Experimental assessment of thermoelectric cooling on the efficiency of PV module
Abstract
Full Text:
PDFReferences
T. S. Adebayo, A. A. Awosusi, S. D. Oladipupo, E. B. Agyekum, A. Jayakumar, and N. M. Kumar, “Dominance of Fossil Fuels in Japan’s National Energy Mix and Implications for Environmental Sustainability,” International Journal of Environmental Research and Public Health, vol. 18, no. 14, Art. no. 14, Jan. 2021, doi: 10.3390/ijerph18147347.
A. G. Andal, S. PraveenKumar, E. G. Andal, M. A. Qasim, and V. I. Velkin, “Perspectives on the Barriers to Nuclear Power Generation in the Philippines: Prospects for Directions in Energy Research in the Global South,” Inventions, vol. 7, no. 3, Art. no. 3, Sep. 2022, doi: 10.3390/inventions7030053.
E. Shagdar, Y. Shuai, B. G. Lougou, A. Mustafa, D. Choidorj, and H. Tan, “New integration mechanism of solar energy into 300 MW coal-fired power plant: performance and techno-economic analysis,” Energy, p. 122005, 2021.
T. Sakagami, Y. Shimizu, and H. Kitano, “Exchangeable batteries for micro EVs and renewable energy,” in 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), Nov. 2017, pp. 701–705. doi: 10.1109/ICRERA.2017.8191151.
F. F. Ahmad, C. Ghenai, A. K. Hamid, O. Rejeb, and M. Bettayeb, “Performance enhancement and infra-red (IR) thermography of solar photovoltaic panel using back cooling from the waste air of building centralized air conditioning system,” Case Studies in Thermal Engineering, vol. 24, p. 100840, Apr. 2021, doi: 10.1016/j.csite.2021.100840.
E. B. Agyekum, S. PraveenKumar, A. Eliseev, and V. I. Velkin, “Design and Construction of a Novel Simple and Low-Cost Test Bench Point-Absorber Wave Energy Converter Emulator System,” Inventions, vol. 6, no. 1, Art. no. 1, Mar. 2021, doi: 10.3390/inventions6010020.
S. J. Yaqoob, A. L. Saleh, S. Motahhir, E. B. Agyekum, A. Nayyar, and B. Qureshi, “Comparative study with practical validation of photovoltaic monocrystalline module for single and double diode models,” Sci Rep, vol. 11, no. 1, p. 19153, Dec. 2021, doi: 10.1038/s41598-021-98593-6.
S. J. Yaqoob, S. Motahhir, and E. B. Agyekum, “A new model for a photovoltaic panel using Proteus software tool under arbitrary environmental conditions,” Journal of Cleaner Production, vol. 333, p. 130074, Jan. 2022, doi: 10.1016/j.jclepro.2021.130074.
S. A. Taya and M. G. Daher, “Properties of Defect Modes of One-Dimensional Quaternary Defective Photonic Crystal Nanostructure,” International Journal of Smart Grid - ijSmartGrid, vol. 6, no. 2, Art. no. 2, Jun. 2022.
R. Rabie, M. Emam, A. Elwardany, S. Ookawara, and M. Ahmed, “Performance evaluation of concentrator photovoltaic systems integrated with combined passive cooling techniques,” Solar Energy, vol. 228, pp. 447–463, Nov. 2021, doi: 10.1016/j.solener.2021.09.055.
E. B. Agyekum, S. PraveenKumar, N. T. Alwan, V. I. Velkin, S. E. Shcheklein, and S. J. Yaqoob, “Experimental Investigation of the Effect of a Combination of Active and Passive Cooling Mechanism on the Thermal Characteristics and Efficiency of Solar PV Module,” Inventions, vol. 6, no. 4, Art. no. 4, Dec. 2021, doi: 10.3390/inventions6040063.
