Impact of Advanced Research on Development of Renewable Energy Policy: Case of Ukraine (Review)
Abstract
Keywords
Full Text:
PDFReferences
L. Gibson, E.N. Wilman, W.F. Laurance, “How Green is ‘Green’Energy?â€, Trends in ecology & evolution, DOI: 10.1016/j.tree.2017.09.007, Vol. 32, pp. 922–935, 2017.
J.M. Tour, C. Kittrell, V.L. Colvin, “Green carbon as a bridge to renewable energyâ€, Nature materials, DOI: 10.1038/nmat2887, Vol. 9, pp. 871–874, 2010.
B. Johansson, “Security aspects of future renewable energy systems – A short overviewâ€, Energy, DOI: 10.1016/j.energy.2013.09.023, Vol. 61, No 1, pp. 598–605, 2013.
D. Timmons, J.M. Harris, B. Roach, “The economics of renewable energy. Global Development and Environment Instituteâ€, Tufts University, 2014 (book).
G. Heal, “Reflections – The Economics of Renewable Energy in the United Statesâ€, Review of Environmental Economics and Policy, DOI: 10.1093/reep/rep018, Vol. 4, No 1, pp. 139–154, 2010.
N. Apergis, D. Danuletiu, “Renewable energy and economic growth: Evidence from the sign of panel long-run causalityâ€, International Journal of Energy Economics and Policy, Vol. 4, No. 4 pp. 578–587, 2014.
A. Å imelytÄ—, G. DudzeviÄiÅ«tÄ—, “Consumption of renewable energy and economic growth. In Contemporary issues in business, management and education’2017â€, In: 5th international scientific conference, Vilnius Gediminas Technical University: VGTU Press, p. 1–10, 2017.
L. Freris, D. Infield, “Renewable energy in power systemsâ€, John Wiley & Sons, 2008 (book).
A. Tokarcik, M. Rovnak, M. Lechwar, G. Wisz, „ZarzÄ…dzanie energiÄ… w jednostkach samorzÄ…du terytorialnego wybrane modele – możliwoÅ›ci, ograniczenia, rekomendacjeâ€, CeDeWu, Warszawa, 2017 (book).
Energy DG, European Commission. EU, energy in figures, statistical pocketbook 2017. Brussels: Publications Office of the European Union, DOI: 10.2833/80717, 2017, 265 p.
A.Z. Amin, 2013. IRENA. Renewable power generation costs in 2012: an overview. Abu Dhabi: International Renewable Energy Agency (book).
S. Jacobsson, A. Bergek, D. Finon, V. Lauber, C. Mitchell, D. Toke, A. Verbruggen, “EU renewable energy support policy: Faith or facts?â€, Energy policy, 10.1016/j.enpol.2009.02.043, Vol. 37, No 3, pp. 2143-2146, 2009.
Z. Guo, X. Xiao, D. Li, "An assessment of ecosystem services: water flow regulation and hydroelectric power production", Ecological Applications, DOI: 10.1890/1051-0761(2000)010[0925:AAOESW]2.0.CO;2, Vol. 10, No 3, pp. 925-936, 2000.
M. Dresselhaus, I. Thomas, “Alternative energy technologiesâ€, Nature, DOI: 10.1038/35104599, Vol. 414, pp. 332–337, 2001.
A. Becke, “Densityâ€functional thermochemistry. III. The role of exact exchangeâ€, The Journal of chemical physics, DOI: 10.1063/1.464913, Vol. 98, No. 7, pp. 5648–5652, 1993.
G. Kresse, J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setâ€, Physical review B, DOI: 10.1103/PhysRevB.54.11169, Vol. 54, No 16, p. 11169, 1996.
A. Becke, “Density-functional exchange-energy approximation with correct asymptotic behaviorâ€, Physical review A, DOI: 10.1103/PhysRevA.38.3098, Vol. 38, No. 6, p. 3098, 1988.
J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simpleâ€, Physical review letters, DOI: 10.1103/PhysRevLett.77.3865, Vol. 77, No 18, p. 3865, 1996.
P. Hohenberg, W. Kohn, “Inhomogeneous electron gasâ€, Physical review, DOI: 10.1103/PhysRev.136.B864, Vol. 136, No 3B, B864, 1964.
