Forecasting of Short-Term and Long-Term Wind Speed of Ras Gharib Using Time Series Analysis
Abstract
Keywords
Full Text:
PDFReferences
IEA (2022), Renewables 2022, IEA, Paris https://www.iea.org/reports/renewables-2022, License: CC BY 4.0.
International Trade Administration U.S. Department of Commerce, Country Commercial Guides, Egypt -Electricity and Renewable Energy (2022).
Graabak, Ingeborg, and Magnus Korpås. 2016. "Variability Characteristics of European Wind and Solar Power Resources—A Review" Energies 9, no. 6: 449. DOI.:10.3390/en9060449.
G. Sideratos and N. D. Hatziargyriou, "An Advanced Statistical Method for Wind Power Forecasting," in IEEE Transactions on Power Systems, vol. 22, no. 1, pp. 258-265, Feb. 2007, DOI: 10.1109/TPWRS.2006.889078 .
Lerner, Jeff & Grundmeyer, Michael & Garvert, Matt. (2009). The importance of wind forecasting. Renewable Energy Focus. 10. 64-66. DOI: 10.1016/S1755-0084(09)70092-4.
Ma Lei, Luan Shiyan, Jiang Chuanwen, Liu Hongling, Zhang Yan, A review on the forecasting of wind speed and generated power, Renewable and Sustainable Energy Reviews,Volume13,Issue4,2009,Pages915-920,ISSN1364-0321,DOI:10.1016/j.rser.2008.02.002 .
Xin Zhao, Shuangxin Wang, Tao Li,Review of Evaluation Criteria and Main Methods of Wind Power Forecasting, Energy Procedia, Volume12,2011,Pages761-769,ISSN 1876-6102, DOI:10.1016/j.egypro.2011.10.102.
Negnevitsky M, Potter CW. Innovative short-term wind generation pre-diction techniques. In: Proceedings of the Power Systems Conference and Exposition; 2006. p. 60–5.
Chang, W.-Y. (2014) A Literature Review of Wind Forecasting Methods. Journal of Power and Energy Engineering, 2, 161-168, DOI.:10.4236/jpee.2014.24023.
M.C Alexiadis, P.S Dokopoulos, H.S Sahsamanoglou, I.M Manousaridis,Short-term forecasting of wind speed and related electrical power,Solar Energy,Volume 63, Issue 1,1998, Pages 61-68,ISSN 0038-092X, DOI:10.1016/S0038-092X(98)00032-2.
Sfetsos A. A novel approach for the forecasting of mean hourly wind speed time series. Renewable Energy 2002;27(2):163–74.
Shi, J., Guo, J.M. and Zheng, S.T. (2012) Evaluation of Hybrid Forecasting Approaches for Wind Speed and Power Generation Time Series. Renewable and SustainableEnergyReviews,16,3471-3480, DOI:10.1016/j.rser.2012.02.044.
S. Shukla, R. Ramaprasad, S. Pasari and S. Sheoran, "Statistical Analysis and Forecasting of Wind Speed," 2022 4th International Conference on Energy, Power and Environment (ICEPE), 2022, pp. 1-6, DOI:10.1109/ICEPE55035.2022.9798358 .
Dhaheri, Khawla & Woon, Wei & Aung, Zeyar. (2017). Wind Speed Forecasting Using Statistical and Machine Learning Methods: A Case Study in the UAE. 107-120, DOI: 10.1007/978-3-319-71643-5_10 .
Cadenas, Erasmo & Rivera, Wilfrido. (2007). Rivera, W.: Wind speed forecasting in the South Coast of Oaxaca, México. Renew. Energy 32(12), 2116-2128. Renewable Energy. 32. 2116-2128, DOI: 10.1016/j.renene.2006.10.005 .
Grigonyt?, Ernesta & Butkevi?i?t?, Egl?. (2016). Short-term wind speed forecasting using ARIMA model. Energetika. 62, DOI: 10.6001/energetika. v62i1-2.3313.
Tyass, Ilham & Abdelouahad, Bellat & Raihani, Abdelhadi & Mansouri, Khalifa & Khalili, Tajeddine. (2022). Wind Speed Prediction Based on Seasonal ARIMA model. E3S Web of Conferences. 336. 00034. DOI: 10.1051/e3sconf/202233600034.
