Performance Predictions Accuracy of a Smart Sun Tracking System for Photovoltaic Applications
Abstract
Despite technological innovations, solar energy efficiency is still low nowadays. It thus needs to be optimized. To improve solar photovoltaic (PV) modules efficiency, several methods have been designed and implemented. Such methods are the Maximum Power Point Tracking (MPPT) and Solar Tracking (ST). In this decade, the solar tracking method is facing a great challenge: the minimization of the electrical energy consumption of electromechanical systems used to track the sun’s position. Manufacturers must be able to predict the net electrical power output obtained from a tracking PV panel to save energy and time. The purpose of the present work is to simulate the performance of a smart solar tracker and assess the accuracy of predictions. To achieve this objective, the one diode model of solar PV cell has been used. In an innovative approach, the one diode model has been simulated using experimental data of temperature and global solar irradiance which are easily available on the internet. The accuracy of predicted values was analysed using reliable statistical indicators such as the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE), the Coefficient of determination (R-square) and the Pearson Coefficient of Correlation (PCC). Simulation results of the power output of the tracking PV panel is better than the one of the fixed panel with 0.25, 0.32, 0.66, and 0.81 respectively for the MAE, the RMSE, the R-square and the PCC. These results show that predictions are in good agreement with experimental measures.
Keywords
Full Text:
PDFReferences
X. Li, Q. Wang, H. Wen & W. Xiao, “Comprehensive studies on operational principles for maximum power point tracking in photovoltaic systems”, IEEE Access, vol. 7, pp. 121407-121420, 2019.
A. Belkaid, I. Colak & K. Kayisli, “A Comprehensive Study of different Photovoltaic Peak Power Tracking Methods”, 6th IEEE International Conference on Renewable Energy Research and Applications (ICRERA), San Dego, CA, USA, 2017.
C. B. Nzoundja Fapi, A. Badji, H. Tchakounte, G. T. Bantio, M. Kamta & P. Wira, “Assessment of two MPPT algorithms for a standalone photovoltaic system with variable weather conditions”, International Journal of Engineering & Technology, vol. 7, no. 4, pp. 6790-6796, 2018.
I. N. Aman & L. M. Anas, “MPPT Algorithms (PSO, FA, and MFA) for PV System Under Partial Shading Condition, Case Study: BTS in Algazalia, Baghdad”, International Journal of Smart Grid, vol. 10, no. 3, September, 2020.
S. Racharla, & K. Rajan, “Solar tracking system–a review”, International Journal of Sustainable Engineering, vol. 10, no. 2, pp. 72-81, 2017.
U. Mohankumar, J. Freeman, B. Shankar, & K. Achuthan, “Remote triggered single-axis solar PV tracking system with varying angle of incidence”, International Journal of Renewable Energy Research (IJRER), vol. 8, no. 3, pp. 1454-1463, 2018.
A. Z. Hafez, A. M. Yousef, & N. M. Harag, “Solar tracking systems: Technologies and trackers drive types–A review”, Renewable and Sustainable Energy Reviews, vol. 91, pp. 754-782, 2018.
R. F. Fuentes-Morales, A. Diaz-Ponce, M. I. Peña-Cruz, P. M. Rodrigo, L. M. Valentín-Coronado, F. Martell-Chavez & C. A. Pineda-Arellano, “Control algorithms applied to active solar tracking systems: A review”, Solar Energy, vol. 212, pp. 203-219, 2020.
F. J. Gómez-Uceda, I. M. Moreno-Garcia, Á. Perez-Castañeda, & L. M. Fernández-Ahumada “Study of the Dependence of Solar Radiation Regarding Design Variables in Photovoltaic Solar Installations with Optimal Dual-Axis Tracking”, Applied Sciences, vol. 11, no. 9, p. 3917, 2021.
R. G. Vieira, F. K. O. M. V. Guerra, M. R. B. G. Vale, & M. M. Araújo, “Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator”, Renewable and Sustainable Energy Reviews, vol. 64, pp. 672-681, 2016.
M. H. M. Sidek, N. Azis, W. Z. W. Hasan, M. Z. A. Ab Kadir, S. Shafie & M. A. M. Radzi, “Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control”, Energy, vol. 124, pp. 160-170, 2017.
A. Coelho, & R. Castro, “Sun tracking PV power plants: Experimental validation of irradiance and power output prediction models”, International journal of Renewable energy research, vol. 2, no. 1, pp. 23-32, 2012.
S. Srang & S. Ath, “Dynamic Modeling and Simulation for 2DOF Parallel Mechanism Solar Tracker”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 283-288, July 2019.
S. A. A. Shufat, E. Kurt & A. Hancerlio?ullar?, “Modeling and Design of Azimuth-Altitude Dual Axis Solar Tracker for Maximum Solar Energy Generation”, International Journal of Renewable Energy Development, vol. 8, no.1, 2019.
H. Bouzakri & A. Abbou, “Mono-axial solar tracker with equatorial mount, for an improved model of a photovoltaic panel” International Journal of Renewable Energy Research (IJRER), vol. 10, no. 2, pp. 578-590, 2020.
C. S. Chin, “Model-based simulation of an intelligent microprocessor-based standalone solar tracking system”, MATLAB-A Fundamental Tool for Scientific Computing and Engineering Applications, vol. 3, pp. 251-278, 2012.
R. Kumar & S. K. Singh, “Solar photovoltaic modeling and simulation: As a renewable energy solution”, Energy Reports, vol. 4, pp. 701-712, 2018.
