Estimates of hourly diffuse radiation on tilted surfaces in Southeast of Brazil
Abstract
The global radiation incident on a tilted surfaces consists of components direct, diffuse and reflected from the ground. On a hourly database, the direct radiation can be calculated by geometric projections (ratio of the incidence angle to the solar zenith angle). The reflected radiation has a small effect on calculations and may be calculated with an isotropic model. Both components presents dependence of measures in incidence or horizontal surface. The great difficulty is to evaluate the diffuse radiation by variations of circumsolar, brightness horizontal, isotropic and anisotropic subcomponents. This study evaluated twenty models to estimate hourly diffuse radiation incident on tilted surfaces at 12.85° (latitude - 10°), 22.85° (latitude) and 32.85° (latitude + 10°) facing to North, under different cloudiness sky conditions, in Botucatu, São Paulo State, Brazil (22°53′ S, 48°26′ W and 786 m above the mean sea level). In contrast, models for estimating the diffuse component show major differences, which justify the validation for local calibrations. There is a decrease of the maximum total radiation scattered with increasing atmospheric transmissivity and inclination angle. The best results are obtained by anisotropic models: Ma and Iqbal, Hay, Reindl et al. and Willmott; isotropic: Badescu and Koronakis, and the Circumsolar model. The increase of the inclination angle allows for a reduction in the performance of statistical parametric models for estimating the hourly diffuse radiation.
Keywords
Full Text:
PDFReferences
G. Codato, A. P. Oliveira, J. Soares, J. F. Escobedo, E. N. Gomes, A. Dal Pai, “Global and diffuse solar irradiances in urban and rural areas in Southeast Brazilâ€. Theorical Applied Climatology, Springer Link, DOI: 10.1007/s00704-007-0326-0, vol. 93, No. 1, pp. 57-73, 2008.
J. F. Escobedo, E. N. Gomes, A. P. Oliveira, J. Soares, “Modeling hourly and daily fractions of UV, PAT and NIR to global solar radiation under various Sky conditions at Botucatu, Brazilâ€. Applied Energy, Elsevier, DOI: 10.1016/j.apenergy.2008.04.013, vol. 86, No. 3, pp. 299-309, 2009.
C. Furlan, A. P. Oliveira, J. Soares, G. Codato, J. F. Escobedo, “The role of clouds in improving the regression model for hourly values of diffuse solar radiationâ€. Applied Energy, Elsevier, DOI: 10.1016/j.apenergy.2011.10.032, vol. 92, No. 1, pp. 240-254, 2012.
E.T. Teramoto, J.F. Escobedo, “Analysis of the annual frequency of the sky conditions in Botucatu, São Paulo, Brazil.†Revista Brasileira de Engenharia AgrÃcola e Ambiental, Scielo, DOI: 10.1590/S1415-43662012000900009, vol. 16, No. 9, pp. 985-992, 2012.
G. A. Kamali, I. Moradi, A. Khalili, “Estimating solar radiation on tilted surfaces with various orientations: a study case in Karaj (Iran)â€. Theorical and Applied Climatolology, Springer Link, DOI: 10.1007/s00704-005-0171-y, vol. 84, No. 4, pp. 235-241, 2006.
S. S. Chandel, R. K. Aggarwal, “Estimation of hourly solar radiation on horizontal and inclined surfaces in Western Himalayas“. Smart Grid and Renewable Energy, Scientific Research, DOI: 10.4236/sgre.2011.21006, vol. 2, No. 1, pp. 45-55, 2011.
R. Posadillo and R.L. Luque, “Hourly distributions of the diffuse fraction of global solar irradiation in Córdoba (Spain).†Energy Conversion and Management, Elsevier, DOI: 10.1016/j.enconman.2008.09.042, vol. 50, No. 2, pp. 223-231, 2009.
T.S. Viana, R. Rüther, F.R. Martins, E.B. Pereira, “Assessing the potential of concentrating solar photovoltaic generation in Brazil with satellite-derived direct normal irradiation.†Solar Energy, Elsevier, DOI: 10.1016/j.solener.2010.12.015, vol. 85, No. 3, pp. 486-495, 2011.
M. Iqbal, An introduction to solar radiation. Canada: Academic Press, 1983. 390 p.
G. Notton, P. Poggi, C. Cristofari, “Predicting hourly solar irradiations on inclined surfaces based on the horizontal measurements: performances of the association of well-known mathematical models.†Energy conversion and Management, Elsevier, DOI: 10.1016/j.enconman.2005.10.009, vol. 47, No. 13/14, pp.: 1816-1829, 2006.
A. M. Noorian, I. Moradi, G. A. Kamali, “Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfacesâ€. Renewable Energy, Elsevier, DOI: 10.1016/j.renene.2007.06.027, vol. 33, No. 6, pp. 1406-1412, 2008,
C. K. Pandey, A. K. Katiyar, “A note on diffuse solar radiation on a tilted surface.†Energy, DOI: 10.1016/j.energy.2009.07.006, vol. 34, No. 11, pp. 1764-1769, 2009.
