Biodiesel Production from Crude Palm Oil under Different Free Fatty Acid Content using Eversa Transform® 2.0 Enzyme

Obie Farobie, Qatrinada Radiyatul Jannah, Edy Hartulistiyoso

Abstract


Low-cost yet viable feedstock, i.e., crude palm oil (CPO) is one of the potential sources to be utilized in the biodiesel industry. However, CPO mainly contains a high free fatty acid (FFA) content. One of the promising methods to treat feedstock containing high FFA such as CPO is an enzyme-catalyzed transesterification owing to no sensitivity to the presence of FFA. Hence, this study aims to investigate biodiesel production from CPO under different FFA content using enzyme-catalyzed transesterification. Eversa Transform® 2.0 lipase which is a low-cost enzyme was used as a liquid enzyme. Experiments were conducted by changing the temperature (30–60 °C), the methanol-to-CPO molar ratio (3:1–8:1), and enzyme concentration (0.1–0.4 wt%), and. Intriguingly, the higher the FFA content of CPO, the higher the biodiesel yield. The result showed that biodiesel yield as high as 97.91% could be attained at a milder temperature of 40 °C, CPO with FFA content of 19.33%, and methanol-to-CPO molar ratio of 7:1.


Keywords


renewable energy; bioenergy; biofuel: biodiesel

Full Text:

PDF

References


S. Chattopadhyay and R. Sen, “Fuel properties, Engine performance and environmental benefits of biodiesel produced by a green process,” Appl. Energy, vol. 105, pp. 319–326, 2013, doi: 10.1016/j.apenergy.2013.01.003.

O. Farobie, Z. Y. Michelle Leow, T. Samanmulya, and Y. Matsumura, “New insights in biodiesel production using supercritical 1-propanol,” Energy Convers. Manag., vol. 124, pp. 212–218, 2016, doi: 10.1016/j.enconman.2016.07.021.

J. Krahl et al., “Comparison of exhaust emissions and their mutagenicity from the combustion of biodiesel, vegetable oil, gas-to-liquid and petrodiesel fuels,” Fuel, vol. 88, no. 6, pp. 1064–1069, 2009, doi: 10.1016/j.fuel.2008.11.015.

S. Mekhilef, S. Siga, and R. Saidur, “A review on palm oil biodiesel as a source of renewable fuel,” Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 1937–1949, 2011, doi: 10.1016/j.rser.2010.12.012.

S. Akinfalabi, U. Rashid, R. Yunus, and Y. Hin, “Synthesis of biodiesel from palm fatty acid distillate using sulfonated palm seed cake catalyst,” Renew. Energy, vol. 111, pp. 611–619, 2017, doi: 10.1016/j.renene.2017.04.056.

I. M. Lokman, U. Rashid, Y. Hin, and R. Yunus, “Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst,” Renew. Energy, vol. 81, pp. 347–354, 2015, doi: 10.1016/j.renene.2015.03.045.

S. Hama and A. Kondo, “Enzymatic biodiesel production: An overview of potential feedstocks and process development,” Bioresour. Technol., vol. 135, pp. 386–395, 2013, doi: 10.1016/j.biortech.2012.08.014.

M. S. Souza, E. C. G. Aguieiras, M. A. P. Da Silva, and M. A. P. Langone, “Biodiesel synthesis via esterification of feedstock with high content of free fatty acids,” Appl. Biochem. Biotechnol., vol. 154, no. 1–3, pp. 253–267, 2009, doi: 10.1007/s12010-008-8444-4.

S. Sun, J. Guo, and X. Chen, “Biodiesel preparation from Semen Abutili (Abutilon theophrasti Medic.) seed oil using low-cost liquid lipase Eversa® transform 2.0 as a catalyst,” Ind. Crops Prod., vol. 169, no. May, 2021, doi: 10.1016/j.indcrop.2021.113643.

M. Y. Chang, E. S. Chan, and C. P. Song, “Biodiesel production catalysed by low-cost liquid enzyme Eversa® Transform 2.0: Effect of free fatty acid content on lipase methanol tolerance and kinetic model,” Fuel, vol. 283, no. June 2020, p. 119266, 2021, doi: 10.1016/j.fuel.2020.119266.

L. P. Christopher, Hemanathan Kumar, and V. P. Zambare, “Enzymatic biodiesel: Challenges and opportunities,” Appl. Energy, vol. 119, pp. 497–520, 2014, doi: 10.1016/j.apenergy.2014.01.017.

F. T. T. Cavalcante et al., “Opportunities for improving biodiesel production via lipase catalysis,” Fuel, vol. 288, no. October, 2021, doi: 10.1016/j.fuel.2020.119577.

K. Bonet-Ragel, A. Canet, M. D. Benaiges, and F. Valero, “Synthesis of biodiesel from high FFA alperujo oil catalysed by immobilised lipase,” Fuel, vol. 161, pp. 12–17, 2015, doi: 10.1016/j.fuel.2015.08.032.

B. Angulo, J. M. Fraile, L. Gil, and C. I. Herrerías, “Comparison of Chemical and Enzymatic Methods for the Transesterification of Waste Fish Oil Fatty Ethyl Esters with Different Alcohols,” ACS Omega, vol. 5, no. 3, pp. 1479–1487, 2020, doi: 10.1021/acsomega.9b03147.

E. C. G. Aguieiras, E. D. Cavalcanti-Oliveira, A. M. De Castro, M. A. P. Langone, and D. M. G. Freire, “Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: Use of vegetable lipase and fermented solid as low-cost biocatalysts,” Fuel, vol. 135, pp. 315–321, 2014, doi: 10.1016/j.fuel.2014.06.069.