B. O'regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 filmsâ€, Nature, DOI: 10.1038/353737a0, Vol. 353, pp. 737–740, 1991.
R. C. Duncan, C. Thompson, “Formation of very strongly magnetized neutron stars-Implications for gamma-ray burstsâ€, The Astrophysical Journal, DOI: 10.1086/186413, Vol. 392, No 1, pp. L9–L13, 1992.
P. Goldreich, S. Sridhar, “Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulenceâ€, The Astrophysical Journal, DOI: 10.1086/175121, Vol. 438, No 2, pp. 763–775, 1995.
B. Kang, G. Ceder, “Battery materials for ultrafast charging and dischargingâ€, DOI: 10.1038/nature07853, Nature, Vol. 458, pp. 190–193, 2009.
A. Platis, S.K. Siedersleben, J. Bange, A. Lampert, K. Bärfuss, R. Hankers, B. Cañadillas, R. Foreman, J. Schulz-Stellenfleth, B. Djath, T. Neumann, S. Emeis, “First in situ evidence of wakes in the far field behind offshore wind farmsâ€, Scientific reports, DOI: 10.1038/s41598-018-20389-y, Vol. 8, p. 2163, 2018.
Z. Hajej, N. Rezg, M. Bouzoubaa, (2017, November). “An integrated maintenance strategy for a power generation system under failure rate variation (case of wind turbine)â€, In Renewable Energy Research and Applications (ICRERA), 2017 IEEE 6th International Conference, DOI: 10.1109/ICRERA.2017.8191175, pp. 76-79, IEEE, 2017.
S. Janhunen, A. Grönman, K. Hynynen, M. Hujala, M. Kuisma, P. Härkönen, “Audibility of wind turbine noise indoors: Evidence from mixed-method dataâ€, In Renewable Energy Research and Applications (ICRERA), 2017 IEEE 6th International Conference, DOI: 10.1109/ICRERA.2017.8191260, pp. 164-168, IEEE, 2017.
S.H. Vega, A. Mandel, “Technology Diffusion and Climate Policy: A Network Approach and its Application to Wind Energyâ€, Ecological Economics, DOI: 10.1016/j.ecolecon.2017.11.023, Vol. 145, pp. 461-471, 2018.
M.Z. Jacobson, M.A. Delucchi, M.A. Cameron, B.V. Mathiesen, “Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposesâ€, Renewable Energy, DOI: 10.1016/j.renene.2018.02.009, Vol. 123, pp. 236–248, 2018.
“GWEC. Global Wind Statistics 2016†[accessed 10 Feb. 2017], Global Wind Energy Council, 2017 (book).
“IRENA, Renewable Power Generation Costs in 2017â€, Abu Dhabi: International Renewable Energy Agency, 2018 (book).
M. Hassanalian, D. Rice, A. Abdelkefi, “Aerodynamic performance analysis of fixed wing space drones in different solar system bodiesâ€, In: 2018 AIAA Aerospace Sciences Meeting, DOI: 10.2514/6.2018-1533, p. 1533, 2018.
C.H. Trisos, G. Amatulli, J. Gurevitch, A. Robock, L. Xia, B. Zambri, “Potentially dangerous consequences for biodiversity of solar geoengineering implementation and terminationâ€, Nature Ecology & Evolution, DOI: 10.1038/s41559-017-0431-0, Vol. 2, pp. 475–482, 2018.
M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohlâ€Ebinger, A.W. Hoâ€Baillie, “Solar cell efficiency tables (version 50)â€, Progress in Photovoltaics: Research and Applications, DOI: 10.1002/pip.2909, Vol. 25, No 7, pp. 668–676, 2017.
R. Ehrlich, H.A. Geller, Renewable Energy, Second Edition: A First Course. CRC Press, 2017, 490 p. (book).
P. Collins, K. Bradley, M. Ishigami, D. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubesâ€, Science, DOI: 10.1126/science.287.5459.1801, Vol. 287, No. 5459, pp. 1801-1804, 2000.
D.M. Rowe, “Thermoelectrics, an environmentally-friendly source of electrical powerâ€, Renewable energy, DOI 10.1016/S0960-1481(98)00512-6, Vol. 16, No 1-4, pp. 1251–1256, 1999.