T. Muneer, X. Zhang, “A new method for correcting shadow band diffuse irradiance data.†Journal of Solar Energy Engineering, vol. 124, No. 1, pp. 34-43, 2002.
A. P. Souza, J. F. Escobedo, A. Dal Pai, E. N. Gomes, “Estimates of solar radiation components on a tilted surface based on global horizontal radiationâ€. Revista Brasileira de Engenharia AgrÃcola e Ambiental, Scielo, DOI: 10.1590/S1415-43662011000300009, vol. 15, No. 3, pp. 277-288, 2011.
E. G. Evseev, A. I. Kudish, “The assessment of different models to predict the global solar radiation on a surface tilted to the southâ€. Solar Energy, Elsevier, DOI: 10.1016/j.solener.2008.08.010, vol. 83, No. 2, pp. 377-388, 2009.
A. Ibrahim, A. A. El-Sebaii, M. R. I. Ramadan, S. M. El-Broullesy, “Estimation of solar irradiance on inclined surfaces facing south in Tanta, Egypt.†International Journal of Renewable Energy Research, vol. 1, No. 1, pp. 18-25, 2011.
B. Y. H. Liu, R. C. Jordan, “Daily insolation on surfaces tilted towards the equatorâ€. Trans ASHRAE, vol. 67, No. 3, pp. 526-541, 1962.
P. S. Koronakis, “On the choice of the angle of tilt for south facing solar collectors in the Athens basin areaâ€. Solar Energy, Elsevier, DOI: 10.1016/0038-092X(86)90137-4, vol. 36, No. 2, pp. 217-225, 1986.
Y. Q. Tian, R. J. Davies-Colley, P. Gong, B. W. Thorrold, “Estimating solar radiation on slopes of arbitrary aspectâ€. Agricultural and Forest Meteorology, Elsevier, DOI: 10.1016/S0168-1923(01)00245-3, vol. 109, No. 1, pp. 67-74, 2001.
V. Badescu, “3D isotropic approximation for solar diffuse irradiance on tilted surfacesâ€. Renewable Energy, Elsevier, DOI: 10.1016/S0960-1481(01)00123-9, vol. 26, No. 2, pp. 221-233, 2002.
R. C. Temps, K. L., Coulson, “Solar radiation incident upon slopes of different orientationsâ€. Solar Energy, Elsevier, DOI: 10.1016/0038-092X(77)90056-1, vol. 19, No. 1, pp. 719-184, 1977.
J. W. Bugler, “The determination of hourly insolation on an inclined plane using a diffuse irradiance model based on hourly measured global horizontal insolationâ€. Solar Energy, Elsevier, DOI: 10.1016/0038-092X(77)90103-7, vol. 19, No. 5, pp. 477-491, 1977.
T. M. Klucher, “Evaluation of models to predict insolation on tilted surfacesâ€. Solar Energy, Elsevier, DOI: 10.1016/0038-092X(79)90110-5, vol. 23, No. 1, pp. 111-114, 1979.
J. E. Hay, “Calculation of monthly mean solar radiation for horizontal and inclined surfacesâ€. Solar Energy, Elsevier, DOI: 10.1016/0038-092X(79)90123-3, vol. 23, No. 4, pp. 301-307, 1979.
J. E. Hay, J. A. Davies, “Calculations of the solar radiation incident on an inclined surfaceâ€. In: J. E. Hay, T. K. Won (Eds.). Proceedings of First Canadian Solar Radiation Data Workshop. Canada: Canadian Atmospheric Environment Service, pp. 59–72, 1980.
M. D. Steven, M. H. Unsworth, “The angular distribution and interception of diffuse solar radiation below overcast skiesâ€. Quarterly Journal of the Royal Meteorological Society, Wiley Interscience, DOI: 10.1002/qj.49710644705, 106(447), 57-61, 1980.
C. J. Willmott, “On the climatic optimization of the tilt and azimuth of flat-plate solar collectorsâ€. Solar Energy, Elsevier, DOI: 10.1016/0038-092X(82)90159-1, vol. 28, No. 3, pp. 205-216, 1982.
K. J. A. Revfeim, “A simple procedure for estimating global daily radiation on any surfaceâ€. Journal of Applied Meteorology, American Meteorology Society, DOI: 10.1175/1520-0450(1978)017, vol. 17, No. 8, pp. 1126-1131, 1978.
C. C. Y. Ma, M. Iqbal, “Statistical comparison of models for estimating solar radiation on inclined surfacesâ€. Solar Energy, Elsevier, DOI: 10.1016/0038-092X(83)90019-1, 31(3), 313-317, 1983.
C. Gueymard, “Physical modelling of the diffuse irradiance on tilted planes as a function of the aerosols anisotropic effectâ€. In: Meteorology and renewable energies conference, Valbonne, France: AFME, pp. 303–314, 1984.
