Numerical Simulation for Flow Field Characteristics of Swirling Flow with and without Combustion
Abstract
The present study presents a numerical investigation of the effects of swirl number on gaseous fuel combustion characteristics and the cold flow field. A numerical simulation of the diffusion natural gas flamesis presented in a 3-D combustor tube model. Computational Fluid Dynamics (CFD) studies are carried out by ANSYS FLUENT package version 14.5. Seven swirl numbers; S = 0, 0.23, 0.5, 0.87, 1.5, 2 and 3 are used at excess air factors of 2.0 and 4.0with constant inlet fuel mass flow rate at 0.4 g/s. The obtained numerical results are introduced to clarify the effects of the changing swirl number on the cold flow field and the combustion characteristics, such as the Reverse Flow Zone (RFZ), circulation vortex eye position, flow pathlines, recirculated air flow mass ratio, flame temperatures distributions, and combustion products concentrations. The obtained results showthat when increasing the swirl number and the excess air factor, the size of the Central Reverse Flow Zone (CRFZ) and the central vortex increased, the flame length decreased, the recirculated flow mass ratio increased and the average percentage of CO and unburnt fuel (CH4) concentration at the combustor tube end decreased.
Keywords
Full Text:
PDFReferences
I. Glassman and R. A. Yetter, “Combustion (Fourth Edition)”, Elsevier, 2008.
A. H. Lefebvre and D. R. Ballal, “Gas Turbine Combustion Alternative Fuels and Emissions”, Taylor and Francis Group, LLC, 2010.
F. El-mahallawy and S. E. Habik, “Fundamentals and Technology of Combustion”, Elsevier, 2002.
J. Matthes, P. Waibel, M. Vogelbacher, H.-J. Gehrmann, H.B. Keller, “A new camera-based method for measuring the flame stability of nonoscillating and oscillating combustions”, Experimental Thermal and Fluid Science 105, 27-34, 2019.
A. Kaewpradap and S. Jugjai, “Experimental study of flame stability enhancement on lean premixedcombustion of a synthetic natural gas in Thailand”, Energy 188, 1-10, 2019.
S. A. Said, M. Aliyu, M. A. Nemitallah, M. A. Habib, I. B. Mansir, “Experimental investigation of the stability of a turbulent diffusion flame in a gas turbine combustor”, Energy 157, 904-913, 2018.
M. A. Nemitallah, B. Imteyaz, A. Abdelhafez, M. A. Habib, “Experimental and computational study on stability characteristics of hydrogen-enriched oxy-methane premixed flames”, Applied Energy 250, 433–443, 2019.
A. Giannadakis, A. Naxakis, A. Romeos, K. Perrakis and Th. Panidis, “An experimental study on a coaxial flow with inner swirl: Vortex evolution and flow field mixing attributes”, Aerospace Science and Technology 94, 2019.
P. Singh, R. K. Velamati, C. Prathap, A. Mohammad, S. Chander, “Study of flow patterns and impingement heat transfer for an annular array of eight co-rotating dual-swirling flames”, International Journal of Heat and Mass Transfer 144, 2019.
N. Kharoua, L. Khezzar, M. Alshehhi, “The interaction of confined swirling flow with a conical bluff body: Numerical simulation”, Chemical Engineering Research and Design 136, 207-218, 2018.
L. Liu, B. Bai, “A mechanistic model for the prediction of swirling annular flow pattern transition”, Chemical Engineering Science 199, 405-416, 2019.
L. Yan, W. Song, D. Xu, J. Chen, “Effect of heat recirculation on the combustion stability of methane-air mixtures in catalytic micro-combustors”, Applied Thermal Engineering 115, 702–714, 2017.
F. Song, Z. Wen, Z. Dong, E. Wang, X. Liu, “Numerical study and optimization of a porous burner with annular heat recirculation”, Applied Thermal Engineering 157, 2019.