C. Wood, "Materials for thermoelectric energy conversion", Reports on progress in physics, DOI: 10.1088/0034-4885/51/4/001, Vol. 51, No 4, p. 459, 1998.
D.M. Rowe, “Handbook of thermoelectricsâ€, CRC press, 1995, 720 p. (book).
E.P. Odum, H.T. Odum, J. Andrews, “Fundamentals of ecology†3rd Edition, W.B. Saunders Company, Philadelphia-London-Toronto, 1971 (book).
M.T. Iqbal, “Modeling and control of a wind fuel cell hybrid energy systemâ€, Renewable energy, DOI: 10.1016/S0960-1481(02)00016-2, Vol. 28, No 2, pp. 223–237, 2003.
S. Ashok, “Optimised model for community-based hybrid energy systemâ€, Renewable energy, DOI: 10.1016/j.renene.2006.04.008, Vol. 32, No. 7, pp. 1155-1164, 2007.
S. R. Alvarez, A. M. Ruiz, J. E. Oviedo, “Optimal design of a diesel-PV-wind system with batteries and hydro pumped storage in a Colombian communityâ€, In Renewable Energy Research and Applications (ICRERA), 2017 IEEE 6th International Conference, DOI: 10.1109/ICRERA.2017.8191272, pp. 234-239, IEEE, 2017.
G. Omer, A. H. Yavuz, R. Ahiska, "Heat pipes thermoelectric solar collectors for energy applications", International Journal of Hydrogen Energy, DOI: 10.1016/j.ijhydene.2017.01.132, Vol. 42, No 12, pp. 8310-8313, 2017.
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxidesâ€, Science, DOI: 10.1126/science.1061051, Vol. 293, pp. 269–271, 2001.
M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodesâ€, Journal of the American Chemical Society, DOI: 10.1021/ja00067a063, Vol. 115, No 14, pp. 6382–6390, 1993.
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, “Dye-sensitized solar cellsâ€, Chemical reviews, DOI: 10.1021/cr900356p, Vol. 110, No 11, pp. 6595–6663, 2010.
F. Blaabjerg, R. Teodorescu, M. Liserre, A. Timbus, “Overview of control and grid synchronization for distributed power generation systemsâ€, IEEE Transactions on industrial electronics, DOI: 10.1109/TIE.2006.881997, Vol. 53, No. 5, pp. 1398–1409, 2006.
J. Carrasco, L. Franquelo, J. Bialasiewicz, E. Galván, R. PortilloGuisado, M. Prats, J. Leon, N. Moreno-Alfonso, “Power-electronic systems for the grid integration of renewable energy sources: A surveyâ€, IEEE Transactions on industrial electronics, DOI: 10.1109/TIE.2006.878356, Vol. 53, No. 4, pp. 1002–1016, 2006.
I. K. Buehring, L. L. Freris, “Control policies for wind-energy conversion systemsâ€. In IEE Proceedings C-Generation, Transmission and Distribution, DOI: 10.1049/ip-c.1981.0043, Vol. 128, No. 5, pp. 253-261, 1981.
G.J. Snyder, E.S. Toberer, “Complex thermoelectric materialsâ€, Nature materials, DOI: 10.1038/nmat2090, Vol. 7, pp. 105–114, 2008.
E.S. Shchuchuk, I.M. Romanyuk, S.A. Tsuryk, S.A. Kukhtarov, “Heat Pump Senso 1.06â€, Patent of Ukraine #112388, IPC F25B 30/02 (2006.01), 2016.
A. Malvaldi, S. Weiss, D. Infield, J. Browell, P. Leahy, A. M. Foley, “A spatial and temporal correlation analysis of aggregate wind power in an ideally interconnected Europeâ€, Wind Energy, DOI: 10.1002/we.2095, Vol. 20, No 8, pp. 1315-1329, 2017.
G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blendsâ€, Nature materials, DOI: 10.1038/nmat1500, Vol. 4, pp. 864–868, 2005.
W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, “Hybrid nanorod-polymer solar cellsâ€, Science, DOI: 10.1126/science.1069156, Vol. 295, No 5564, pp. 2425–2427, 2002.