Y. Iwasaki, Y. Kazuto, K. Ikeda, and T. Goto, “A Basic Study on Electricity Demand for Energy Management,” in 2021 10th International Conference on Renewable Energy Research and Application (ICRERA), Sep. 2021, pp. 301–304. doi: 10.1109/ICRERA52334.2021.9598665.
J. Kim, S. Bae, Y. Yu, and Y. Nam, “Experimental and Numerical Study on the Cooling Performance of Fins and Metal Mesh Attached on a Photovoltaic Module,” Energies, vol. 13, no. 1, Art. no. 1, Jan. 2020, doi: 10.3390/en13010085.
B. Ramkiran, C. K. Sundarabalan, and K. Sudhakar, “Sustainable passive cooling strategy for PV module: A comparative analysis,” Case Studies in Thermal Engineering, vol. 27, p. 101317, 2021.
A. Belkaid, I. Colak, K. Kayisli, M. Sara, and R. Bayindir, “Modeling and Simulation of Polycrystalline Silicon Photovoltaic Cells,” in 2019 7th International Conference on Smart Grid (icSmartGrid), Dec. 2019, pp. 155–158. doi: 10.1109/icSmartGrid48354.2019.8990733.
S. Nižeti?, D. ?oko, A. Yadav, and F. Grubiši?-?abo, “Water spray cooling technique applied on a photovoltaic panel: The performance response,” Energy Conversion and Management, vol. 108, pp. 287–296, Jan. 2016, doi: 10.1016/j.enconman.2015.10.079.
H. Bahaidarah, A. Subhan, P. Gandhidasan, and S. Rehman, “Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions,” Energy, vol. 59, pp. 445–453, Sep. 2013, doi: 10.1016/j.energy.2013.07.050.
H. Alizadeh, R. Ghasempour, M. B. Shafii, M. H. Ahmadi, W.-M. Yan, and M. A. Nazari, “Numerical simulation of PV cooling by using single turn pulsating heat pipe,” International Journal of Heat and Mass Transfer, vol. 127, pp. 203–208, Dec. 2018, doi: 10.1016/j.ijheatmasstransfer.2018.06.108.
E. B. Agyekum, S. PraveenKumar, N. T. Alwan, V. I. Velkin, and S. E. Shcheklein, “Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation,” Heliyon, vol. 7, no. 9, p. e07920, Sep. 2021, doi: 10.1016/j.heliyon.2021.e07920.
Y. Zhang, C. Shen, C. Zhang, J. Pu, Q. Yang, and C. Sun, “A novel porous channel to optimize the cooling performance of PV modules,” Energy and Built Environment, 2021.
E. B. Agyekum, S. PraveenKumar, N. T. Alwan, V. I. Velkin, and T. S. Adebayo, “Experimental Study on Performance Enhancement of a Photovoltaic Module Using a Combination of Phase Change Material and Aluminum Fins—Exergy, Energy and Economic (3E) Analysis,” Inventions, vol. 6, no. 4, Art. no. 4, Dec. 2021, doi: 10.3390/inventions6040069.
A. M. A. Soliman, H. Hassan, and S. Ookawara, “An experimental study of the performance of the solar cell with heat sink cooling system,” Energy Procedia, vol. 162, pp. 127–135, Apr. 2019, doi: 10.1016/j.egypro.2019.04.014.
B. Bokor, H. Akhan, D. Eryener, and L. Kajtár, “Theoretical and experimental analysis on the passive cooling effect of transpired solar collectors,” Energy and Buildings, vol. 156, pp. 109–120, Dec. 2017, doi: 10.1016/j.enbuild.2017.09.063.
M. Lebbi et al., “Energy performance improvement of a new hybrid PV/T Bi-fluid system using active cooling and self-cleaning: Experimental study,” Applied Thermal Engineering, vol. 182, p. 116033, Jan. 2021, doi: 10.1016/j.applthermaleng.2020.116033.