C. Gueymard, “Radiation on tilted planes: A physical model adaptable to any computational time-stepâ€. In: Proceedings of INTERSOL 85. Elmsford, NY: Pergamon Press, pp. 2463–2467, 1986.
C. Gueymard, “An anisotropic solar irradiance model for tilted surfaces and its comparison with selected engineering algorithmsâ€. Solar Energy, Elsevier, DOI: 10.1016/0038-092X(87)90009-0, vol. 38, No. 5, pp. 367-386, 1987.
A. Skartveit, J. A. Olseth, “A model for the diffuse fraction of hourly global radiationâ€. Solar Energy, Elsevier, DOI: 10.1016/0038-092X(87)90049-1, vol. 38, No. 4, pp. 217-274, 1987.
T. Muneer, “Solar radiation modelling for the United Kingdomâ€. PhD thesis, CNAA, London, 1987.
R. Perez, P. Ineichen, R., Seals, J. Michalsky, R. Stewart, “Modeling daylight availability and irradiance components from direct and global irradianceâ€. Solar Energy, Elsevier, DOI: 10.1016/0038-092X(90)90055-H, vol. 44, No. 5, 271-289, 1990.
R. Perez, R. Stewart, C. Arbogast, R. Seals, T. Scott, “An anisotropic hourly diffuse radiation model for sloping surfaces, description, performance, validation, site dependency evaluationâ€. Solar Energy, Elsevier, DOI: 10.1016/0038-092X(86)90013-7, vol. 36, No. 6, pp. 481-497, 1986.
T. Muneer, “Solar radiation model for Europeâ€. Building Services Engineering Research and Technology, Sage Journals, DOI: 10.1177/014362449001100405, vol. 11, No. 4, pp. 153-163, 1990.
D. T. Reindl, W. A. Beckman, J. A. Duffie, “Evaluation of hourly tilted surface radiation modelsâ€. Solar Energy, Elsevier, DOI: 10.1016/0038-092X(90)90061-G, vol. 45, No. 1, pp. 9-17, 1990.
F. J. Olmo, J. Vida, I. Foyo, Y. Castro-Diez, L. Alados-Arboledas, “Prediction of global irradiance on inclined surfaces from horizontal global irradianceâ€. Energy, Elsevier, DOI: 10.1016/S0360-5442(99)00025-0, vol. 24, No. 3, pp. 689-704, 1999.
C. J. Willmott, “On the validation of modelsâ€. Physical Geography, vol. 2, No. 2, pp. 184-194, 1981.
A. P. Souza, J. F. Escobedo, A. Dal Pai, E. N. Gomes, “Annual evolution of global, direct and diffuse radiation and fractions in tilted surfacesâ€. Engenharia Agricola, Scielo, vol. 32, No. 2, pp. 247-260, 2012.
A. Dal Pai, “Anisotropy of diffuse solar irradiance measured by shading method Melo-Escobedo: correction factors and anisotropic models to estimateâ€. Faculty of Agronomic Sciences - State University of São Paulo, 2005. 87 pp. (Thesis – Ph. D. Energy in Agriculture).
J. Scolar, D. Martins, J. F. Escobedo, “Estimates of solar radiation total incident on inclined surface based in the global radiation on horizontalâ€. Revista Brasileira de GeofÃsica, Scielo, vol. 21, No. 3, pp. 249-258, 2003.
M. Diez-Mediavilla, A. Miguel, J. Bilbao, “Measurement and comparison of diffuse solar irradiance models on inclined surfaces in Valladolid (Spain)â€. Energy Conversion and Management, Elsevier, DOI: 10.1016/j.enconman.2004.10.023, vol. 46, No. 8, pp. 2075-2092, 2005.
G. Notton, C. Cristofari, P. Poggi, “Performance evaluation of various hourly slope irradiation models using Mediterranean experimental data of Ajaccio.†Energy conversion and Management, Elsevier, DOI: 10.1016/j.enconman.2005.03.022, vol. 47, No. 1, pp.: 147-173, 2006.
D. Serrano, M. J. MarÃn, M. P. Utrillas, F. Tena, J. A. MartÃnez-lozano, “Measurement and modelling of global erythemal irradiance on inclined planesâ€. Journal of Mediterranean Meteorology and Climatology, vol. 7, No. 1, pp. 57-66, 2010.
J. A. Ruiz-Arias, H. Alsamamra, J. Tovar-Pescador, D. Pozo-Vázquez, “Proposal of a regressive model for the hourly diffuse solar radiation under all sky conditionsâ€. Energy Conversion and Management, Elsevier, DOI: 10.1016/j.enconman.2009.11.024, vol. 51, No. 5, pp. 881-893, 2010.
DOI (PDF): https://doi.org/10.20508/ijrer.v3i1.562.g6128
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4