C. Brabec, N. Sariciftci, J. Hummelen, “Plastic solar cellsâ€, Advanced functional materials, DOI: 10.1002/1616-3028(200102)11:1%3C15::AID-ADFM15%3E3.0.CO;2-A, Vol. 11, No. 6, pp. 15–26, 2001.
B.C. Thompson, J.M. Fréchet, “Polymer–fullerene composite solar cellsâ€, Angewandte chemie international edition, DOI: 10.1002/anie.200702506, Vol. 47, pp. 58–77, 2008.
Y. Liang, Z. Xu, J. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, “For the bright future— – bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%â€, Advanced Materials, DOI: 10.1002/adma.200903528, Vol. 22, No 20, pp. E135–E138, 2010.
G. Li, R. Zhu, Y. Yang, “Polymer solar cellsâ€, Nature photonics, DOI: 10.1038/nphoton.2012.11, Vol. 6, pp. 153–161, 2012.
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskitesâ€, Science, DOI: 10.1126/science.1228604, Vol. 338, No 6107, p. 1228604, 2012.
M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, “Nanowire dye-sensitized solar cellsâ€, Nature materials, DOI: 10.1038/nmat1387, Vol. 4, pp. 455–459, 2005.
B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sourcesâ€, Nature, DOI: 10.1038/nature06181, Vol. 449, pp. 885–889, 2007.
G. Khrypunov, A. Romeo, F. Kurdesau, D.L. Bätzner, H. Zogg, A.N. Tiwari, “Recent developments in evaporated CdTe solar cellsâ€, Solar energy materials and solar cells, DOI: 10.1016/j.solmat.2005.04.003, Vol. 90, No 4, pp. 664–677, 2006.
V.G. Litovchenko, N.I. Klyui, “Solar cells based on DLC film–Si structures for space applicationâ€, Solar energy materials and solar cells, DOI: 10.1016/S0927-0248(00)00345-7, Vol. 68, No 1, pp. 55–70, 2001.
I. V. Horichok, L. I. Nykyruy, T. O. Parashchuk, D. Bardashevska, M. P. Pylyponuk, “Thermodynamics of defect subsystem in zinc telluride crystalsâ€, Modern Physics Letters B, DOI: https://doi.org/10.1142/S0217984916501724, Vol. 30, No 16, p.1650172, 2016.
L.A. Kosyachenko, M.P. Mazur, “Hot-carrier far infrared emission in siliconâ€, Semiconductors, DOI: 10.1134/1.1187660, Vol. 33, No 2, pp. 143–146, 1999.
V. Brus, “On quantum efficiency of nonideal solar cellsâ€, Solar Energy, DOI: 10.1016/j.solener.2011.12.009, Vol. 86, No. 2, pp. 786–791, 2012.
Y.P. Saliy, L.I. Nykyruy, R.S. Yavorskyi, S. Adamiak, “The Surface Morphology of CdTe Thin Films Obtained by Open Evaporation in Vacuumâ€, Journal of Nano- and Electronic Physics, DOI: 10.21272/jnep.9(5).05016, Vol. 9, No 5, p. 05016, 2017.
A. N. Shimko, G. E. Malashkevich, D. M. Freik, L. I. Nykyruy, and V. G. Lytovchenko, "Effect of Thermal Treatment of PbTe Films on their IR Spectra and Surface Structure", Journal of Applied Spectroscopy, DOI: 10.1007/s10812-014-9871-3, Vol. 80, No. 6, pp. 950-953, 2014.
G. Wisz, I. Virt, P. Sagan, P. Potera, R. Yavorskyi, “Structural, Optical and Electrical Properties of Zinc Oxide Layers Produced by Pulsed Laser Deposition Methodâ€, Nanoscale Research Letters, DOI: 10.1186/s11671-017-2033-9, Vol. 12, pp. 253–259, 2017.
R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'quinn, “Thin-film thermoelectric devices with high room-temperature figures of meritâ€, Nature, DOI: 10.1038/35098012, Vol. 413, pp. 597–602, 2001.
J. Coleman, M. Lotya, A. O’Neill, S. Bergin, P. King, U. Khan, I. Shvets, “Two-dimensional nanosheets produced by liquid exfoliation of layered materialsâ€, Science, DOI: 10.1126/science.1194975, Vol. 331, No. 6017, pp. 568–571, 2011.