S. Soulayman H. Mohamad H. Mohamad-Amir & S. Wassim, “Feasibility of Solar Tracking System for PV Panel in Sunbelt Region”, Journal of Modern Power Systems and Clean Energy. vol. 9, no. 2, 2021.
N. AL?Rousan, N. A. Mat Isa, M. K. Mat Desa & H. AL?Najjar, “Integration of logistic regression and multilayer perceptron for intelligent single and dual axis solar tracking systems”, International Journal of Intelligent Systems, vol. 36, pp. 5605?5669, 2021.
H. Tchakounté, C. B. N. Fapi, M. Kamta, Haman-Djalo & P. Woafo, “Design, Experimental Implementation and Performance Comparison of Two Solar Tracking Approaches”, Applied Solar Energy, vol. 57, no. 1, pp. 44-58, 2021.
A. Awasthi, A. K. Shukla, M. M. SR, C. Dondariya, K. N. Shukla, D. Porwal & G. Richhariya, “Review on sun-tracking technology in the solar PV system”, Energy Reports, vol. 6, pp. 392-405, 2020.
H. Tchakounté, C. B. N. Fapi, M. Kamta, Haman-Djalo & P. Woafo, “Experimental Assessment of a Smart Sun Tracking System Consumption for the Improvement of a Crystalline Silicon Photovoltaic Module Performance under Variable Weather Conditions”, Applied Solar Energy, vol. 55, no. 6, pp. 385-396, 2019.
S. Bana & R. P. Saini, “A mathematical modeling framework to evaluate the performance of single diode and double diode-based SPV systems”, Energy Reports, vol, 2, pp. 171-187, 2016.
E. I. Batzelis, “Simple PV performance equations are theoretically well-founded on the single-diode model”, IEEE Journal of Photovoltaics, vol. 7, no. 5, pp. 1400-1409, 2017.
A. Belkaid, I. Colak & O. Isik, “Photovoltaic maximum power point tracking under fast varying of solar radiation”, Applied energy, vol. 179, pp. 523-530, 2016.
C. B. Nzoundja Fapi, P. Wira, & M. Kamta, “A fuzzy logic MPPT algorithm with a PI controller for a standalone PV system under variable weather and load conditions”, International Conference on Applied Smart Systems (ICASS), pp. 1-6, 24-25 november 2018.
C. B. Nzoundja Fapi, P. Wira, M. Kamta, A. Badji, & H. Tchakounte, “Real-time experimental assessment of Hill Climbing MPPT algorithm enhanced by estimating a duty cycle for PV system”, International Journal of Renewable Energy Research. (IJRER), vol. 9, no. 3, pp. 1180-1189, 2019.
H. Tchakounté, C. B. N. Fapi, M. Kamta, Haman-Djalo & P. Woafo, “Performance Comparison of an Automatic Smart Sun Tracking System Versus a Manual Sun Tracking”, In 2020 8th International Conference on Smart Grid (icSmartGrid) IEEE, pp. 127-132, June 2020.
I. Sefa, M. Demirtas, & I. Çolak, “Application of one-axis sun tracking system”, Energy conversion and Management, vol. 50, no. 11, pp. 2709-2718, 2009.
A. A. E. Ibrahim, M. R. I. Ramadan, A. El Sebaii, & S. M. El Broullosey, “Annual performance of solar modules with tilting angle facing south and sun tracking in Tanta, Egypt”. International Journal of Renewable Energy Research (IJRER), vol. 1, no. 1, pp. 26-40, 2011.
S. Ahmad, S. Shafie, & M. Z. A. Ab Kadir, “Power feasibility of a low power consumption solar tracker”, Procedia Environmental Sciences, vol. 17, pp. 494-502, 2013.
G. C. Lazaroiu, M. Longo, M. Roscia, & M. Pagano, “Comparative analysis of fixed and sun tracking low power PV systems considering energy consumption”, Energy Conversion and Management, vol. 92, pp. 143-148, 2015.
C. A. Robles, A. O. Castro & J. C. Naranjo, “Dual-Axis Solar Tracker for Using in Photovoltaic Systems”, International Journal of Renewable Energy Research (IJRER), vol. 7, no. 1, pp. 137-145, 2017.
T. M. Abou Saltouha, A. E. S. A. Nafeha, F. H. Fahmya & H. K. Yousefb, “Microcontroller-based sun tracking system for PV module”, International Journal of Smart Grid and Clean Energy, vol. 7, no. 4, pp. 286-296, 2018.
M. Abdollahpour, M. R. Golzarian, A. Rohani & H. A. Zarchi, “Development of a machine vision dual-axis solar tracking system”, solar energy, vol. 169, pp. 136-143, 2018.
B. H. Lim, C. S. Lim, Li, H., X. L. Hu, K. K. Chong, J. L. Zong & W. C. Tan, “Industrial design and implementation of a large-scale dual-axis sun tracker with a vertical-axis-rotating-platform and multiple-row-elevation structures”, Solar Energy, vol. 199, pp. 596-616, 2020.
C. Jamroen, C. Fongkerd, W. Krongpha, P. Komkum, A. Pirayawaraporn & N. Chindakham, “A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis”, Applied Energy, vol. 299, p. 117295, 2021.
C. J.Willmott & K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance”, Climate research, vol. 30, no. 1, pp. 79-82, 2005.
DOI (PDF): https://doi.org/10.20508/ijrer.v11i4.12489.g8356
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4