Y. Tu, A. Zhou, M. Xu, W. Yang, K. B. Siah, S. Prabakaran, “Experimental and numerical study on the combustion of a 32 MW wood-chip grate boiler with internal flue gas recirculation technology”, Energy Procedia 143, 591-598, 2017.
H. Zhou, S. Meng, “Numerical prediction of swirl burner geometry effects on NOx emission and combustion instability in heavy oil-?red boiler”, Applied Thermal Engineering 159, 2019.
K. Hab, V. Medina, A. Okon, C. CT, “Combustion and emission performance of CO2/CH4/biodiesel and CO2/CH4/diesel blends in a Swirl Burner Generator”, Energy Procedia 142, 154–159, 2017.
A. M. Elbaz, H. A. Moneib, K. M. Shebil, W. L. Roberts, “Low NOX - LPG staged combustion double swirl flames”, Renewable Energy 138, 303-315, 2019.
N. Motamedifar, A. Shirneshan, “An experimental study of emission characteristics from cylindrical furnace: Effects of using diesel-ethanol-biodiesel blends and air swirl” Fuel 221, 233–239, 2018.
L. Palanti, D. Pampaloni, A. Andreini, B. Facchini, “Numerical simulation of a swirl stabilized methane-air flame with an automatic meshing CFD solver”, Energy Procedia 148, 376–383, 2018.
M. M. Torkzadeh, F. Bolourchifard, E. Amani, “An investigation of air-swirl design criteria for gas turbine combustors through a multi-objective CFD optimization”, Fuel 186, 734–749, 2016.
Y. J. Kim, B. J. Lee, H. G. Im, “Hydrodynamic and chemical scaling for blow-off dynamics of lean premixed flames stabilized on a meso-scale bluff-body” Proceedings of the Combustion Institute 37, 1831–1841, 2019.
Y. Tong, X. Liu, S. Chen, Z. Li, J. Klingmann, “Effects of the position of a bluff-body on the diffusion flames: A combined experimental and numerical study”, Applied Thermal Engineering 131, 507–521, 2018.
H. Y. Shih, J. R. Hsu, “A computational study of combustion and extinction of opposed-jet syngas diffusion flames”, international journal of hydrogen energy 36, 15868-15879, 2011.
J. Carpio, A. le Liñán, A. L. Sánchez, F. A. Williams, “Aerodynamics of Axisymmetric counterflowing jets”, Combustion and Flame 177, 137–143, 2017.
S. Chen and D. Zhao, “Numerical Study of Non-reacting Flow Fields of a Swirling Trapped Vortex Ramjet Combustor”, Aerospace Science and Technology 74, 81–92, 2018.
X. Liu, A. M. Elbaz, C. Gong, X. S. Bai, H. T. Zheng, W. L. Roberts, “Effect of Burner Geometry on Swirl Stabilized Methane/Air Flames: A Joint LES/OH-PLIF/PIV Study”, Fuel 207, 533–546, 2017.
L. Y. Wang, S. Chatterjee, Q. An, A. M. Steinberg, Ö. L. Gülder, “Soot Formation and Flame Structure in Swirl-Stabilized TurbulentNon-Premixed Methane Combustion”, Combustion and Flame 209, 303–312, 2019.
P. Kiameh, “Power Generation Handbook”, McGraw-Hill Professional, 2002.
I. Y?lmaz, M. Tastan, M. Ilbas and C. Tarhan, “Effect of Turbulence and Radiation Models on Combustion Characteristics in Propane–Hydrogen Diffusion Flames”, Energy Conversion and Management, Vol. 72, pp. 179–186, 2013.
ANSYS Fluent theory guide, 2009.
Farag A. I. A., “Study of secondary air effect on natural gas combustion characteristics”, Ph.D. thesis, Port Said University, Egypt, 2012.
DOI (PDF): https://doi.org/10.20508/ijrer.v11i4.12399.g8342
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4