W. Salameh, C. Castelain, J. Faraj, R. Murr, H. El Hage, and M. Khaled, “Improving the efficiency of photovoltaic panels using air exhausted from HVAC systems: Thermal modelling and parametric analysis,” Case Studies in Thermal Engineering, vol. 25, p. 100940, Jun. 2021, doi: 10.1016/j.csite.2021.100940.
M. Dida, S. Boughali, D. Bechki, and H. Bouguettaia, “Experimental investigation of a passive cooling system for photovoltaic modules efficiency improvement in hot and arid regions,” Energy Conversion and Management, vol. 243, p. 114328, Sep. 2021, doi: 10.1016/j.enconman.2021.114328.
A. Kane, V. Verma, and B. Singh, “Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 1295–1305, Aug. 2017, doi: 10.1016/j.rser.2016.11.114.
M. Ebrahimi, M. Rahimi, and A. Rahimi, “An experimental study on using natural vaporization for cooling of a photovoltaic solar cell,” International Communications in Heat and Mass Transfer, vol. 65, pp. 22–30, Jul. 2015, doi: 10.1016/j.icheatmasstransfer.2015.04.002.
A. Ejaz, F. Jamil, and H. M. Ali, “A novel thermal regulation of photovoltaic panels through phase change materials with metallic foam-based system and a concise comparison: An experimental study,” Sustainable Energy Technologies and Assessments, vol. 49, p. 101726, Feb. 2022, doi: 10.1016/j.seta.2021.101726.
M. Lucas, F. J. Aguilar, J. Ruiz, C. G. Cutillas, A. S. Kaiser, and P. G. Vicente, “Photovoltaic Evaporative Chimney as a new alternative to enhance solar cooling,” Renewable Energy, vol. 111, pp. 26–37, Oct. 2017, doi: 10.1016/j.renene.2017.03.087.
A. Maleki, P. T. T. Ngo, and M. I. Shahrestani, “Energy and exergy analysis of a PV module cooled by an active cooling approach,” J Therm Anal Calorim, vol. 141, no. 6, pp. 2475–2485, Sep. 2020, doi: 10.1007/s10973-020-09916-0.
A. M. Elbreki, A. F. Muftah, K. Sopian, H. Jarimi, A. Fazlizan, and A. Ibrahim, “Experimental and economic analysis of passive cooling PV module using fins and planar reflector,” Case Studies in Thermal Engineering, vol. 23, p. 100801, Feb. 2021, doi: 10.1016/j.csite.2020.100801.
P. Bevilacqua, R. Bruno, and N. Arcuri, “Comparing the performances of different cooling strategies to increase photovoltaic electric performance in different meteorological conditions,” Energy, vol. 195, p. 116950, Mar. 2020, doi: 10.1016/j.energy.2020.116950.
A. E. Kabeel, M. Abdelgaied, and R. Sathyamurthy, “A comprehensive investigation of the optimization cooling technique for improving the performance of PV module with reflectors under Egyptian conditions,” Solar Energy, vol. 186, pp. 257–263, Jul. 2019, doi: 10.1016/j.solener.2019.05.019.
K. P. Amber, W. Akram, M. A. Bashir, M. S. Khan, and A. Kousar, “Experimental performance analysis of two different passive cooling techniques for solar photovoltaic installations,” J Therm Anal Calorim, vol. 143, no. 3, pp. 2355–2366, Feb. 2021, doi: 10.1007/s10973-020-09883-6.
R. Nasrin, N. A. Rahim, H. Fayaz, and M. Hasanuzzaman, “Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research,” Renewable Energy, vol. 121, pp. 286–300, 2018.
Q. Luo et al., “Experimental investigation on the heat dissipation performance of flared-fin heat sinks for concentration photovoltaic modules,” Applied Thermal Engineering, vol. 157, p. 113666, 2019.