D. Kumar, T. Das, B. S. Giri, E. R. Rene, and B. Verma, “Biodiesel production from hybrid non-edible oil using bio-support beads immobilized with lipase from Pseudomonas cepacia,” Fuel, vol. 255, no. June, p. 115801, 2019, doi: 10.1016/j.fuel.2019.115801.

K. Tian, K. Tai, B. J. W. Chua, and Z. Li, “Directed evolution of Thermomyces lanuginosus lipase to enhance methanol tolerance for efficient production of biodiesel from waste grease,” Bioresour. Technol., vol. 245, pp. 1491–1497, 2017, doi: 10.1016/j.biortech.2017.05.108.

R. Jambulingam, M. Shalma, and V. Shankar, “Biodiesel production using lipase immobilised functionalized magnetic nanocatalyst from oleaginous fungal lipid,” J. Clean. Prod., vol. 215, pp. 245–258, 2019, doi: 10.1016/j.jclepro.2018.12.146.

A. Guldhe, P. Singh, S. Kumari, I. Rawat, K. Permaul, and F. Bux, “Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst,” Renew. Energy, vol. 85, pp. 1002–1010, 2016, doi: 10.1016/j.renene.2015.07.059.

D. M. Chesterfield, P. L. Rogers, E. O. Al-Zaini, and A. A. Adesina, “Production of biodiesel via ethanolysis of waste cooking oil using immobilised lipase,” Chem. Eng. J., vol. 207–208, pp. 701–710, 2012, doi: 10.1016/j.cej.2012.07.039.

A. Arumugam, D. Thulasidharan, and G. B. Jegadeesan, “Process optimization of biodiesel production from Hevea brasiliensis oil using lipase immobilized on spherical silica aerogel,” Renew. Energy, vol. 116, pp. 755–761, 2018, doi: 10.1016/j.renene.2017.10.021.

E. C. G. Aguieiras et al., “Investigation of the Reuse of Immobilized Lipases in Biodiesel Synthesis: Influence of Different Solvents in Lipase Activity,” Appl. Biochem. Biotechnol., vol. 179, no. 3, pp. 485–496, 2016, doi: 10.1007/s12010-016-2008-9.

J. H. Lee, S. B. Kim, C. Park, B. Tae, S. O. Han, and S. W. Kim, “Development of batch and continuous processes on biodiesel production in a packed-bed reactor by a mixture of immobilized Candida rugosa and Rhizopus oryzae lipases,” Appl. Biochem. Biotechnol., vol. 161, no. 1–8, pp. 365–371, 2010, doi: 10.1007/s12010-009-8829-z.

V. Dossat, D. Combes, and A. Marty, “Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: Influence of the glycerol production,” Enzyme Microb. Technol., vol. 25, no. 3–5, pp. 194–200, 1999, doi: 10.1016/S0141-0229(99)00026-5.

T. Tan, J. Lu, K. Nie, L. Deng, and F. Wang, “Biodiesel production with immobilized lipase: A review,” Biotechnol. Adv., vol. 28, no. 5, pp. 628–634, 2010, doi: 10.1016/j.biotechadv.2010.05.012.

F. C. Fraga, A. Valério, V. A. de Oliveira, M. Di Luccio, and D. de Oliveira, “Effect of magnetic field on the Eversa® Transform 2.0 enzyme: Enzymatic activity and structural conformation,” Int. J. Biol. Macromol., vol. 122, pp. 653–658, 2019, doi: 10.1016/j.ijbiomac.2018.10.171.

G. D. Yadav and P. S. Lathi, “Intensification of enzymatic synthesis of propylene glycol monolaurate from 1,2-propanediol and lauric acid under microwave irradiation: Kinetics of forward and reverse reactions,” Enzyme Microb. Technol., vol. 38, no. 6, pp. 814–820, 2006, doi: 10.1016/j.enzmictec.2005.08.013.

M. Raita, V. Champreda, and N. Laosiripojana, “Biocatalytic ethanolysis of palm oil for biodiesel production using microcrystalline lipase in tert-butanol system,” Process Biochem., vol. 45, no. 6, pp. 829–834, 2010, doi: 10.1016/j.procbio.2010.02.002.

R. Abdulla and P. Ravindra, “Immobilized Burkholderia cepacia lipase for biodiesel production from crude Jatropha curcas L. oil,” Biomass and Bioenergy, vol. 56, pp. 8–13, 2013, doi: 10.1016/j.biombioe.2013.04.010.

J. Huang, J. Xia, W. Jiang, Y. Li, and J. Li, “Biodiesel production from microalgae oil catalyzed by a recombinant lipase,” Bioresour. Technol., vol. 180, pp. 47–53, 2015, doi: 10.1016/j.biortech.2014.12.072.

S. K. Karmee, W. Swanepoel, and S. Marx, “Biofuel production from spent coffee grounds via lipase catalysis,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 40, no. 3, pp. 294–300, 2018, doi: 10.1080/15567036.2017.1415394.

N. Rachmadona et al., “Lipase-catalyzed ethanolysis for biodiesel production of untreated palm oil mill effluent,” Sustain. Energy Fuels, vol. 4, no. 3, pp. 1105–1111, 2020, doi: 10.1039/c9se00457b.

O. L. Bernardes, J. V. Bevilaqua, M. C. M. R. Leal, D. M. G. Freire, and M. A. P. Langone, “Biodiesel Fuel Production by the Transesterification Reaction of Soybean Oil Using Immobilized Lipase,” Appl. Biochem. Biotecnol., vol. 136, pp. 105–114, 2007, doi: 10.1007/978-1-60327-181-3_10.




DOI (PDF): https://doi.org/10.20508/ijrer.v11i4.12338.g8366

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4