B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, ... & X. Chen, “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloysâ€, Science, DOI: 10.1126/science.1156446, Vol. 320, No 5876, pp. 634–638, 2008.
A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, ... & P. Yang, “Enhanced thermoelectric performance of rough silicon nanowiresâ€, Nature, DOI: 10.1038/nature06381, Vol. 451, pp. 163–167, 2008.
L.D. Hicks, M.S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of meritâ€, Physical Review B, DOI: 10.1103/PhysRevB.47.12727, Vol. 47, No 19, p. 12727, 1993.
M. Dresselhaus, G. Chen, M. Tang, R. Yang, H. Lee, D. Wang, ... & P. Gogna, “New directions for lowâ€dimensional thermoelectric materialsâ€, Advanced materials, DOI: 10.1002/adma.200600527, Vol. 19, No. 8, pp. 1043–1053, 2007.
K. Hsu, S. Loo, F. Guo, W. Chen, J. Dyck, C. Uher, ... & M. Kanatzidis, “Cubic AgPbmSbTe2+ m: bulk thermoelectric materials with high figure of meritâ€, Science, DOI: 10.1126/science.1092963, Vol. 303, pp. 818–821, 2004.
J. Heremans, V. Jovovic, E. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, ... & G. Snyder, “Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of statesâ€, Science, DOI: 10.1126/science.1159725, Vol. 321, No 5888, pp. 554–557, 2008.
B.C. Sales, D. Mandrus, R.K. Williams, “Filled skutterudite antimonides: a new class of thermoelectric materialsâ€, Science, DOI: 10.1126/science.272.5266.1325, Vol. 272, No 5266, pp. 1325–1328, 1996.
Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, “Convergence of electronic bands for high performance bulk thermoelectricsâ€, Nature, DOI: 10.1038/nature09996, Vol. 473, pp. 66–69, 2011.
H. Mamur, R. Ahiska, “A review: Thermoelectric generators in renewable energyâ€, International Journal of Renewable Energy Research (IJRER), Vol. 4, No 1, pp. 128-136, 2014.
W. Liu, J. Hu, S. Zhang, M. Deng, C.G. Han, Y. Liu, “New trends, strategies and opportunities in thermoelectric materials: a perspectiveâ€, Materials Today. Physics, DOI: 10.1016/j.mtphys.2017.06.001, Vol. 1, pp. 50–60, 2017.
H. Lin, E.S. Božin, S.J.L. Billinge, E. Quarez, M.G. Kanatzidis, “Nanoscale clusters in the high performance thermoelectric AgPbmSbTem+2â€, Physical Review B, DOI: 10.1103/PhysRevB.72.174113, Vol. 72, No 17, p. 174113, 2005.
M. Zhou, J.F. Li, T. Kita, “Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performanceâ€, Journal of the American Chemical Society, DOI: 10.1021/ja7110652, Vol. 130, No 13, pp. 4527–4532, 2008.
E.I. Rogacheva, O.N. Nashchekina, A.V. Meriuts, S.G. Lyubchenko, M.S. Dresselhaus, G. Dresselhaus, :Quantum size effects in n-PbTe∕ p-Sn Te∕ n-PbTe heterostructuresâ€, Applied Physics Letters, DOI: 10.1063/1.1862338, Vol. 86, p. 063103, 2005.
E.I. Rogacheva, T.V. Tavrina, O.N. Nashchekina, S.N. Grigorov, K.A. Nasedkin, M.S. Dresselhaus, S.B. Cronin,†Quantum size effects in PbSe quantum wellsâ€, Applied physics letters, DOI: 10.1063/1.1469677, Vol. 80, pp. 2690–2692, 2002.
M. Gürth, G. Rogl, V.V. Romaka, A. Grytsiv, E. Bauer, P. Rogl, “Thermoelectric high ZT half-Heusler alloys Ti1−x−yZrxHfyNiSn (0≤ x≤ 1; 0≤ y≤ 1)â€, Acta Materialia, DOI: 10.1016/j.actamat.2015.11.022, Vol. 104, No 1, pp. 210–222, 2016.