A. A. B. Baloch, H. M. S. Bahaidarah, P. Gandhidasan, and F. A. Al-Sulaiman, “Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling,” Energy Conversion and Management, vol. 103, pp. 14–27, Oct. 2015, doi: 10.1016/j.enconman.2015.06.018.
S. Dubey, J. N. Sarvaiya, and B. Seshadri, “Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review,” Energy Procedia, vol. 33, pp. 311–321, Jan. 2013, doi: 10.1016/j.egypro.2013.05.072.
L. Idoko, O. Anaya-Lara, and A. McDonald, “Enhancing PV modules efficiency and power output using multi-concept cooling technique,” Energy Reports, vol. 4, pp. 357–369, Nov. 2018, doi: 10.1016/j.egyr.2018.05.004.
R. Ramkumar, M. Kesavan, C. M. Raguraman, and A. Ragupathy, “Enhancing the performance of photovoltaic module using clay pot evaporative cooling water,” in 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS), Apr. 2016, pp. 217–222. doi: 10.1109/ICEETS.2016.7582929.
E. B. Agyekum, “Techno-economic comparative analysis of solar photovoltaic power systems with and without storage systems in three different climatic regions, Ghana,” Sustainable Energy Technologies and Assessments, vol. 43, p. 100906, Feb. 2021, doi: 10.1016/j.seta.2020.100906.
H. C. Kuttarmare et al., “Fabrication of Peltier Cooling System: Alternative for Refrigeration.” IJARIIE, 2016.
M. A. Qasim, N. T. Alwan, S. PraveenKumar, V. I. Velkin, and E. B. Agyekum, “A New Maximum Power Point Tracking Technique for Thermoelectric Generator Modules,” Inventions, vol. 6, no. 4, Art. no. 4, Dec. 2021, doi: 10.3390/inventions6040088.
M. Benghanem, A. A. Al-Mashraqi, and K. O. Daffallah, “Performance of solar cells using thermoelectric module in hot sites,” Renewable Energy, vol. 89, pp. 51–59, Apr. 2016, doi: 10.1016/j.renene.2015.12.011.
E. K. A. Fatoni, A. Taqwa, and R. Kusumanto, “Solar Panel Performance Improvement using Heatsink Fan as the Cooling Effect,” J. Phys.: Conf. Ser., vol. 1167, p. 012031, Feb. 2019, doi: 10.1088/1742-6596/1167/1/012031.
K. Teffah, Y. Zhang, and X. Mou, “Modeling and Experimentation of New Thermoelectric Cooler–Thermoelectric Generator Module,” Energies, vol. 11, no. 3, Art. no. 3, Mar. 2018, doi: 10.3390/en11030576.
N. T. Alwan, S. E. Shcheklein, O. M. Ali, M. H. Majeed, and E. B. Agyekum, “Experimental and Theoretical Investigations of a Modified Single-Slope Solar Still with an External Solar Water Heater,” Sustainability, vol. 13, no. 22, Art. no. 22, Jan. 2021, doi: 10.3390/su132212414.
N. T. Alwan, S. E. Shcheklein, and O. M. Ali, “Experimental investigation of modified solar still integrated with solar collector,” Case Studies in Thermal Engineering, vol. 19, p. 100614, Jun. 2020, doi: 10.1016/j.csite.2020.100614.
A. R. Amelia et al., “Cooling on photovoltaic panel using forced air convection induced by DC fan,” International Journal of Electrical and Computer Engineering, vol. 6, no. 2, pp. 526–534, 2016, doi: 10.11591/ijece.v6i1.9118.
Y. M. Irwan et al., “Comparison of solar panel cooling system by using dc brushless fan and dc water,” Journal of Physics: Conference Series, vol. 622, no. 1, 2015, doi: 10.1088/1742-6596/622/1/012001.
H. Erol, M. Uçman, and Z. Kesilmi?, “The Effect of Fan Cooling on Photovoltaic Efficiency of PV Panels in Osmaniye Environment,” vol. 6, no. 3, pp. 29–33, 2017.
