Study of Solar Photovoltaic Potential and Carbon Mitigation in University Buildings
Abstract
Keywords
Full Text:
PDFReferences
H. Kutucu and A. Almryad, “Modeling of Solar Energy Potential in Libya using an Artificial
Neural Network Model,” in IEEE First International Conference on Data Stream Mining &
Processing, 2016, no. August, pp. 356–359.
P. Neelamegam and V. Arasu, “Prediction of solar radiation for solar systems by using ANN
models with different back propagation algorithms,” Rev. Mex. Trastor. Aliment., vol. 14, no. 3,
pp. 206–214, 2016, doi: 10.1016/j.jart.2016.05.001.
A. S. B. M. Shah, H. Yokoyama, and N. Kakimoto, “High Precision Forecasting Model of Solar
Irradiance based on Grid Point Value Data Analysis for an Efficient Photovoltaic System,” IEEE
Trans. Sustain. Energy, vol. 6, no. 2, pp. 474–481, 2015, doi: 10.1109/TSTE.2014.2383398.
Z. ?en, “Solar energy in progress and future research trends,” Prog. Energy Combust. Sci., vol.
, no. 4, pp. 367–416, 2004, doi: https://doi.org/10.1016/j.pecs.2004.02.004.
Y. Choi, J. Suh, and S.-M. Kim, “GIS-Based Solar Radiation Mapping, Site Evaluation, and
Potential Assessment: A Review,” Appl. Sci., vol. 9, no. 9, 2019, doi:
https://doi.org/10.3390/app9091960.
D. Hasapis, N. Savvakis, T. Tsoutsos, K. Kalaitzakis, S. Psychis, and N. P. Nikolaidis, “Design of
large scale prosuming in Universities: The solar energy vision of the TUC campus,” Energy
Build., vol. 141, pp. 39–55, 2017, doi: https://doi.org/10.1016/j.enbuild.2017.01.074.
A. Hashemizadeh, Y. Ju, and P. Dong, “A combined geographical information system and Best–
Worst Method approach for site selection for photovoltaic power plant projects,” Int. J. Environ.
Sci. Technol., 2019, doi: DOI:10.1007/s13762-019-02598-8.
M. Aslam, J.-M. Lee, H.-S. Kim, S.-J. Lee, and S. Hong, “Deep Learning Models for Long-Term
Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study,”
Energies, vol. 13, no. 1, 2020, doi: https://doi.org/10.3390/en13010147.
A. M. Martín, J. Domínguez, and J. Amador, “Applying LIDAR datasets and GIS based model to
evaluate solar potential over roofs: a review,” AIMS Energy, vol. 3, no. 3, pp. 326–343, 2015, doi:
3934/energy.2015.3.326.
D. Palmer, E. Koumpli, I. Cole, R. Gottschalg, and T. Betts, “A GIS-Based Method for
Identification of Wide Area Rooftop Suitability for Minimum Size PV Systems Using LiDAR
Data and Photogrammetry,” Energies, vol. 11, 2018, doi: 10.3390/en11123506.
N. Luka?, S. Seme, D. Žlaus, G. Štumberger, and B. Žalik, “Buildings roofs photovoltaic
potential assessment based on LiDAR (Light Detection And Ranging) data,” Energy, vol. 66, no.
, pp. 598–609, 2014, doi: https://doi.org/10.1016/j.energy.2013.12.066.
Muhammad Gulraiz Khan, “Rooftop photovoltaic potential analysis based on UAV-derived 3Ddata and open source software,” Universität Münster, Germany, 2020.
M. Uysal, A. S. Toprak, and N. Polat, “DEM generation with UAV Photogrammetry and
accuracy analysis in Sahitler hill,” Measurement, vol. 73, pp. 539–543, 2015, doi:
https://doi.org/10.1016/j.measurement.2015.06.010.
B. Koc, P. T. Anderson, J. P. Chastain, and C. Post, “Estimating Rooftop Areas of Poultry Houses
Using UAV and Satellite Images,” Drones, vol. 4, no. 4, 20AD, doi:
https://doi.org/10.3390/drones4040076.
G. Sammartano and A. Spanò, “DEM generation based on UAV photogrammetry data in critical
areas,” in GISTAM 2016 - 2nd International Conference on Geographical Information Systems
Theory, Applications and Managemen, 2016, pp. 92–98, doi:
https://www.researchgate.net/publication/302973732_DEM_Generation_based_on_UAV_Photog
rammetry_Data_in_Critical_Areas.
