Abstract
Keywords
Full Text:
PDFReferences
S. Kurtz, D. Myers, W. McMahon, J. Geisz, and M. Steiner, "A comparison of theoretical efficiencies of multi?junction concentrator solar cells," Progress in Photovoltaics: research and applications, vol. 16, pp. 537-546, 2008.
M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, "Solar cell efficiency tables (version 57)," Progress in Photovoltaics: Research and Applications, vol. 29, pp. 3-15, 2021.
Fraunhofer ISE. Photovoltaics Report. Available: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf, Acced date: October 10, 2021
K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, et al., "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nature energy, vol. 2, p. 17032, 2017.
W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p?n junction solar cells," Journal of applied physics, vol. 32, pp. 510-519, 1961.
A. Kowsar and S. F. U. Farhad, "High Efficiency Four Junction III-V Bismide Concentrator Solar Cell: Design, Theory, and Simulation," International Journal of Renewable Energy Research (IJRER), vol. 8, pp. 1762-1769, 2018.
M. Wiesenfarth, S. P. Philipps, A. W. Bett, K. Horowitz, and S. Kurtz, "Current status of concentrator photovoltaic (CPV) technology," Fraunhofer ISE| NREL CPV Report, vol. 1, 2017.
J. F. Geisz, R. M. France, K. L. Schulte, M. A. Steiner, A. G. Norman, H. L. Guthrey, et al., "Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration," Nature Energy, vol. 5, pp. 326-335, 2020.
D. Friedman, "Progress and challenges for next-generation high-efficiency multijunction solar cells," Current Opinion in Solid State and Materials Science, vol. 14, pp. 131-138, 2010.
M. Wiesenfarth, I. Anton, and A. Bett, "Challenges in the design of concentrator photovoltaic (CPV) modules to achieve highest efficiencies," Applied Physics Reviews, vol. 5, p. 041601, 2018.
Y. Liu, Y. Sun, and A. Rockett, "A new simulation software of solar cells—wxAMPS," Solar Energy Materials and Solar Cells, vol. 98, pp. 124-128, 2012.
S. N. Sakib, S. P. Mouri, A. Kowsar, M. Rahaman, and M. S. Kaiser, "Theoretical efficiency of AlAs/GaAs/GaAs0. 91Bi0. 085 based new multijunction solar cell and effects of solar radiation and sun concentration on it," in 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), 2016, pp. 1-6.
A. Kowsar, M. Billah, S. Dey, S. C. Debnath, S. Yeakin, and S. F. U. Farhad, "Comparative Study on Solar Cell Simulators," in 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET), 2019, pp. 1-6.
M. A. Keith McIntosh, Ben Sudbury. (10 th January). Overview of PV Simulation Programs. Available: https://www.pvlighthouse.com.au/simulation-programs
Y. Liu, M. Ahmadpour, J. Adam, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Madsen, "Modeling multijunction solar cells by nonlocal tunneling and subcell analysis," IEEE Journal of Photovoltaics, vol. 8, pp. 1363-1369, 2018.
A. Kowsar, S. N. Sakib, M. B. Billah, S. Dey, K. N. Babi, A. N. Bahar, et al., "A novel simulator of multijunction solar cells — MSCS-1D," International Journal of Renewable Energy Research (IJRER), vol. 10, pp. 1369-1375, 2020.
A. Kowsar, S. C. Debnath, M. S. Islam, A. N. Bahar, and S. F. U. Farhad, "Numerical Simulation of the High Efficiency Triple Junction Concentrator Photovoltaic Cells Using MSCS-1D," in 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), 2021, pp. 0722-0725.
S. P. Mouri, S. N. Sakib, S. Hoque, and M. S. Kaiser, "Theoretical efficiency and cell parameters of AlAs/GaAs/Ge based new multijunction solar cell," in 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), 2016, pp. 1-6.
A. W. Bett, S. P. Philipps, S. Essig, S. Heckelmann, R. Kellenbenz, V. Klinger, et al., "Overview about technology perspectives for high efficiency solar cells for space and terrestrial applications," in 28th European Photovoltaic Solar Energy Conference and Exhibition, 2013, pp. 1-6.
H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, et al., "III–V multijunction solar cells for concentrating photovoltaics," Energy & Environmental Science, vol. 2, pp. 174-192, 2009.
S. M. Sze and K. K. Ng, Physics of semiconductor devices: John wiley & sons, 2006.
A. Kowsar, K. R. Mehzabeen, M. S. Islam, and Z. Mahmood, "Determination of the theoretical efficiency of GaInP/GaAs/GaAs1-xBix multijunction solar cell," in Proc. of the 10th International conf. on fiber optics and Photonics Photonics, India, 2010.
A. Kowsar, S. F. U. Farhad, and S. N. Sakib, "Effect of the Bandgap, Sun Concentration and Surface Recombination Velocity on the Performance of a III-V Bismide Multijunction Solar Cells," International Journal of Renewable Energy Research (IJRER), vol. 8, pp. 2218-2227, 2018.
M. E. Nell and A. M. Barnett, "The spectral pn junction model for tandem solar-cell design," IEEE Transactions on Electron Devices, vol. 34, pp. 257-266, 1987.
A. Standard, "G173,“Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface,” Amer," Society for Testing Matls., West Conshocken PA, USA, 2007.
C. A. Gueymard, D. Myers, and K. Emery, "Proposed reference irradiance spectra for solar energy systems testing," Solar energy, vol. 73, pp. 443-467, 2002.
A. S. Brown and M. A. Green, "Radiative coupling as a means to reduce spectral mismatch in monolithic tandem solar cell stacks theoretical considerations," in Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002., 2002, pp. 868-871.
P. Würfel, Physics of solar cells vol. 1: Wiley-vch Weinheim, 2005.
M. A. Green, M. J. Keevers, I. Thomas, J. B. Lasich, K. Emery, and R. R. King, "40% efficient sunlight to electricity conversion," Progress in Photovoltaics: Research and Applications, vol. 23, pp. 685-691, 2015.
J. W. Leem, J. S. Yu, J. N. Kim, and S. K. Noh, "Theoretical modeling and optimization of III–V GaInP/GaAs/Ge monolithic triple-junction solar cells," Journal of the Korean Physical Society, vol. 64, pp. 1561-1565, 2014.
N. H. Karam, R. R. King, M. Haddad, J. H. Ermer, H. Yoon, H. L. Cotal, et al., "Recent developments in high-efficiency Ga0. 5In0. 5P/GaAs/Ge dual-and triple-junction solar cells: steps to next-generation PV cells," Solar Energy Materials and Solar Cells, vol. 66, pp. 453-466, 2001.
M. A. Kowsar, M. S. Islam, A. Sharmin, and Z. Mahmood, "Analysis of theoretical efficiencies of GaInP2/GaAs/Ge multijunction solar cell," The Dhaka University Journal of Applied Science and Engineering, vol. 3, 2015.
M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, "Solar cell efficiency tables (version 56)," Progress in Photovoltaics: Research and Applications, vol. 28, pp. 629-638, 2020.
M. A. Green, "Third generation photovoltaics," 2006.
DOI (PDF): https://doi.org/10.20508/ijrer.v11i4.12474.g8350
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4