Y. M. Irwan et al., “Analysis air cooling mechanism for photovoltaic panel by solar simulator,” International Journal of Electrical and Computer Engineering, vol. 5, no. 4, pp. 636–643, 2015, doi: 10.11591/ijece.v5i4.pp636-643.
A. M. A. Soliman, H. Hassan, and S. Ookawara, “An experimental study of the performance of the solar cell with heat sink cooling system,” Energy Procedia, vol. 162, pp. 127–135, 2019, doi: 10.1016/j.egypro.2019.04.014.
J. Hallal, M. Hammoud, and T. Moussa, “Experimental optimization of the Si photovoltaic panels cooling system on maximum allowable temperature criteria,” Renewable Energy Focus, vol. 35, no. December, pp. 178–181, 2020, doi: 10.1016/j.ref.2020.10.007.
T. N. Sultan, M. S. Farhan, and H. T. H. Salim Alrikabi, “Using Cooling System for Increasing the Efficiency of Solar Cell,” Journal of Physics: Conference Series, vol. 1973, no. 1, 2021, doi: 10.1088/1742-6596/1973/1/012129.
E. Mahone, Mark and B. Denckla, Martha, “untitled _ Enhanced Reader.pdf,” Clinical Infectious Diseases. 2017.
Y. S. Indartono, A. Suwono, and F. Y. Pratama, “Improving photovoltaics performance by using yellow petroleum jelly as phase change material,” International Journal of Low-Carbon Technologies, vol. 11, no. 3, pp. 333–337, 2016, doi: 10.1093/ijlct/ctu033.
H. Mahamudul, M. Silakhori, I. Henk Metselaar, S. Ahmad, and S. Mekhilef, “Development of a temperature regulated photovoltaic module using phase change material for Malaysian weather condition,” Optoelectronics and Advanced Materials, Rapid Communications, vol. 8, no. 11–12, pp. 1243–1245, 2014.
M. Chandrasekar and T. Senthilkumar, “Passive thermal regulation of flat PV modules by coupling the mechanisms of evaporative and fin cooling,” Heat and Mass Transfer/Waerme- und Stoffuebertragung, vol. 52, no. 7. pp. 1381–1391, 2016. doi: 10.1007/s00231-015-1661-9.
C. J. Ho, W. L. Chou, and C. M. Lai, “Thermal and electrical performance of a water-surface floating PV integrated with a water-saturated MEPCM layer,” Energy Conversion and Management, vol. 89. pp. 862–872, 2015. doi: 10.1016/j.enconman.2014.10.039.
L. Habeeb, D. Ghanim, L. J. Habeeb, D. Ghanim Mutasher, F. A. Muslim, and A. Ali, “Cooling Photovoltaic Thermal Solar Panel by Using Heat Pipe at Baghdad Climate,” International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, vol. 17, no. February, p. 6, 2017.
Z. Arifin, D. D. D. P. Tjahjana, S. Hadi, R. A. Rachmanto, G. Setyohandoko, and B. Sutanto, “Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks,” International Journal of Photoenergy, vol. 2020, 2020, doi: 10.1155/2020/1574274.
M. Firoozzadeh, A. H. Shiravi, and M. Shafiee, “An Experimental Study on Cooling the Photovoltaic Modules by Fins to Improve Power Generation: Economic Assessment,” Iranian Journal of Energy and Environment, vol. 10, no. 2, pp. 80–84, 2019, doi: 10.5829/ijee.2019.10.02.02.
Z. A. Haidar, J. Orfi, and Z. Kaneesamkandi, “Photovoltaic panels temperature regulation using evaporative cooling principle: Detailed theoretical and real operating conditions experimental approaches,” Energies, vol. 14, no. 1, 2021, doi: 10.3390/en14010145.
DOI (PDF): https://doi.org/10.20508/ijrer.v12i3.13087.g8553
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4