Cadenas, Erasmo, Wilfrido Rivera, Rafael Campos-Amezcua, and Christopher Heard. 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model" Energies 9, no. 2: 109, DOI.:10.3390/en9020109.
Wind Speed Forecasting using Time Series Analysis Methods. Çukurova University Journal of the Faculty of Engineering and Architecture, 32(2), pp. 161-172, June 2017.
M. Abotaleb, “Wind speed in England using BATS, TBATS, Holt’s Linear and ARIMA model”, MAUSAM, vol. 73, no. 1, pp. 129–138, Mar. 2022.
Yousuf, Muhammad Uzair & Al-Bahadly, Ibrahim & Avci, Ebubekir. (2021). Short-term wind speed forecasting based on hybrid MODWT-ARIMA-Markov model. IEEE Access. PP. 1-1. DOI: 10.1109/ACCESS.2021.3084536.
Alencar, David & Affonso, Carolina & Oliveira, Roberto & Reston Filho, José Carlos. (2018). Hybrid Approach Combining SARIMA and Neural Networks for Multi-Step Ahead Wind Speed Forecasting in Brazil. IEEE Access. PP. 1-1.DOI: 10.1109/ACCESS.2018. 2872720.
J. W. Taylor, P. E. McSharry and R. Buizza, "Wind Power Density Forecasting Using Ensemble Predictions and Time Series Models," in IEEE Transactions on Energy Conversion, vol. 24, no. 3, pp. 775-782, Sept. 2009, DOI: 10.1109/TEC.2009.2025431.
Jain, Garima. (2018). Time-Series analysis for wind speed forecasting. Malaya Journal of Matematik. S. 55-61.DOI: 10.26637/MJM0S01/11.
Arzu, Arieni & Kutty, Saiyad & Ahmed, M. Rafiuddin & Khan, M.G.M. (2018). Wind Speed Forecasting using Regression, Time Series and Neural Network Models: a Case Study of Kiribati. DOI: 10.14264/ccee311.
Chambers, John. (2007). Software for Data Analysis: Programming with R. DOI: 10.1007/978-0-387-75936-4.
Iwok, I.A., Okpe, A.S.: ‘A comparative study between univariate and multivariate linear stationary time series models’, American Journal of Mathematics and Statistics, 2016, 6, (5), pp. 203–212.
Hyndman, Rob J; Athanasopoulos, George. "8.9 Seasonal ARIMA models". Forecasting: principles and practice. oTexts. Retrieved 19 May 2015.
Young, P. C., Pedregal, D. J., & Tych, W. (1999). Dynamic harmonic regression. Journal of Forecasting, 18, 369–394.
Hyndman, R.J., & Athanasopoulos, G. (2018) Forecasting: principles and practice, 2nd edition, OTexts: Melbourne, Australia. OTexts.com/fpp2.
Gardner, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1–28, DOI:10.1002/for.3980040103.
Hyndman, Koehler, et al. (2002, “A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods,” International Journal of Forecasting, 18, 439–454.)
De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex seasonal patterns using exponential smoothing, Journal of the American Statistical Association, 106(496), 1513–1527.
NASA POWER | Data Access Viewer. NASA POWER | Data Access Viewer. Retrieved December 10, 2022, DOI: power.larc.nasa.gov/data-access-viewer/.
Lendave, V.What are autocorrelation and partial autocorrelation in time series data? Analytics India Magazine.
D. A. Dickey and W. A. Fuller, "Distribution of the estimators for autoregressive time series with a unit root," Journal of the American Statistical Association, vol. 74, no. 366a, pp. 427-431, 1979.
Dongin Lee, Peter Schmidt, On the power of the KPSS test of stationarity against fractionally-integrated alternatives, Journal of Econometrics, Volume 73, Issue 1, 1996, Pages 285-302, ISSN 0304-4076.
Bevans, R. (2022, July 9). The p-value explained. Scribbr. http://www.scribbr.com/statistics/p-value.
DOI (PDF): https://doi.org/10.20508/ijrer.v13i1.13785.g8680
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4