Investigation of Wind Power Uncertainty on Transmission Network Expansion Planning

Amir Sadegh Zakeri, Hossein Askarian Abyaneh

Abstract


The main goal of transmission expansion planning (TEP) is to develop or reinforce the electrical network to fulfill the future electrical load requirement and to integrate new equipment added to the network. TEP is a major subject in smart grid development, where Demand Response Program (DRP) affect long- and short-term power system decisions, and these in turn, affect TEP. First, this paper discusses the effects of Non-Linear Demand Response Program (NDR) on reducing the final costs of a system in TEP. In order to approach real behavior of the loads, three different types of loads including residual, commercial and office-building have been considered. Real data for wind power is extracted from Khaf, Iran. Using Mont-Carlo and based on Empirical Cumulative Distribution Function (ECDF), 1000 scenarios are produced to study the uncertainty characteristic of wind. As there are a lot of scenarios which are time consuming, Radial Based Neural Network Clustering (RBNNC) is used for decreasing the run-time significantly. Then TEP problem is solved using the Teaching-Learning-Based Optimization (TLBO) and Gray Wolf Optimization (GWO) algorithms in order to minimize the costs of generation, losses, and lines. Simulation results show the optimal effect of NDR and wind on postponing the additional cost of investments for supplying peak load.


Keywords


Transmission expansion planning, Non-linear demand response program, TLBO, GWO, Wind power, Mont-Carlo, Uncertainty.

Full Text:

PDF

References


X. Zhang, A. J. Conejo, “Candidate line selection for transmission expansion planning considering long-and short-term uncertaintyâ€, International Journal of Electrical Power & Energy Systems 100 (2018): 320-330.

L. L. Garver, “Transmission network estimation using linear programmingâ€, IEEE Transactions on Power Apparatus and Systems 7 (1970): 1688-1697.

G. Latorre-Bayona, I. J. Perez-Arriaga, “Chopin, a heuristic model for long term transmission expansion planningâ€, IEEE Transactions on Power systems9.4 (1994): 1886-1894.

M. V. Pereira, L. M. Pinto, “Application of sensitivity analysis of load supplying capability to interactive transmission expansion planningâ€, IEEE Transactions on Power Apparatus and Systems 2 (1985): 381-389.

A. Monticelli, A. Santos, M. V. F. Pereira, S. H. Cunha, B.J. Parker, J. C. G. Praca, “Interactive transmission network planning using a least-effort criterionâ€, IEEE Transactions on Power Apparatus and Systems 10 (1982): 3919-3925.

E. J. De Oliveira, I. C. da Silva, J. L. R. Pereira, S. Carneiro, “Transmission system expansion planning using a sigmoid function to handle integer investment variablesâ€, IEEE Transactions on Power Systems20.3 (2005): 1616-1621.

R. J. Bennon, J. A. Juves, A. P. Meliopoulos, “Use of sensitivity analysis in automated transmission planningâ€, IEEE Transactions on Power Apparatus and Systems 1 (1982): 53-59.

V. A. Levi, M. S. Ćalović, “Linear-programming-based decomposition method for optimal planning of transmission network investmentsâ€, IEE Proceedings C (Generation, Transmission and Distribution). Vol. 140. No. 6. IET Digital Library, 1993.

R. Villasana, L. L. Garver, S. J. Salon, “Transmission network planning using linear programmingâ€, IEEE transactions on power apparatus and systems 2 (1985): 349-356.

M. V. F. Pereira, L. M. V. G. Pinto, S. H. F. Cunha, G. C. Oliveira, “A decomposition approach to automated generation/transmission expansion planningâ€, IEEE Transactions on Power Apparatus and Systems 11 (1985): 3074-3083.

R. A. Gallego, A. B. Alves, A. Monticelli, R. Romero, “Parallel simulated annealing applied to long term transmission network expansion planningâ€, IEEE Transactions on Power Systems 12.1 (1997): 181-188.

S. Binato, G. C. De Oliveira, J. L. De Araújo, “A greedy randomized adaptive search procedure for transmission expansion planningâ€, IEEE Transactions on Power Systems 16.2 (2001): 247-253.

P. Maghouli, S. H. Hosseini, M. O. Buygi, M. Shahidehpour, “A scenario-based multi-objective model for multi-stage transmission expansion planningâ€, IEEE Transactions on Power Systems 26.1 (2011): 470-478.

A. Khodaei, M. Shahidehpour, L. Wu, Z. Li, “Coordination of short-term operation constraints in multi-area expansion planningâ€, IEEE Transactions on Power Systems 27.4 (2012): 2242-2250.

A. Vahid, Sh. Jadid, M. Ehsan, “Optimal Planning of a Multi-Carrier Microgrid (MCMG) Considering Demand-Side Managementâ€,. International Journal of Renewable Energy Research (IJRER) 8.1 (2018): 238-249.

