A study of the estimation of the photovoltaic potential at the urban level in tropical complex terrain
Abstract
Keywords
Full Text:
PDFReferences
G. Poveda, A. Jaramillo, M. M. Gil, N. Quiceno, and R. I. Mantilla, “Seasonally in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia,” Water resources research37, 2169–2178 (2001).
XM, “Reporte de capacidad efectiva por tipo de generación,” (2020), http://paratec.xm.com.co/paratec/SitePages/generacion.aspx?q=capacidad.
H. R. Murcia, “Desarrollo de la energía solar en Colombia y sus perspectivas,” Revista de ingeniería, 83–89 (2008).
E. A. Barragán-Escandón, E. F. Zalamea-León, J. Terrados-Cepeda, and A. Parra-González, “Las energías renovables a escala urbana. aspectos determinantes y selección tecnológica,” Revista Bitácora Urbano Territorial 29, 39–48 (2019).
N. F. Marrugo, D. Amaya, and O. Ramos, “Analysis of the effects of El Niño in photovoltaic systems in Colombia.” International Journal of Renewable Energy Research (IJRER)7, 622–628(2017).
R. Compagnon, “Solar and daylight availability in the urban fabric,” Energy and buildings 36,321–328 (2004).
K. K.-L. Lau, F. Lindberg, E. Johansson, M. I. Rasmussen, and S. Thorsson, “Investigating solar energy potential in tropical urban environment: A case study of Dar Es Salaam, Tanzania,” Sustainable Cities and Society 30, 118–127 (2017).
S. Izquierdo, M. Rodrigues, and N. Fueyo, “A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations,” Solar Energy 82, 929–939 (2008).
P. Redweik, C. Catita, and M. Brito, “Solar energy potential on roofs and facades in an urban landscape,” Solar Energy 97, 332–341 (2013).
A. M. Aguirre-Mendoza, C. Díaz-Mendoza, and J. Pasqualino, “Renewable energy potential analysis in non-interconnected islands. case study: Isla Grande, Corales del Rosario Archipelago, Colombia,” Ecological Engineering 130, 252–262 (2019).
V. V. Kafarov, A. M. Rosso Ceron, F. G. Blanco Patino, and J. A. Araque Duarte, “Potential assessment of renewable energy sources in non-interconnected zones of Colombia using geographic information system-ArcGIS study of cases,” Chemical Engineering Transactions (2017).
R. Martinez and E. Forero, “Estimation of energy efficiency in solar photovoltaic panels considering environmental variables,” in IOP Conference Series: Materials Science and Engineering, Vol. 437 (IOP Publishing, 2018) p. 012008.
UPME,Guía para la incorporación de la dimensión minero energética en el Ordenamemiento Departamental(2019).
Tzoumanikas, E. Nikitidou, A. Bais, and A. Kazantzidis, “The effect of clouds on surface solar irradiance, based on data from an all-sky imaging system,” Renewable Energy 95, 314–322 (2016).
G. Guzmán, “Análisis de la influencia del diseño urbano en la meteorología del Valle de Aburrá”, Master’s thesis, Universidad Nacional de Colombia - Sede Medellín (2018).
L. Kumar, A. K. Skidmore, and E. Knowles, “Modelling topographic variation in solar radiation in a GIS environment,” International Journal of Geographical Information Science 11, 475–497(1997).
W. B. Rossow, A. W. Walker, and L. C. Garder, “Comparison of isccp and other cloud amounts,” Journal of Climate 6, 2394–2418 (1993).
UPME, “Informe mensual de variables de generación y del mercado eléctrico colombiano,” Tech. Rep. (UPME, Bogotá, 2016).
N. Engerer and F. Mills, “Kpv: A clear-sky index for photovoltaics,” Solar energy 105, 679–693(2014).
C. Marty and R. Philipona, “The clear-sky index to separate clear-sky from cloudy-sky situations in climate research,” Geophysical Research Letters 27, 2649–2652 (2000).
J. Stein, C. Hansen, and M. J. Reno, “The variability index: A new and novel metric for quantifying irradiance and PV output variability.” Tech. Rep. (Sandia National Laboratories, 2012).
A. Echeverri and F. M. Orsini, “Informalidad y urbanismo social en Medellín”, Sostenible 11–24 (2011).
P. Fu and P. M. Rich, “A geometric solar radiation model with applications in agriculture and forestry,” Computers and electronics in agriculture 37, 25–35 (2002).
P. Fu and P. M. Rich, “Design and implementation of the solar analyst: an ArcView extension for modeling solar radiation at landscape scales,” in Proceedings of the nineteenth annual ESRI user conference, Vol. 1 (San Diego USA, 1999) pp. 1–31.
UPME, “Caracterización energética del sector residencial urbano y rural en Colombia,” (2012), https://bdigital.upme.gov.co/bitstream/001/1111/2/v.2.pdf.
DAP, “Perfil socio económico-Medellín total,” (2011), https://www.medellin.gov.co/419irj/go/km/docs/wpccontent/Sites.
G. Poveda, O. J. Mesa, L. F. Salazar, P. A. Arias, H. A. Moreno, S. C. Vieira, P. A. Agudelo, V. G. Toro, and J. F. Alvarez, “The diurnal cycle of precipitation in the tropical Andes of Colombia,” Monthly Weather Review 133, 228–240 (2005).
N. Correa, “Caracterización de la radiación solar para la estimación del potencial de energía fotovoltaica en entornos urbanos, caso de estudio: Valle de Aburrá”, Master’s thesis, Universidad Nacional de Colombia - Sede Medellín (2020).
DOI (PDF): https://doi.org/10.20508/ijrer.v11i3.12106.g8236
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4