H. Scherrer, L. Vikhor, B. Lenoir, A. Dauscher, P. Poinas, “Solar thermolectric generator based on skutteruditesâ€, Journal of Power Sources, DOI: 10.1016/S0378-7753(02)00597-9, Vol. 115, No 1, pp. 141–148, 2003.
L.N. Vikhor, L.I. Anatychuk, “Generator modules of segmented thermoelementsâ€, Energy Conversion and Management, DOI: 10.1016/j.enconman.2009.05.020, Vol. 50, No 9, pp. 2366–2372, 2009.
L. Anatychuk, R. Kuz, “Thermoelectric generator for trucksâ€, Journal of thermoelectricity, No. 3, pp. 40–45, 2016.
I. Horichok, R. Ahiska, D. Freik, L. Nykyruy, S. Mudry, O. Matkivskiy, T. Semko, “Phase Content and Thermoelectric Properties of Optimized Thermoelectric Structures Based on the Ag-Pb-Sb-Te Systemâ€, Journal of Electronic Materials, DOI: 10.1007/s11664-015-4122-9, Vol. 45, No 3, pp. 1576–1583, 2016.
M. O. Haluschak, S. I. Mudryi, M. A. Lopyanko, S. V. Optasyuk, Т. О. Semko, L. I. Nikiruy, I. V. Horichok, “Phase composition and thermoelectric properties of materials in Pb-Ag-Te systemâ€, Journal of thermoelectricity, No 3, pp. 34-39, 2016.
L.I. Nykyruy, M.A. Ruvinskiy, E.V. Ivakin, O.B Kostyuk, I.V. Horichok, I.G. Kisialiou, Y.S. Yavorskyy, A.B. Hrubyak, “Low-Dimensional Systems on the Base of PbSnAgTe Compounds for Thermoelectric Applicationâ€, Physica E: Low-dimensional Systems and Nanostructures, DOI: 10.1016/j.physe.2018.10.020, Vol. 106, pp. 10-18, 2019.
H. Kopetz, “Renewable resources: build a biomass energy marketâ€, Nature, DOI: 10.1038/494029a, Vol. 494, pp. 29–31, 2013.
E. Gnansounou, A. Dauriat, J. Villegas, L. Panichelli, “Life cycle assessment of biofuels: energy and greenhouse gas balancesâ€, Bioresource technology, DOI: 10.1016/j.biortech.2009.05.067, Vol. 100, No 21, pp. 4919–4930, 2009.
D. Tilman, R. Socolow, J.A. Foley, J. Hill, E. Larson, L. Lynd, ... & R. Williams, “Beneficial biofuels – the food, energy, and environment trilemmaâ€, Science, DOI: 10.1126/science.1177970, Vol. 325, No 5938, pp. 270–271, 2009.
A. Demirbas, “Biofuels securing the planet’s future energy needsâ€, Energy Conversion and Management, DOI: 10.1016/j.enconman.2009.05.010, Vol. 50, No. 9, pp. 2239–2249, 2009.
R. Slade, A. Bauen, “Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospectsâ€, Biomass and bioenergy, DOI: 10.1016/j.biombioe.2012.12.019, Vol. 53, pp. 29–38, 2013.
J. Hill, E. Nelson, D. Tilman, S. Polasky, D. Tiffany, “Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuelsâ€, Proceedings of the National Academy of sciences, DOI: 10.1073/pnas.0604600103, Vol. 103, No 30, pp. 11206–11210, 2006.
A. Demirbas, “Competitive liquid biofuels from biomassâ€, Applied Energy, DOI: 10.1016/j.apenergy.2010.07.016, Vol. 88, No. 1, pp. 17-28, 2011.
M.E. Himmel, S.Y. Ding, D.K. Johnson, W.S. Adney, M.R. Nimlos, J.W. Brady, T.D. Foust, “Biomass recalcitrance: engineering plants and enzymes for biofuels productionâ€, Science, DOI: 10.1126/science.1137016, Vol. 315, No 5813, pp. 804–807, 2007.
J. Goldemberg, P. Guardabassi, “Are biofuels a feasible option?â€, Energy Policy, DOI: 10.1016/j.enpol.2008.08.031, Vol. 37, No 1, pp. 10–14, 2009.