N. Kumar, U. K. Sinha, S. P. Sharma, and Y. K. Nayak, “Prediction of Daily Global Solar
Radiation Using Neural Networks With Improved Gain Factors and RBF Networks,” Int. J.
Renew. Energy Res., vol. 7, no. 3, 2017, doi: https://doi.org/10.20508/ijrer.v7i3.5988.g7156.
N. Kalkan et al., “A renewable energy solution for Highfield Campus of University of
Southampton,” Renew. Sustain. Energy Rev., vol. 15, no. 6, pp. 2940–2959, 2011, doi:
https://doi.org/10.1016/j.rser.2011.02.040.
Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, vol. 521. Macmillan Publishers Limited.,
J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F. J. Martinez-de-Pison, and F. AntonanzasTorres, “Review of photovoltaic power forecasting,” Sol. Energy, vol. 136, pp. 78–111, 2016,
doi: https://doi.org/10.1016/j.solener.2016.06.069.
M. Zakroum, M. Ghogho, M. Faqir, and M. A. Ahajjam, “Deep Learning for Inferring the Surface SolarIrradiance from Sky Imagery,” 2017, doi: 10.1109/IRSEC.2017.8477236.
E. C. Akbaba, E. Y. Akinoglu, and B. G. Akinoglu, “Deep Learning Algorithm Applied to Daily
Solar Irradiation Estimations,” 2018, doi: 10.1109/IRSEC.2018.8702963.
W. L. M. Fernando, W. M. W. S. Jayalath, A. Kanagasundaram, R. Valluvan, and A.
Kaneswaran, “Solar Irradiance Forecasting using Deep Learning Approaches,” 2019, [Online].
Available:
https://www.researchgate.net/publication/331464843_Solar_Irradiance_Forecasting_using_Deep
_Learning_Approaches.
A. Muhammad, J. M. Lee, S. W. Hong, S. J. Lee, and E. H. Lee, “Deep Learning Application in
Power System with a Case Study on Solar Irradiation Forecasting,” 2019, doi:
1109/ICAIIC.2019.8668969.
S. Lee, S. Iyengar, M. Feng, P. Shenoy, and S. Maji, “DeepRoof: A Data-driven Approach For
Solar Potential Estimation Using Rooftop Imagery,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2019, pp. 2105–2113, doi:
https://doi.org/10.1145/3292500.3330741.
Bulut, “Integrated solar power project based on CSP and PV technologies for Southeast of
Turkey,” Int. J. Green Energy, vol. 19, no. 6, pp. 603–613, 2022, doi:
1080/15435075.2021.1954006.
D. Assouline, N. Mohajeri, and J.-L. Scartezzini, “Quantifying rooftop photovoltaic solar energy
potential: a machine learning approach,” Sol. Enegry, 2017, doi:
https://doi.org/10.1016/j.solener.2016.11.045.
R. Camargo, Z. R, D. W, and S. G, “Spatio-temporal modeling of roof-top photovoltaic panels for
improved technical potential assessment and electricity peak load offsetting at the municipal
scale,” Comput Env. Urban Syst, pp. 58–69, 2015, doi:
https://doi.org/10.1016/j.compenvurbsys.2015.03.002.
J. Khan and M. H. Arsalan, “Estimation of rooftop solar photovoltaic potential using geo-spatial
techniques: A perspective from planned neighborhood of Karachi e Pakistan,” Renew. Energy,
vol. 90, pp. 188–203, 2016, doi: https://doi.org/10.1016/j.renene.2015.12.058.
R. Singh and R. Banerjee, “Estimation of Rooftop Solar Photovoltaic Potential of a City,” Sol.
Energy, vol. 115, pp. 589–602, 2015, doi: https://doi.org/10.1016/j.solener.2015.03.016.
A. R. Othman and A. T. Rushdi, “Potential of Building Integrated Photovoltaic Application on
Roof Top of Residential Development in Shah Alam,” in Social and Behavioral Sciences, 2014,
pp. 491–500.
L. K. Wiginton, H. T. Nguyen, and J. M. Pearce, “Quantifying Rooftop Solar Photovoltaic
Potential for Regional,” Comput. Environ. Urban Syst., vol. 34, pp. 345–357, 2010.
H. Lehmann and S. Peter, “Assessment of Roof & Façade Potentials for Solar Use in Europe,
Institute of Sustainable Solutions and Innovations (ISUSI),” Germany, 2003. [Online]. Available:
http://sustainable-soli.com/downloads/ roofs.pdf.
DOI (PDF): https://doi.org/10.20508/ijrer.v12i4.13575.g8566
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4