Ö. Özdemir, F. D. Munoz, J. L. Ho, B. F. Hobbs, “Economic analysis of transmission expansion planning with price-responsive demand and quadratic losses by successive LPâ€, IEEE Transactions on Power Systems 31.2 (2016): 1096-1107.

K. S. Stille, J. Böcker, “Local demand response and load planning system for intelligent domestic appliancesâ€, Renewable Energy Research and Applications (ICRERA), 2015.

I. Konstantelos, G. Strbac, “Valuation of flexible transmission investment options under uncertaintyâ€, IEEE Transactions on Power systems 30.2 (2015): 1047-1055.

J. Qiu, J. Zhao, Z. Y. Dong, “Probabilistic transmission expansion planning for increasing wind power penetrationâ€, IET Renewable Power Generation 11.6 (2017): 837-845.

R. J. de Andrade Vieira, M. A. Sanz-Bobi, S. Kato, “Wind turbine condition assessment based on changes observed in its power curveâ€, Renewable Energy Research and Applications (ICRERA), 2013.

H. Dehghani, B. Vahidi, S. H. Hosseinian, “Wind farms participation in electricity markets considering uncertaintiesâ€, Renewable Energy 101 (2017): 907-918.

K. Ogimi, K. Uchida, A. Yona, T. Senjyu, T. Funabashi, “Optimal operation method of wind farm with demand responseâ€, Renewable Energy Research and Applications (ICRERA), 2012.

H. Dehghani, B. Vahidi, S. H. Hosseinian, “Wind farm power prediction and uncertainty quantificationâ€, Science International 26.1 (2014).

H. Park, R. Baldick, D. P. Morton, “A stochastic transmission planning model with dependent load and wind forecastsâ€, IEEE Transactions on Power Systems30.6 (2015): 3003-3011.

G. Gunes, M. Baysal, “Improved optimal sizing of hybrid PV/wind/battery energy systemsâ€, Renewable Energy Research and Application (ICRERA), 2014.

H. Yu, C. Y. Chung, K. P. Wong, J. H. Zhang, “A chance constrained transmission network expansion planning method with consideration of load and wind farm uncertaintiesâ€, IEEE Transactions on Power Systems 24.3 (2009): 1568-1576.

A. S. Zakeri, H. Askarian Abyaneh, “Transmission Expansion Planning Using TLBO Algorithm in the Presence of Demand Response Resourcesâ€, Energies10.9 (2017): 1376.

H. A. Aalami, M. P. Moghaddam, G. R. Yousefi, “Evaluation of nonlinear models for time-based rates demand response programsâ€, International Journal of Electrical Power & Energy Systems 65 (2015): 282-290.

R. V. Rao, V. J. Savsani, D. P. Vakharia, “Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problemsâ€, Computer-Aided Design 43.3 (2011): 303-315.

M. H. Sulaiman, Z. Mustaffa, M. R. Mohamed, & O. Aliman, “Using the gray wolf optimizer for solving optimal reactive power dispatch problemâ€, Applied Soft Computing, 32, 286-292.

IEEE 57-Bus System. Available online: Http://icseg.Iti.Illinois.Edu/ieee-57-bus-system/ (accessed on 25 August 1993).

P. Maghouli, S. H. Hosseini, M. O. Buygi, M. Shahidehpour, “A multi-objective framework for transmission expansion planning in deregulated environmentsâ€, IEEE Transactions on Power Systems 24.2 (2009): 1051-1061.

H. Dehghani, D. Faramarzi, B. Vahidi, M. Saeidi, “A probabilistic method for cost minimization in a day-ahead electricity market considering wind power uncertaintiesâ€, Journal of Renewable and Sustainable Energy 9.6 (2017): 063301.

C. Giovanni, R. Miceli, C. Spataro, “Uncertainty evaluation in the measurements for the electric power quality analysisâ€, Renewable Energy Research and Applications (ICRERA), 201.

S. M. Agah, H. A. Abyaneh, “Quantification of the distribution transformer life extension value of distributed generationâ€, IEEE Transactions on Power Delivery 26.3 (2011): 1820-1828.

H. Heitsch, W. Römisch, “Scenario reduction algorithms in stochastic programmingâ€, Computational optimization and applications 24.2-3 (2003): 187-206.

A. Forooghi Nematollahi, A. Dadkhah, O. Asgari Gashteroodkhani, B. Vahidi, “Optimal sizing and siting of DGs for loss reduction using an iterative-analytical methodâ€, Journal of Renewable and Sustainable Energy 8.5 (2016): 055301.

M. Taherkhani, S. H. Hosseini, “IGDTâ€based multiâ€stage transmission expansion planning model incorporating optimal wind farm integrationâ€, International Transactions on Electrical Energy Systems 25.10 (2015): 2340-2358.




DOI (PDF): https://doi.org/10.20508/ijrer.v8i4.8281.g7499

Refbacks



Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4