A. V. Bridgwater, "The technical and economic feasibility of biomass gasification for power generation", Fuel, DOI: 10.1016/0016-2361(95)00001-L, Vol. 74, No 5, pp. 631-653, 1995.
P.S. Nigam, A. Singh, “Production of liquid biofuels from renewable resourcesâ€, Progress in energy and combustion science, DOI: 10.1016/j.pecs.2010.01.003, Vol. 37, No 1, pp. 52–68, 2011.
L.R. Lynd, M.S. Laser, D. Bransby, B.E. Dale, B. Davison, R. Hamilton, ... & C.E. Wyman, “How biotech can transform biofuelsâ€, Nature biotechnology, DOI: 10.1038/nbt0208-169, Vol. 26, pp. 169–172, 2008.
A. Raheem, W.W. Azlina, Y.T. Yap, M.K. Danquah, R. Harun, “Thermochemical conversion of microalgal biomass for biofuel productionâ€, Renewable and Sustainable Energy Reviews, DOI: 10.1016/j.rser.2015.04.186, Vol. 49, pp. 990–999, 2015.
Y. Ulusoy, A. H. Ulukardesler, R. Arslan, Y. Tekin, “Energy and emission benefits of chicken manure biogas production – A case studyâ€, In Renewable Energy Research and Applications (ICRERA), 2017 IEEE 6th International Conference, DOI: 10.1109/ICRERA.2017.8191140, pp. 648-652, IEEE, 2017.
V. M. Yakubiv, N. I. Horohotska, R. D. Yakubiv, “Administrative model of ensuring the development of agricultural enterprises through diversification processes implementationâ€, Actual Problems in Economics, Vol. 170, pp. 58-65, 2015.
R. Quadrelli, S. Peterson, “The energy–climate challenge: Recent trends in CO2 emissions from fuel combustionâ€, Energy policy, DOI: 10.1016/j.enpol.2007.07.001, Vol. 35, No 11, pp. 5938–5952, 2007.
D. Pimentel, T.W. Patzek, “Biofuels, solar and wind as renewable energy systemsâ€, Benefits and risks, New York: Springer, 2008 (book).
R.H. Wijffels, M.J. Barbosa, “An outlook on microalgal biofuelsâ€, Science, DOI: 10.1126/science.1189003, Vol. 329, No 5993, pp. 796–799, 2010.
H. Böttcher, P. Verkerk, M. Gusti, P. HavlÃk, G. Grassi, “Projection of the future EU forest CO2 sink as affected by recent bioenergy policies using two advanced forest management modelsâ€, Gcb Bioenergy, DOI: 10.1111/j.1757-1707.2011.01152.x, Vol. 4, No. 6, pp. 773–783, 2012.
Y. Ulusoy, A. H. Ulukardesler, “Biogas production potential of olive-mill wastes in Turkeyâ€, In Renewable Energy Research and Applications (ICRERA), 2017 IEEE 6th International Conference, DOI: 10.1109/ICRERA.2017.8191143, pp. 664-668, IEEE, 2017.
R. Bun, M. Gusti, L. Kujii, O. Tokar, Y. Tsybrivskyy, A. Bun, “Spatial GHG inventory: analysis of uncertainty sources. A case study for Ukraineâ€, Water, Air, & Soil Pollution: Focus, DOI: 10.1007/s11267-006-9116-4, Vol. 7, No. 4-5, pp. 483–494, 2007.
N. Hurmak, V. Yakubiv, “Efficiency of intermediary activity of agricultural enterprises: Methods and assessment indicatorsâ€, Bulgarian Journal of Agricultural Science, Vol. 23, No 5, pp. 712–716, 2017.
V. Pidlisnyuk, T. Stefanovska, E.E. Lewis, L.E. Erickson, L.C. Davis, “Miscanthus as a productive biofuel crop for phytoremediationâ€, Critical reviews in plant sciences, DOI: 10.1080/07352689.2014.847616, Vol. 33, No 1, pp. 1–19, 2014.
V. Yakubiv, O. Zhuk, I. Prodanova, “Model of region’s balanced agricultural development using the biomass energy potentialâ€, Economic Annals-XXI, Vol. 3-4, No 1, pp. 86–89, 2014.
DOI (PDF): https://doi.org/10.20508/ijrer.v8i4.8688.g7538
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4